Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2022

Open Access 14-10-2022 | Breast Cancer | Clinical

The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options

Authors: Yating Wang, Shou-Ching Tang

Published in: Cancer and Metastasis Reviews | Issue 4/2022

Login to get access

Abstract

Hormonal therapy plays a vital part in the treatment of estrogen receptor–positive (ER +) breast cancer. ER can be activated in a ligand-dependent and independent manner. Currently available ER-targeting agents include selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders (SERDs), and aromatase inhibitors (AIs). Estrogen receptor mutation (ESR1 mutation) is one of the common mechanisms by which breast cancer becomes resistant to additional therapies from SERMs or AIs. These tumors remain sensitive to SERDs such as fulvestrant. Fulvestrant is limited in clinical utilization by its intramuscular formulation and once-monthly injection in large volumes. Oral SERDs are being rapidly developed to replace fulvestrant with the potential of higher efficacy and lower toxicities. Elacestrant is the first oral SERD that went through a randomized phase III trial showing increased efficacy, especially in tumors bearing ESR1 mutation, and good tolerability. Two other oral SERDs recently failed to achieve the primary endpoints of longer progression-free survival (PFS). They targeted tumors previously treated with several lines of prior therapies untested for ESR1 mutation. Initial clinical trial data demonstrated that tumors without the ESR1 mutation are less likely to benefit from the SERDs and may still respond to SERMs or AIs, including tumors previously exposed to hormonal therapy. Testing for ESR1 mutation in ongoing clinical trials and in hormonal therapy for breast cancer is highly recommended. Novel protein degradation technologies such as proteolysis-targeting chimera (PROTACS), molecular glue degrader (MGD), and lysosome-targeting chimeras (LYTACS) may result in more efficient ER degradation, while ribonuclease-targeting chimeras (RIBOTAC) and small interfering RNA (siRNA) may inhibit the production of ER protein.
Literature
1.
go back to reference Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33.
2.
go back to reference Howlader N NA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). . SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/archive/csr/1975_2011/, based on November 2013 SEER data submission, posted to the SEER web site, April 2014. Howlader N NA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). . SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, https://​seer.​cancer.​gov/​archive/​csr/​1975_​2011/​, based on November 2013 SEER data submission, posted to the SEER web site, April 2014.
3.
go back to reference Anderson, W. F., Katki, H. A., & Rosenberg, P. S. (2011). Incidence of breast cancer in the United States: Current and future trends. Journal of the National Cancer Institute., 103(18), 1397–1402.CrossRef Anderson, W. F., Katki, H. A., & Rosenberg, P. S. (2011). Incidence of breast cancer in the United States: Current and future trends. Journal of the National Cancer Institute., 103(18), 1397–1402.CrossRef
4.
go back to reference Li, C. I., Daling, J. R., & Malone, K. E. (2003). Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. Journal of Clinical Oncology., 21(1), 28–34.CrossRef Li, C. I., Daling, J. R., & Malone, K. E. (2003). Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. Journal of Clinical Oncology., 21(1), 28–34.CrossRef
5.
6.
go back to reference Movérare-Skrtic, S., Börjesson, A. E., Farman, H. H., et al. (2014). The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified. Proceedings of the National Academy of Sciences., 111(3), 1180–1185.CrossRef Movérare-Skrtic, S., Börjesson, A. E., Farman, H. H., et al. (2014). The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified. Proceedings of the National Academy of Sciences., 111(3), 1180–1185.CrossRef
8.
go back to reference Jensen, E. V., & Jordan, V. C. (2003). The estrogen receptor: A model for molecular medicine. Clinical cancer research., 9(6), 1980–1989. Jensen, E. V., & Jordan, V. C. (2003). The estrogen receptor: A model for molecular medicine. Clinical cancer research., 9(6), 1980–1989.
9.
go back to reference Macgregor, J. I., & Jordan, V. C. (1998). Basic guide to the mechanisms of antiestrogen action. Pharmacological reviews., 50(2), 151–196. Macgregor, J. I., & Jordan, V. C. (1998). Basic guide to the mechanisms of antiestrogen action. Pharmacological reviews., 50(2), 151–196.
10.
go back to reference Heldring, N., Pike, A., Andersson, S., et al. (2007). Estrogen receptors: How do they signal and what are their targets. Physiological reviews., 87(3), 905–931.CrossRef Heldring, N., Pike, A., Andersson, S., et al. (2007). Estrogen receptors: How do they signal and what are their targets. Physiological reviews., 87(3), 905–931.CrossRef
11.
go back to reference Cosman, F., & Lindsay, R. (1999). Selective estrogen receptor modulators: Clinical spectrum. Endocrine Reviews., 20(3), 418–434. Cosman, F., & Lindsay, R. (1999). Selective estrogen receptor modulators: Clinical spectrum. Endocrine Reviews., 20(3), 418–434.
12.
go back to reference Howell, A., Group EBCTC. (1998). Tamoxifen for early breast cancer: an overview of the randomised trials Early Breast Cancer Trialists’ Collaborative Group. Lancet (London, England), 351(9114), 1451–67.CrossRef Howell, A., Group EBCTC. (1998). Tamoxifen for early breast cancer: an overview of the randomised trials Early Breast Cancer Trialists’ Collaborative Group. Lancet (London, England), 351(9114), 1451–67.CrossRef
13.
go back to reference Vogel, V. G., Costantino, J. P., Wickerham, D. L., et al. (2006). Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 295(23), 2727–2741.CrossRef Vogel, V. G., Costantino, J. P., Wickerham, D. L., et al. (2006). Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 295(23), 2727–2741.CrossRef
14.
go back to reference Kidwell, K. M., Harte, S. E., Hayes, D. F., et al. (2014). Patient-reported symptoms and discontinuation of adjuvant aromatase inhibitor therapy. Cancer, 120(16), 2403–2411.CrossRef Kidwell, K. M., Harte, S. E., Hayes, D. F., et al. (2014). Patient-reported symptoms and discontinuation of adjuvant aromatase inhibitor therapy. Cancer, 120(16), 2403–2411.CrossRef
15.
go back to reference Lee CI, Goodwin A, Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database of Systematic Reviews. 2017;(1) Lee CI, Goodwin A, Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database of Systematic Reviews. 2017;(1)
16.
go back to reference Wu, Y.-L., Yang, X., Ren, Z., et al. (2005). Structural basis for an unexpected mode of SERM-mediated ER antagonism. Molecular Cell., 18(4), 413–424.CrossRef Wu, Y.-L., Yang, X., Ren, Z., et al. (2005). Structural basis for an unexpected mode of SERM-mediated ER antagonism. Molecular Cell., 18(4), 413–424.CrossRef
17.
go back to reference Wittmann, B. M., Sherk, A., & McDonnell, D. P. (2007). Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Research., 67(19), 9549–9560.CrossRef Wittmann, B. M., Sherk, A., & McDonnell, D. P. (2007). Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Research., 67(19), 9549–9560.CrossRef
18.
go back to reference Connor, C. E., Norris, J. D., Broadwater, G., et al. (2001). Circumventing tamoxifen resistance in breast cancers using antiestrogens that induce unique conformational changes in the estrogen receptor. Cancer research., 61(7), 2917–2922. Connor, C. E., Norris, J. D., Broadwater, G., et al. (2001). Circumventing tamoxifen resistance in breast cancers using antiestrogens that induce unique conformational changes in the estrogen receptor. Cancer research., 61(7), 2917–2922.
19.
go back to reference Osborne, C., Wakeling, A., & Nicholson, R. (2004). Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. British Journal of Cancer., 90(1), S2–S6.CrossRef Osborne, C., Wakeling, A., & Nicholson, R. (2004). Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. British Journal of Cancer., 90(1), S2–S6.CrossRef
20.
go back to reference Vergote, I., & Abram, P. (2006). Fulvestrant, a new treatment option for advanced breast cancer: Tolerability versus existing agents. Annals of oncology., 17(2), 200–204.CrossRef Vergote, I., & Abram, P. (2006). Fulvestrant, a new treatment option for advanced breast cancer: Tolerability versus existing agents. Annals of oncology., 17(2), 200–204.CrossRef
21.
go back to reference Ellis, M. J., Llombart-Cussac, A., Feltl, D., et al. (2015). Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: Overall survival analysis from the phase II FIRST study. Journal of Clinical Oncology., 33(32), 3781.CrossRef Ellis, M. J., Llombart-Cussac, A., Feltl, D., et al. (2015). Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: Overall survival analysis from the phase II FIRST study. Journal of Clinical Oncology., 33(32), 3781.CrossRef
22.
go back to reference Ciruelos, E., Pascual, T., Vozmediano, M. L. A., et al. (2014). The therapeutic role of fulvestrant in the management of patients with hormone receptor-positive breast cancer. The Breast., 23(3), 201–208.CrossRef Ciruelos, E., Pascual, T., Vozmediano, M. L. A., et al. (2014). The therapeutic role of fulvestrant in the management of patients with hormone receptor-positive breast cancer. The Breast., 23(3), 201–208.CrossRef
23.
go back to reference Robertson, J. F., Bondarenko, I. M., Trishkina, E., et al. (2016). Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): An international, randomised, double-blind, phase 3 trial. The Lancet., 388(10063), 2997–3005.CrossRef Robertson, J. F., Bondarenko, I. M., Trishkina, E., et al. (2016). Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): An international, randomised, double-blind, phase 3 trial. The Lancet., 388(10063), 2997–3005.CrossRef
24.
go back to reference Robertson, J. F., Llombart-Cussac, A., Rolski, J., et al. (2009). Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: Results from the FIRST study. Journal of Clinical Oncology., 27(27), 4530–4535.CrossRef Robertson, J. F., Llombart-Cussac, A., Rolski, J., et al. (2009). Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: Results from the FIRST study. Journal of Clinical Oncology., 27(27), 4530–4535.CrossRef
25.
go back to reference Turner Nicholas, C., Slamon Dennis, J., Ro Jungsil, B. I., et al. (2018). Cristofanilli Massimo Overall survival with palbociclib and fulvestrant in advanced breast cancer. New England Journal of Medicine, 379(20), 1926–1936.CrossRef Turner Nicholas, C., Slamon Dennis, J., Ro Jungsil, B. I., et al. (2018). Cristofanilli Massimo Overall survival with palbociclib and fulvestrant in advanced breast cancer. New England Journal of Medicine, 379(20), 1926–1936.CrossRef
26.
go back to reference Sledge, G. W., Toi, M., Neven, P., et al. (2020). The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor–positive, ERBB2-negative breast cancer that progressed on endocrine therapy—MONARCH 2: A randomized clinical trial. JAMA oncology., 6(1), 116–124.CrossRef Sledge, G. W., Toi, M., Neven, P., et al. (2020). The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor–positive, ERBB2-negative breast cancer that progressed on endocrine therapy—MONARCH 2: A randomized clinical trial. JAMA oncology., 6(1), 116–124.CrossRef
27.
go back to reference Slamon, D. J., Neven, P., Chia, S., et al. (2020). Overall survival with ribociclib plus fulvestrant in advanced breast cancer. New England Journal of medicine., 382(6), 514–524.CrossRef Slamon, D. J., Neven, P., Chia, S., et al. (2020). Overall survival with ribociclib plus fulvestrant in advanced breast cancer. New England Journal of medicine., 382(6), 514–524.CrossRef
29.
go back to reference van Kruchten, M., de Vries, E. G., Glaudemans, A. W., et al. (2015). Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer discovery., 5(1), 72–81.CrossRef van Kruchten, M., de Vries, E. G., Glaudemans, A. W., et al. (2015). Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer discovery., 5(1), 72–81.CrossRef
30.
go back to reference Bross, P. F., Baird, A., Chen, G., et al. (2003). Fulvestrant in postmenopausal women with advanced breast cancer. Clinical cancer research., 9(12), 4309–4317. Bross, P. F., Baird, A., Chen, G., et al. (2003). Fulvestrant in postmenopausal women with advanced breast cancer. Clinical cancer research., 9(12), 4309–4317.
33.
go back to reference Bachelot T, Bourgier C, Cropet C, et al. Abstract S1–6: TAMRAD: a GINECO randomized phase II trial of everolimus in combination with tamoxifen versus tamoxifen alone in patients (pts) with hormone-receptor positive, HER2 negative metastatic breast cancer (MBC) with prior exposure to aromatase inhibitors (AI). Cancer Research. 2010;70(24_Supplement):S1–6-S1–6. https://doi.org/10.1158/0008-5472.Sabcs10-s1-6 Bachelot T, Bourgier C, Cropet C, et al. Abstract S1–6: TAMRAD: a GINECO randomized phase II trial of everolimus in combination with tamoxifen versus tamoxifen alone in patients (pts) with hormone-receptor positive, HER2 negative metastatic breast cancer (MBC) with prior exposure to aromatase inhibitors (AI). Cancer Research. 2010;70(24_Supplement):S1–6-S1–6. https://​doi.​org/​10.​1158/​0008-5472.​Sabcs10-s1-6
34.
go back to reference Finn RS, Dering J, Conklin D, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research. 2009/10/29 2009;11(5):R77. https://doi.org/10.1186/bcr2419 Finn RS, Dering J, Conklin D, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research. 2009/10/29 2009;11(5):R77. https://​doi.​org/​10.​1186/​bcr2419
37.
go back to reference Bardia, A., Kaklamani, V., Wilks, S., et al. (2021). Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative advanced breast cancer. Journal of clinical oncology: Official journal of the American Society of Clinical Oncology., 39(12), 1360–1370.CrossRef Bardia, A., Kaklamani, V., Wilks, S., et al. (2021). Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative advanced breast cancer. Journal of clinical oncology: Official journal of the American Society of Clinical Oncology., 39(12), 1360–1370.CrossRef
38.
go back to reference Patel, H. K., Tao, N., Lee, K.-M., et al. (2019). Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Research., 21(1), 1–17.CrossRef Patel, H. K., Tao, N., Lee, K.-M., et al. (2019). Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Research., 21(1), 1–17.CrossRef
39.
go back to reference Bihani, T., Patel, H. K., Arlt, H., et al. (2017). Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has antitumor activity in multiple ER+ breast cancer patient-derived xenograft models elacestrant inhibits growth of ER+ breast cancer PDX models. Clinical Cancer Research., 23(16), 4793–4804.CrossRef Bihani, T., Patel, H. K., Arlt, H., et al. (2017). Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has antitumor activity in multiple ER+ breast cancer patient-derived xenograft models elacestrant inhibits growth of ER+ breast cancer PDX models. Clinical Cancer Research., 23(16), 4793–4804.CrossRef
40.
go back to reference Bidard F-C, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology. 2022:JCO. 22.00338. Bidard F-C, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology. 2022:JCO. 22.00338.
41.
go back to reference Besret, L., d’Heilly, S., Aubert, C., et al. (2020). Translational strategy using multiple nuclear imaging biomarkers to evaluate target engagement and early therapeutic efficacy of SAR439859, a novel selective estrogen receptor degrader. EJNMMI research., 10(1), 1–13.CrossRef Besret, L., d’Heilly, S., Aubert, C., et al. (2020). Translational strategy using multiple nuclear imaging biomarkers to evaluate target engagement and early therapeutic efficacy of SAR439859, a novel selective estrogen receptor degrader. EJNMMI research., 10(1), 1–13.CrossRef
42.
go back to reference Tolaney, S., Chan, A., Petrakova, K., et al. (2022). 212MO AMEERA-3, a phase II study of amcenestrant (AMC) versus endocrine treatment of physician’s choice (TPC) in patients (pts) with endocrine-resistant ER+/HER2− advanced breast cancer (aBC). Annals of Oncology., 33, S634–S635.CrossRef Tolaney, S., Chan, A., Petrakova, K., et al. (2022). 212MO AMEERA-3, a phase II study of amcenestrant (AMC) versus endocrine treatment of physician’s choice (TPC) in patients (pts) with endocrine-resistant ER+/HER2− advanced breast cancer (aBC). Annals of Oncology., 33, S634–S635.CrossRef
43.
go back to reference Scott, J. S., Moss, T. A., Balazs, A., et al. (2020). Discovery of AZD9833, a potent and orally bioavailable selective estrogen receptor degrader and antagonist. Journal of Medicinal Chemistry., 63(23), 14530–14559.CrossRef Scott, J. S., Moss, T. A., Balazs, A., et al. (2020). Discovery of AZD9833, a potent and orally bioavailable selective estrogen receptor degrader and antagonist. Journal of Medicinal Chemistry., 63(23), 14530–14559.CrossRef
44.
go back to reference Gangl, E. T., Markandu, R., Sharma, P., et al. (2020). Preclinical pharmacokinetic and metabolic characterization of the next generation oral SERD AZD9833. Cancer Research., 80(16_Supplement), 1042–1042.CrossRef Gangl, E. T., Markandu, R., Sharma, P., et al. (2020). Preclinical pharmacokinetic and metabolic characterization of the next generation oral SERD AZD9833. Cancer Research., 80(16_Supplement), 1042–1042.CrossRef
45.
go back to reference Hamilton EP, Oliveira M, Banerji U, et al. (2020) A phase I dose escalation and expansion study of the next generation oral SERD AZD9833 in women with ER-positive, HER2-negative advanced breast cancer. Journal of clinical oncology. 1024–1024. Hamilton EP, Oliveira M, Banerji U, et al. (2020) A phase I dose escalation and expansion study of the next generation oral SERD AZD9833 in women with ER-positive, HER2-negative advanced breast cancer. Journal of clinical oncology. 1024–1024.
46.
go back to reference Liang, J., Zbieg, J. R., Blake, R. A., et al. (2021). GDC-9545 (giredestrant): A potent and orally bioavailable selective estrogen receptor antagonist and degrader with an exceptional preclinical profile for ER+ breast cancer. Journal of Medicinal Chemistry., 64(16), 11841–11856.CrossRef Liang, J., Zbieg, J. R., Blake, R. A., et al. (2021). GDC-9545 (giredestrant): A potent and orally bioavailable selective estrogen receptor antagonist and degrader with an exceptional preclinical profile for ER+ breast cancer. Journal of Medicinal Chemistry., 64(16), 11841–11856.CrossRef
48.
go back to reference Bhagwat, S. V., Zhao, B., Shen, W., et al. (2021). Preclinical characterization of LY3484356 a novel potent and orally bioavailable selective estrogen receptor degrader (SERD). Cancer Research, 81(13_Supplement), 1236–1236.CrossRef Bhagwat, S. V., Zhao, B., Shen, W., et al. (2021). Preclinical characterization of LY3484356 a novel potent and orally bioavailable selective estrogen receptor degrader (SERD). Cancer Research, 81(13_Supplement), 1236–1236.CrossRef
49.
go back to reference Jhaveri, K. L., Jeselsohn, R., Lim, E., et al. (2022). A phase 1a/b trial of imlunestrant (LY3484356), an oral selective estrogen receptor degrader (SERD) in ER-positive (ER+) advanced breast cancer (aBC) and endometrial endometrioid cancer (EEC): Monotherapy results from EMBER. Journal of Clinical Oncology, 40(16_suppl), 1021–1021. https://doi.org/10.1200/JCO.2022.40.16_suppl.1021CrossRef Jhaveri, K. L., Jeselsohn, R., Lim, E., et al. (2022). A phase 1a/b trial of imlunestrant (LY3484356), an oral selective estrogen receptor degrader (SERD) in ER-positive (ER+) advanced breast cancer (aBC) and endometrial endometrioid cancer (EEC): Monotherapy results from EMBER. Journal of Clinical Oncology, 40(16_suppl), 1021–1021. https://​doi.​org/​10.​1200/​JCO.​2022.​40.​16_​suppl.​1021CrossRef
50.
go back to reference Joseph, J., Govek, S., Darimont, B., et al. (2015). Discovery of GDC-0810 a novel, non-steroidal selective estrogen receptor degrader with robust activity in pre-clinical models of endocrine-resistant breast cancer. Cancer Research., 75(15_Supplement), 5053–5053.CrossRef Joseph, J., Govek, S., Darimont, B., et al. (2015). Discovery of GDC-0810 a novel, non-steroidal selective estrogen receptor degrader with robust activity in pre-clinical models of endocrine-resistant breast cancer. Cancer Research., 75(15_Supplement), 5053–5053.CrossRef
52.
go back to reference Joseph, J. D., Darimont, B., Zhou, W., et al. (2016). The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife, 5, e15828.CrossRef Joseph, J. D., Darimont, B., Zhou, W., et al. (2016). The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife, 5, e15828.CrossRef
53.
go back to reference Dickler M, Villanueva R, Perez Fidalgo J, et al. A first-in-human phase I study to evaluate the oral selective estrogen receptor degrader (SERD). GDC-0927, in postmenopausal women with estrogen receptor positive (ER+), HER2-negative metastatic breast cancer (BC) Cancer Research. 2018;78 Dickler M, Villanueva R, Perez Fidalgo J, et al. A first-in-human phase I study to evaluate the oral selective estrogen receptor degrader (SERD). GDC-0927, in postmenopausal women with estrogen receptor positive (ER+), HER2-negative metastatic breast cancer (BC) Cancer Research. 2018;78
54.
go back to reference Qi, S.-M., Dong, J., Xu, Z.-Y., Cheng, X.-D., Zhang, W.-D., & Qin, J.-J. (2021). PROTAC: An effective targeted protein degradation strategy for cancer therapy. Frontiers in Pharmacology, 12, 1124.CrossRef Qi, S.-M., Dong, J., Xu, Z.-Y., Cheng, X.-D., Zhang, W.-D., & Qin, J.-J. (2021). PROTAC: An effective targeted protein degradation strategy for cancer therapy. Frontiers in Pharmacology, 12, 1124.CrossRef
55.
go back to reference Békés M, Langley DR, Crews CM. (2022) PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery 1–20. Békés M, Langley DR, Crews CM. (2022) PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery 1–20.
58.
go back to reference Kastl, J. M., Davies, G., Godsman, E., & Holdgate, G. A. (2021). Small-molecule degraders beyond PROTACs—challenges and opportunities. SLAS DISCOVERY: Advancing the Science of Drug Discovery., 26(4), 524–533.CrossRef Kastl, J. M., Davies, G., Godsman, E., & Holdgate, G. A. (2021). Small-molecule degraders beyond PROTACs—challenges and opportunities. SLAS DISCOVERY: Advancing the Science of Drug Discovery., 26(4), 524–533.CrossRef
59.
go back to reference Nagel YA, Britschgi A, Ricci A. (2021) From degraders to molecular glues: new ways of breaking down disease associated proteins. Successful Drug Discovery. 47–85. Nagel YA, Britschgi A, Ricci A. (2021) From degraders to molecular glues: new ways of breaking down disease associated proteins. Successful Drug Discovery. 47–85.
60.
go back to reference Banik, S. M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N. M., & Bertozzi, C. R. (2020). Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 584(7820), 291–297.CrossRef Banik, S. M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N. M., & Bertozzi, C. R. (2020). Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 584(7820), 291–297.CrossRef
65.
go back to reference Costales, M. G., Matsumoto, Y., Velagapudi, S. P., & Disney, M. D. (2018). Small molecule targeted recruitment of a nuclease to RNA. Journal of the American Chemical Society., 140(22), 6741–6744.CrossRef Costales, M. G., Matsumoto, Y., Velagapudi, S. P., & Disney, M. D. (2018). Small molecule targeted recruitment of a nuclease to RNA. Journal of the American Chemical Society., 140(22), 6741–6744.CrossRef
66.
go back to reference Chakrabarti, A., Jha, B. K., & Silverman, R. H. (2011). New insights into the role of RNase L in innate immunity. Journal of Interferon & Cytokine Research., 31(1), 49–57.CrossRef Chakrabarti, A., Jha, B. K., & Silverman, R. H. (2011). New insights into the role of RNase L in innate immunity. Journal of Interferon & Cytokine Research., 31(1), 49–57.CrossRef
67.
go back to reference Perry, C. M., & Balfour, J. A. B. (1999). Fomivirsen. Drugs, 57(3), 375–380.CrossRef Perry, C. M., & Balfour, J. A. B. (1999). Fomivirsen. Drugs, 57(3), 375–380.CrossRef
68.
go back to reference Xue, L., Maihle, N. J., Yu, X., Tang, S.-C., & Liu, H. Y. (2018). Synergistic targeting HER2 and EGFR with bivalent aptamer-siRNA chimera efficiently inhibits HER2-positive tumor growth. Molecular pharmaceutics., 15(11), 4801–4813.CrossRef Xue, L., Maihle, N. J., Yu, X., Tang, S.-C., & Liu, H. Y. (2018). Synergistic targeting HER2 and EGFR with bivalent aptamer-siRNA chimera efficiently inhibits HER2-positive tumor growth. Molecular pharmaceutics., 15(11), 4801–4813.CrossRef
69.
go back to reference Yu, X., Ghamande, S., Liu, H., et al. (2018). Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Molecular Therapy-Nucleic Acids., 10, 317–330.CrossRef Yu, X., Ghamande, S., Liu, H., et al. (2018). Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Molecular Therapy-Nucleic Acids., 10, 317–330.CrossRef
70.
go back to reference Cong, L., Ran, F. A., Cox, D., a., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.CrossRef Cong, L., Ran, F. A., Cox, D., a., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.CrossRef
71.
go back to reference Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.CrossRef Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.CrossRef
72.
go back to reference Dahlman, J. E., Kauffman, K. J., Langer, R., & Anderson, D. G. (2014). Nanotechnology for in vivo targeted siRNA delivery. Advances in genetics., 88, 37–69.CrossRef Dahlman, J. E., Kauffman, K. J., Langer, R., & Anderson, D. G. (2014). Nanotechnology for in vivo targeted siRNA delivery. Advances in genetics., 88, 37–69.CrossRef
73.
go back to reference Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: Advances in siRNA delivery. Nature reviews Drug discovery., 8(2), 129–138.CrossRef Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: Advances in siRNA delivery. Nature reviews Drug discovery., 8(2), 129–138.CrossRef
74.
go back to reference Wilhelm J, Vytášek R, Uhlík J, Vajner L. Oxidative stress in the developing rat brain due to production of reactive oxygen and nitrogen species. Oxidative medicine and cellular longevity. 2016;2016 Wilhelm J, Vytášek R, Uhlík J, Vajner L. Oxidative stress in the developing rat brain due to production of reactive oxygen and nitrogen species. Oxidative medicine and cellular longevity. 2016;2016
75.
go back to reference Peer, D., & Lieberman, J. (2011). Special delivery: Targeted therapy with small RNAs. Gene Therapy, 18(12), 1127–1133.CrossRef Peer, D., & Lieberman, J. (2011). Special delivery: Targeted therapy with small RNAs. Gene Therapy, 18(12), 1127–1133.CrossRef
76.
go back to reference Brett, J. O., Spring, L. M., Bardia, A., & Wander, S. A. (2021). ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Research., 23(1), 1–15.CrossRef Brett, J. O., Spring, L. M., Bardia, A., & Wander, S. A. (2021). ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Research., 23(1), 1–15.CrossRef
77.
go back to reference Pejerrey, S. M., Dustin, D., Kim, J.-A., Gu, G., Rechoum, Y., & Fuqua, S. A. (2018). The impact of ESR1 mutations on the treatment of metastatic breast cancer. Hormones and Cancer, 9(4), 215–228.CrossRef Pejerrey, S. M., Dustin, D., Kim, J.-A., Gu, G., Rechoum, Y., & Fuqua, S. A. (2018). The impact of ESR1 mutations on the treatment of metastatic breast cancer. Hormones and Cancer, 9(4), 215–228.CrossRef
78.
go back to reference Martin Jimenez, M., Lim, E., Chavez Mac Gregor, M., et al. (2022). 211MO Giredestrant (GDC-9545) vs physician choice of endocrine monotherapy (PCET) in patients (pts) with ER+, HER2– locally advanced/metastatic breast cancer (LA/mBC): primary analysis of the phase II, randomised, open-label acelERA BC study. Annals of Oncology, 33, S633–S634. https://doi.org/10.1016/j.annonc.2022.07.250CrossRef Martin Jimenez, M., Lim, E., Chavez Mac Gregor, M., et al. (2022). 211MO Giredestrant (GDC-9545) vs physician choice of endocrine monotherapy (PCET) in patients (pts) with ER+, HER2– locally advanced/metastatic breast cancer (LA/mBC): primary analysis of the phase II, randomised, open-label acelERA BC study. Annals of Oncology, 33, S633–S634. https://​doi.​org/​10.​1016/​j.​annonc.​2022.​07.​250CrossRef
79.
go back to reference Martin, M., Lim, E., Gregor, M. C. M., et al. (2021). acelERA Breast Cancer (BC): Phase II study evaluating efficacy and safety of giredestrant (GDC-9545) versus physician’s choice of endocrine monotherapy in patients (pts) with estrogen receptor-positive, HER2-negative (ER+/HER2-) locally advanced or metastatic breast cancer (LA/mBC). Journal of Clinical Oncology, 39(15_suppl), TPS1100–TPS1100. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS1100CrossRef Martin, M., Lim, E., Gregor, M. C. M., et al. (2021). acelERA Breast Cancer (BC): Phase II study evaluating efficacy and safety of giredestrant (GDC-9545) versus physician’s choice of endocrine monotherapy in patients (pts) with estrogen receptor-positive, HER2-negative (ER+/HER2-) locally advanced or metastatic breast cancer (LA/mBC). Journal of Clinical Oncology, 39(15_suppl), TPS1100–TPS1100. https://​doi.​org/​10.​1200/​JCO.​2021.​39.​15_​suppl.​TPS1100CrossRef
80.
go back to reference Fasching, P. A., Bardia, A., Quiroga, V., et al. (2022). Neoadjuvant giredestrant (GDC-9545) plus palbociclib (P) versus anastrozole (A) plus P in postmenopausal women with estrogen receptor–positive, HER2-negative, untreated early breast cancer (ER+/HER2– eBC): final analysis of the randomized, open-label, international phase 2 coopERA BC study. Journal of Clinical Oncology, 40(16_suppl), 589–589. https://doi.org/10.1200/JCO.2022.40.16_suppl.589CrossRef Fasching, P. A., Bardia, A., Quiroga, V., et al. (2022). Neoadjuvant giredestrant (GDC-9545) plus palbociclib (P) versus anastrozole (A) plus P in postmenopausal women with estrogen receptor–positive, HER2-negative, untreated early breast cancer (ER+/HER2– eBC): final analysis of the randomized, open-label, international phase 2 coopERA BC study. Journal of Clinical Oncology, 40(16_suppl), 589–589. https://​doi.​org/​10.​1200/​JCO.​2022.​40.​16_​suppl.​589CrossRef
81.
go back to reference Baird, R., Oliveira, M., Gil, E. M. C., et al. (2021). Abstract PS11–05 updated data from SERENA-1 a phase 1 dose escalation and expansion study of the next generation oral SERD AZD9833 as a monotherapy and in combination with palbociclib, in women with ER-positive, HER2-negative advanced breast cancer. Cancer Research, 81(4_Supplement), ):PS11-05-PS11-05. https://doi.org/10.1158/1538-7445.Sabcs20-ps11-05CrossRef Baird, R., Oliveira, M., Gil, E. M. C., et al. (2021). Abstract PS11–05 updated data from SERENA-1 a phase 1 dose escalation and expansion study of the next generation oral SERD AZD9833 as a monotherapy and in combination with palbociclib, in women with ER-positive, HER2-negative advanced breast cancer. Cancer Research, 81(4_Supplement), ):PS11-05-PS11-05. https://​doi.​org/​10.​1158/​1538-7445.​Sabcs20-ps11-05CrossRef
82.
go back to reference Chandarlapaty S, Linden HM, Neven P, et al. AMEERA-1: Phase 1/2 study of amcenestrant (SAR439859), an oral selective estrogen receptor (ER) degrader (SERD), with palbociclib (palbo) in postmenopausal women with ER+/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (mBC). Journal of clinical oncology 2021. 1058-1058 Chandarlapaty S, Linden HM, Neven P, et al. AMEERA-1: Phase 1/2 study of amcenestrant (SAR439859), an oral selective estrogen receptor (ER) degrader (SERD), with palbociclib (palbo) in postmenopausal women with ER+/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (mBC). Journal of clinical oncology 2021. 1058-1058
84.
go back to reference Johnston, S. R., Kilburn, L. S., Ellis, P., et al. (2013). Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): A composite, multicentre, phase 3 randomised trial. The lancet Oncology, 14(10), 989–998. https://doi.org/10.1016/s1470-2045(13)70322-xCrossRef Johnston, S. R., Kilburn, L. S., Ellis, P., et al. (2013). Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): A composite, multicentre, phase 3 randomised trial. The lancet Oncology, 14(10), 989–998. https://​doi.​org/​10.​1016/​s1470-2045(13)70322-xCrossRef
85.
go back to reference Bidard F-C, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology. 0(0):JCO.22.00338. https://doi.org/10.1200/jco.22.00338 Bidard F-C, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology. 0(0):JCO.22.00338. https://​doi.​org/​10.​1200/​jco.​22.​00338
86.
go back to reference Jhaveri K, Harbeck N, Aftimos P, et al. Abstract OT2–11–01: EMBER-3: a randomized phase 3 study of LY3484356, a novel, oral selective estrogen receptor degrader vs investigator’s choice of endocrine therapy of either fulvestrant or exemestane, in patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative, locally advanced or metastatic breast cancer previously treated with endocrine-based therapy. Cancer Research. 2022;82(4_Supplement):OT2–11–01-OT2–11–01. https://doi.org/10.1158/1538-7445.Sabcs21-ot2-11-01 Jhaveri K, Harbeck N, Aftimos P, et al. Abstract OT2–11–01: EMBER-3: a randomized phase 3 study of LY3484356, a novel, oral selective estrogen receptor degrader vs investigator’s choice of endocrine therapy of either fulvestrant or exemestane, in patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative, locally advanced or metastatic breast cancer previously treated with endocrine-based therapy. Cancer Research. 2022;82(4_Supplement):OT2–11–01-OT2–11–01. https://​doi.​org/​10.​1158/​1538-7445.​Sabcs21-ot2-11-01
87.
go back to reference Bardia, A., Cortes, J., Hurvitz, S. A., et al. (2022). AMEERA-5: A randomized, double-blind phase 3 study of amcenestrant plus palbociclib versus letrozole plus palbociclib for previously untreated ER+/HER2- advanced breast cancer. Ther Adv Med Oncol., 14, 17588359221083956. https://doi.org/10.1177/17588359221083956CrossRef Bardia, A., Cortes, J., Hurvitz, S. A., et al. (2022). AMEERA-5: A randomized, double-blind phase 3 study of amcenestrant plus palbociclib versus letrozole plus palbociclib for previously untreated ER+/HER2- advanced breast cancer. Ther Adv Med Oncol., 14, 17588359221083956. https://​doi.​org/​10.​1177/​1758835922108395​6CrossRef
88.
go back to reference Im S-A, Hamilton EP, Cussac AL, et al. SERENA-4: a phase 3 comparison of AZD9833 (camizestrant) plus palbociclib, versus anastrozole plus palbociclib, for patients with ER-positive, HER2-negative advanced breast cancer who have not previously received systemic treatment for advanced disease. Journal of Clinical Oncology. 2021;39(15_suppl):TPS1101-TPS1101. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS1101 Im S-A, Hamilton EP, Cussac AL, et al. SERENA-4: a phase 3 comparison of AZD9833 (camizestrant) plus palbociclib, versus anastrozole plus palbociclib, for patients with ER-positive, HER2-negative advanced breast cancer who have not previously received systemic treatment for advanced disease. Journal of Clinical Oncology. 2021;39(15_suppl):TPS1101-TPS1101. https://​doi.​org/​10.​1200/​JCO.​2021.​39.​15_​suppl.​TPS1101
89.
go back to reference Bidard F-C, Kalinsky K, Cristofanilli M, et al. Abstract OT2–11–05: SERENA-6: a phase III study to assess the efficacy and safety of AZD9833 (camizestrant) compared with aromatase inhibitors when given in combination with palbociclib or abemaciclib in patients with HR+/HER2- metastatic breast cancer with detectable ESR1m who have not experienced disease progression on first-line therapy. Cancer Research. 2022;82(4_Supplement):OT2–11–05-OT2–11–05. https://doi.org/10.1158/1538-7445.Sabcs21-ot2-11-05 Bidard F-C, Kalinsky K, Cristofanilli M, et al. Abstract OT2–11–05: SERENA-6: a phase III study to assess the efficacy and safety of AZD9833 (camizestrant) compared with aromatase inhibitors when given in combination with palbociclib or abemaciclib in patients with HR+/HER2- metastatic breast cancer with detectable ESR1m who have not experienced disease progression on first-line therapy. Cancer Research. 2022;82(4_Supplement):OT2–11–05-OT2–11–05. https://​doi.​org/​10.​1158/​1538-7445.​Sabcs21-ot2-11-05
90.
91.
go back to reference Bardia A, Schmid P, Harbeck N, et al. Abstract OT2–11–09: Lidera breast cancer: a phase III adjuvant study of giredestrant (GDC-9545) vs physician’s choice of endocrine therapy (ET) in patients (pts) with estrogen receptor-positive, HER2-negative early breast cancer (ER+/HER2- EBC). Cancer Research. 2022;82(4_Supplement):OT2–11–09-OT2–11–09. https://doi.org/10.1158/1538-7445.Sabcs21-ot2-11-09 Bardia A, Schmid P, Harbeck N, et al. Abstract OT2–11–09: Lidera breast cancer: a phase III adjuvant study of giredestrant (GDC-9545) vs physician’s choice of endocrine therapy (ET) in patients (pts) with estrogen receptor-positive, HER2-negative early breast cancer (ER+/HER2- EBC). Cancer Research. 2022;82(4_Supplement):OT2–11–09-OT2–11–09. https://​doi.​org/​10.​1158/​1538-7445.​Sabcs21-ot2-11-09
92.
go back to reference Meyskens, T., Metzger, O., Poncet, C., et al. (2022). Adjuvant study of amcenestrant (SAR439859) versus tamoxifen for patients with hormone receptor-positive (HR+) early breast cancer (EBC), who have discontinued adjuvant aromatase inhibitor therapy due to treatment-related toxicity (AMEERA-6). Journal of Clinical Oncology, 40(16_suppl), TPS607–TPS607. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS607CrossRef Meyskens, T., Metzger, O., Poncet, C., et al. (2022). Adjuvant study of amcenestrant (SAR439859) versus tamoxifen for patients with hormone receptor-positive (HR+) early breast cancer (EBC), who have discontinued adjuvant aromatase inhibitor therapy due to treatment-related toxicity (AMEERA-6). Journal of Clinical Oncology, 40(16_suppl), TPS607–TPS607. https://​doi.​org/​10.​1200/​JCO.​2022.​40.​16_​suppl.​TPS607CrossRef
93.
go back to reference Paulk, J. (2021). Lysosome-targeting chimeras evolve. Nature chemical biology., 17(9), 931–933.CrossRef Paulk, J. (2021). Lysosome-targeting chimeras evolve. Nature chemical biology., 17(9), 931–933.CrossRef
94.
go back to reference Dey, S. K., & Jaffrey, S. R. (2019). RIBOTACs: Small molecules target RNA for degradation. Cell Chemical Biology., 26(8), 1047–1049.CrossRef Dey, S. K., & Jaffrey, S. R. (2019). RIBOTACs: Small molecules target RNA for degradation. Cell Chemical Biology., 26(8), 1047–1049.CrossRef
95.
go back to reference Wang, Y., Zhang, R., Tang, L., & Yang, L. (2022). Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics., 14(3), 512.CrossRef Wang, Y., Zhang, R., Tang, L., & Yang, L. (2022). Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics., 14(3), 512.CrossRef
Metadata
Title
The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options
Authors
Yating Wang
Shou-Ching Tang
Publication date
14-10-2022
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2022
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10066-y

Other articles of this Issue 4/2022

Cancer and Metastasis Reviews 4/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine