Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2022

Open Access 03-08-2022 | Glioblastoma | Non-Thematic Review

The multifaceted mechanisms of malignant glioblastoma progression and clinical implications

Authors: Rui Sun, Albert H. Kim

Published in: Cancer and Metastasis Reviews | Issue 4/2022

Login to get access

Abstract 

With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Literature
1.
go back to reference Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Group, N. C. I. o. C. C. T. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330CrossRef Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Group, N. C. I. o. C. C. T. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352(10), 987–996. https://​doi.​org/​10.​1056/​NEJMoa043330CrossRef
2.
go back to reference Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., Group, N. C. I. o. C. C. T. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet Oncology, 10(5), 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7CrossRef Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., Group, N. C. I. o. C. C. T. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet Oncology, 10(5), 459–466. https://​doi.​org/​10.​1016/​S1470-2045(09)70025-7CrossRef
20.
go back to reference Miroshnikova, Y. A., Mouw, J. K., Barnes, J. M., Pickup, M. W., Lakins, J. N., Kim, Y., & Weaver, V. M. (2016). Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nature Cell Biology, 18(12), 1336–1345. https://doi.org/10.1038/ncb3429CrossRef Miroshnikova, Y. A., Mouw, J. K., Barnes, J. M., Pickup, M. W., Lakins, J. N., Kim, Y., & Weaver, V. M. (2016). Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nature Cell Biology, 18(12), 1336–1345. https://​doi.​org/​10.​1038/​ncb3429CrossRef
22.
30.
38.
41.
go back to reference Ljubimova, J. Y., Lakhter, A. J., Loksh, A., Yong, W. H., Riedinger, M. S., Miner, J. H., & Black, K. L. (2001). Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Research, 61(14), 5601–5610. Ljubimova, J. Y., Lakhter, A. J., Loksh, A., Yong, W. H., Riedinger, M. S., Miner, J. H., & Black, K. L. (2001). Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Research, 61(14), 5601–5610.
43.
45.
go back to reference Zagzag, D., Friedlander, D. R., Miller, D. C., Dosik, J., Cangiarella, J., Kostianovsky, M., & Greco, M. A. (1995). Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Research, 55(4), 907–914. Zagzag, D., Friedlander, D. R., Miller, D. C., Dosik, J., Cangiarella, J., Kostianovsky, M., & Greco, M. A. (1995). Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Research, 55(4), 907–914.
47.
go back to reference Lal, A., Lash, A. E., Altschul, S. F., Velculescu, V., Zhang, L., McLendon, R. E., & Riggins, G. J. (1999). A public database for gene expression in human cancers. Cancer Research, 59(21), 5403–5407. Lal, A., Lash, A. E., Altschul, S. F., Velculescu, V., Zhang, L., McLendon, R. E., & Riggins, G. J. (1999). A public database for gene expression in human cancers. Cancer Research, 59(21), 5403–5407.
48.
go back to reference Serres, E., Debarbieux, F., Stanchi, F., Maggiorella, L., Grall, D., Turchi, L., & Van Obberghen-Schilling, E. (2014). Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene, 33(26), 3451–3462. https://doi.org/10.1038/onc.2013.305CrossRef Serres, E., Debarbieux, F., Stanchi, F., Maggiorella, L., Grall, D., Turchi, L., & Van Obberghen-Schilling, E. (2014). Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene, 33(26), 3451–3462. https://​doi.​org/​10.​1038/​onc.​2013.​305CrossRef
50.
go back to reference Cseh, B., Fernandez-Sauze, S., Grall, D., Schaub, S., Doma, E., & Van Obberghen-Schilling, E. (2010). Autocrine fibronectin directs matrix assembly and crosstalk between cell-matrix and cell-cell adhesion in vascular endothelial cells. Journal of Cell Science, 123(Pt 22), 3989–3999. https://doi.org/10.1242/jcs.073346CrossRef Cseh, B., Fernandez-Sauze, S., Grall, D., Schaub, S., Doma, E., & Van Obberghen-Schilling, E. (2010). Autocrine fibronectin directs matrix assembly and crosstalk between cell-matrix and cell-cell adhesion in vascular endothelial cells. Journal of Cell Science, 123(Pt 22), 3989–3999. https://​doi.​org/​10.​1242/​jcs.​073346CrossRef
94.
go back to reference Sørensen, M. D., Dahlrot, R. H., Boldt, H. B., Hansen, S., & Kristensen, B. W. (2018). Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathology and Applied Neurobiology, 44(2), 185–206. https://doi.org/10.1111/nan.12428CrossRef Sørensen, M. D., Dahlrot, R. H., Boldt, H. B., Hansen, S., & Kristensen, B. W. (2018). Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathology and Applied Neurobiology, 44(2), 185–206. https://​doi.​org/​10.​1111/​nan.​12428CrossRef
101.
go back to reference Song, K., Yuan, Y., Lin, Y., Wang, Y. X., Zhou, J., Gai, Q. J., & Wang, Y. (2018). ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. American Journal of Cancer Research, 8(5), 792–809. Song, K., Yuan, Y., Lin, Y., Wang, Y. X., Zhou, J., Gai, Q. J., & Wang, Y. (2018). ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. American Journal of Cancer Research, 8(5), 792–809.
104.
go back to reference Hu, F., Ku, M. C., Markovic, D., Dzaye, O., Lehnardt, S., Synowitz, M., & Kettenmann, H. (2014). Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. International Journal of Cancer, 135(11), 2569–2578. https://doi.org/10.1002/ijc.28908CrossRef Hu, F., Ku, M. C., Markovic, D., Dzaye, O., Lehnardt, S., Synowitz, M., & Kettenmann, H. (2014). Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. International Journal of Cancer, 135(11), 2569–2578. https://​doi.​org/​10.​1002/​ijc.​28908CrossRef
116.
118.
go back to reference Butowski, N., Colman, H., De Groot, J. F., Omuro, A. M., Nayak, L., Wen, P. Y., & Prados, M. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 18(4), 557–564. https://doi.org/10.1093/neuonc/nov245CrossRef Butowski, N., Colman, H., De Groot, J. F., Omuro, A. M., Nayak, L., Wen, P. Y., & Prados, M. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 18(4), 557–564. https://​doi.​org/​10.​1093/​neuonc/​nov245CrossRef
121.
go back to reference Autio, K. A., Klebanoff, C. A., Schaer, D., Kauh, J. S. W., Slovin, S. F., Adamow, M., & McArthur, H. L. (2020). Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: A phase I study. Clinical Cancer Research, 26(21), 5609–5620. https://doi.org/10.1158/1078-0432.CCR-20-0855CrossRef Autio, K. A., Klebanoff, C. A., Schaer, D., Kauh, J. S. W., Slovin, S. F., Adamow, M., & McArthur, H. L. (2020). Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: A phase I study. Clinical Cancer Research, 26(21), 5609–5620. https://​doi.​org/​10.​1158/​1078-0432.​CCR-20-0855CrossRef
122.
go back to reference Akkari, L., Bowman, R. L., Tessier, J., Klemm, F., Handgraaf, S. M., de Groot, M., Joyce, J. A. (2020). Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Scencei Translational Medicine, 12(552). https://doi.org/10.1126/scitranslmed.aaw7843 Akkari, L., Bowman, R. L., Tessier, J., Klemm, F., Handgraaf, S. M., de Groot, M., Joyce, J. A. (2020). Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Scencei Translational Medicine, 12(552). https://​doi.​org/​10.​1126/​scitranslmed.​aaw7843
123.
go back to reference Boring, L., Gosling, J., Chensue, S. W., Kunkel, S. L., Farese, R. V., Broxmeyer, H. E., & Charo, I. F. (1997). Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. The Journal of Clinical Investigation, 100(10), 2552–2561. https://doi.org/10.1172/JCI119798CrossRef Boring, L., Gosling, J., Chensue, S. W., Kunkel, S. L., Farese, R. V., Broxmeyer, H. E., & Charo, I. F. (1997). Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. The Journal of Clinical Investigation, 100(10), 2552–2561. https://​doi.​org/​10.​1172/​JCI119798CrossRef
124.
125.
go back to reference Flores-Toro, J. A., Luo, D., Gopinath, A., Sarkisian, M. R., Campbell, J. J., Charo, I. F., & Harrison, J. K. (2020). CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A, 117(2), 1129–1138. https://doi.org/10.1073/pnas.1910856117CrossRef Flores-Toro, J. A., Luo, D., Gopinath, A., Sarkisian, M. R., Campbell, J. J., Charo, I. F., & Harrison, J. K. (2020). CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A, 117(2), 1129–1138. https://​doi.​org/​10.​1073/​pnas.​1910856117CrossRef
134.
136.
go back to reference Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., & Matre, R. (1994). Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 56(6), 732–740. https://doi.org/10.1002/jlb.56.6.732CrossRef Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., & Matre, R. (1994). Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 56(6), 732–740. https://​doi.​org/​10.​1002/​jlb.​56.​6.​732CrossRef
137.
go back to reference Xu, S., Guo, X., Gao, X., Xue, H., Zhang, J., Qiu, W., & Li, G. (2016). Macrophage migration inhibitory factor enhances autophagy by regulating ROCK1 activity and contributes to the escape of dendritic cell surveillance in glioblastoma. International Journal of Oncology, 49(5), 2105–2115. https://doi.org/10.3892/ijo.2016.3704CrossRef Xu, S., Guo, X., Gao, X., Xue, H., Zhang, J., Qiu, W., & Li, G. (2016). Macrophage migration inhibitory factor enhances autophagy by regulating ROCK1 activity and contributes to the escape of dendritic cell surveillance in glioblastoma. International Journal of Oncology, 49(5), 2105–2115. https://​doi.​org/​10.​3892/​ijo.​2016.​3704CrossRef
138.
go back to reference Fadul, C. E., Fisher, J. L., Hampton, T. H., Lallana, E. C., Li, Z., Gui, J., & Ernstoff, M. S. (2011). Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. Journal of Immunotherapy, 34(4), 382–389. https://doi.org/10.1097/CJI.0b013e318215e300CrossRef Fadul, C. E., Fisher, J. L., Hampton, T. H., Lallana, E. C., Li, Z., Gui, J., & Ernstoff, M. S. (2011). Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. Journal of Immunotherapy, 34(4), 382–389. https://​doi.​org/​10.​1097/​CJI.​0b013e318215e300​CrossRef
139.
go back to reference Chang, C. N., Huang, Y. C., Yang, D. M., Kikuta, K., Wei, K. J., Kubota, T., & Yang, W. K. (2011). A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. Journal of Clinical Neuroscience, 18(8), 1048–1054. https://doi.org/10.1016/j.jocn.2010.11.034CrossRef Chang, C. N., Huang, Y. C., Yang, D. M., Kikuta, K., Wei, K. J., Kubota, T., & Yang, W. K. (2011). A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. Journal of Clinical Neuroscience, 18(8), 1048–1054. https://​doi.​org/​10.​1016/​j.​jocn.​2010.​11.​034CrossRef
140.
go back to reference Ardon, H., Van Gool, S. W., Verschuere, T., Maes, W., Fieuws, S., Sciot, R., & De Vleeschouwer, S. (2012). Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: Results of the HGG-2006 phase I/II trial. Cancer Immunology, Immunotherapy, 61(11), 2033–2044. https://doi.org/10.1007/s00262-012-1261-1CrossRef Ardon, H., Van Gool, S. W., Verschuere, T., Maes, W., Fieuws, S., Sciot, R., & De Vleeschouwer, S. (2012). Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: Results of the HGG-2006 phase I/II trial. Cancer Immunology, Immunotherapy, 61(11), 2033–2044. https://​doi.​org/​10.​1007/​s00262-012-1261-1CrossRef
141.
go back to reference Akasaki, Y., Kikuchi, T., Homma, S., Koido, S., Ohkusa, T., Tasaki, T., & Murayama, Y. (2016). Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 65(12), 1499–1509. https://doi.org/10.1007/s00262-016-1905-7CrossRef Akasaki, Y., Kikuchi, T., Homma, S., Koido, S., Ohkusa, T., Tasaki, T., & Murayama, Y. (2016). Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 65(12), 1499–1509. https://​doi.​org/​10.​1007/​s00262-016-1905-7CrossRef
142.
go back to reference Erhart, F., Buchroithner, J., Reitermaier, R., Fischhuber, K., Klingenbrunner, S., Sloma, I., & Visus, C. (2018). Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: Immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathologica Communications, 6(1), 135. https://doi.org/10.1186/s40478-018-0621-2CrossRef Erhart, F., Buchroithner, J., Reitermaier, R., Fischhuber, K., Klingenbrunner, S., Sloma, I., & Visus, C. (2018). Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: Immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathologica Communications, 6(1), 135. https://​doi.​org/​10.​1186/​s40478-018-0621-2CrossRef
143.
go back to reference Inogés, S., Tejada, S., de Cerio, A. L., Gállego Pérez-Larraya, J., Espinós, J., Idoate, M. A., & Valle, R. D. (2017). A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. Journal of Translational Medicine, 15(1), 104. https://doi.org/10.1186/s12967-017-1202-zCrossRef Inogés, S., Tejada, S., de Cerio, A. L., Gállego Pérez-Larraya, J., Espinós, J., Idoate, M. A., & Valle, R. D. (2017). A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. Journal of Translational Medicine, 15(1), 104. https://​doi.​org/​10.​1186/​s12967-017-1202-zCrossRef
144.
go back to reference Hu, J. L., Omofoye, O. A., Rudnick, J. D., Kim, S., Tighiouart, M., Phuphanich, S., & Yu, J. S. (2022). A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma. Clinical Cancer Research, 28(4), 689–696. https://doi.org/10.1158/1078-0432.CCR-21-2867CrossRef Hu, J. L., Omofoye, O. A., Rudnick, J. D., Kim, S., Tighiouart, M., Phuphanich, S., & Yu, J. S. (2022). A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma. Clinical Cancer Research, 28(4), 689–696. https://​doi.​org/​10.​1158/​1078-0432.​CCR-21-2867CrossRef
145.
go back to reference Wen, P. Y., Reardon, D. A., Armstrong, T. S., Phuphanich, S., Aiken, R. D., Landolfi, J. C., & Yu, J. S. (2019). A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clinical Cancer Research, 25(19), 5799–5807. https://doi.org/10.1158/1078-0432.CCR-19-0261CrossRef Wen, P. Y., Reardon, D. A., Armstrong, T. S., Phuphanich, S., Aiken, R. D., Landolfi, J. C., & Yu, J. S. (2019). A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clinical Cancer Research, 25(19), 5799–5807. https://​doi.​org/​10.​1158/​1078-0432.​CCR-19-0261CrossRef
146.
go back to reference Liau, L. M., Ashkan, K., Tran, D. D., Campian, J. L., Trusheim, J. E., Cobbs, C. S., Heth, J. A., Salacz, M., Taylor, S., D’Andre, S. D., Iwamoto, F. M., Dropcho, E. J., Moshel, Y. A., Walter, K. A., Pillainayagam, C. P., Aiken, R., Chaudhary, R., Goldlust, S. A., Bota, D. A., … Bosch, M. L. (2018). First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine innewly diagnosed glioblastoma. J Transl Med., 16(1), 142. https://doi.org/10.1186/s12967-018-1507-6CrossRef Liau, L. M., Ashkan, K., Tran, D. D., Campian, J. L., Trusheim, J. E., Cobbs, C. S., Heth, J. A., Salacz, M., Taylor, S., D’Andre, S. D., Iwamoto, F. M., Dropcho, E. J., Moshel, Y. A., Walter, K. A., Pillainayagam, C. P., Aiken, R., Chaudhary, R., Goldlust, S. A., Bota, D. A., … Bosch, M. L. (2018). First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine innewly diagnosed glioblastoma. J Transl Med., 16(1), 142. https://​doi.​org/​10.​1186/​s12967-018-1507-6CrossRef
151.
go back to reference Chae, M., Peterson, T. E., Balgeman, A., Chen, S., Zhang, L., Renner, D. N., & Parney, I. F. (2015). Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology, 17(7), 978–991. https://doi.org/10.1093/neuonc/nou343CrossRef Chae, M., Peterson, T. E., Balgeman, A., Chen, S., Zhang, L., Renner, D. N., & Parney, I. F. (2015). Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology, 17(7), 978–991. https://​doi.​org/​10.​1093/​neuonc/​nou343CrossRef
152.
go back to reference Fadul, C. E., Fisher, J. L., Gui, J., Hampton, T. H., Côté, A. L., & Ernstoff, M. S. (2011). Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro-Oncology, 13(4), 393–400. https://doi.org/10.1093/neuonc/noq204CrossRef Fadul, C. E., Fisher, J. L., Gui, J., Hampton, T. H., Côté, A. L., & Ernstoff, M. S. (2011). Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro-Oncology, 13(4), 393–400. https://​doi.​org/​10.​1093/​neuonc/​noq204CrossRef
156.
go back to reference Alban, T. J., Alvarado, A. G., Sorensen, M. D., Bayik, D., Volovetz, J., Serbinowski, E., Lathia, J. D. (2018). Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 3(21). https://doi.org/10.1172/jci.insight.122264 Alban, T. J., Alvarado, A. G., Sorensen, M. D., Bayik, D., Volovetz, J., Serbinowski, E., Lathia, J. D. (2018). Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 3(21). https://​doi.​org/​10.​1172/​jci.​insight.​122264
159.
go back to reference Dubinski, D., Wölfer, J., Hasselblatt, M., Schneider-Hohendorf, T., Bogdahn, U., Stummer, W., & Grauer, O. M. (2016). CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro-Oncology, 18(6), 807–818. https://doi.org/10.1093/neuonc/nov280CrossRef Dubinski, D., Wölfer, J., Hasselblatt, M., Schneider-Hohendorf, T., Bogdahn, U., Stummer, W., & Grauer, O. M. (2016). CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro-Oncology, 18(6), 807–818. https://​doi.​org/​10.​1093/​neuonc/​nov280CrossRef
161.
go back to reference Otvos, B., Silver, D. J., Mulkearns-Hubert, E. E., Alvarado, A. G., Turaga, S. M., Sorensen, M. D., & Lathia, J. D. (2016). Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells, 34(8), 2026–2039. https://doi.org/10.1002/stem.2393CrossRef Otvos, B., Silver, D. J., Mulkearns-Hubert, E. E., Alvarado, A. G., Turaga, S. M., Sorensen, M. D., & Lathia, J. D. (2016). Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells, 34(8), 2026–2039. https://​doi.​org/​10.​1002/​stem.​2393CrossRef
162.
go back to reference Alban, T. J., Bayik, D., Otvos, B., Rabljenovic, A., Leng, L., Jia-Shiun, L., & Lathia, J. D. (2020). Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Frontiers in Immunology, 11, 1191. https://doi.org/10.3389/fimmu.2020.01191CrossRef Alban, T. J., Bayik, D., Otvos, B., Rabljenovic, A., Leng, L., Jia-Shiun, L., & Lathia, J. D. (2020). Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Frontiers in Immunology, 11, 1191. https://​doi.​org/​10.​3389/​fimmu.​2020.​01191CrossRef
163.
go back to reference Ostrom, Q. T., Kinnersley, B., Wrensch, M. R., Eckel-Passow, J. E., Armstrong, G., Rice, T., & consortium, G,. (2018). Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep, 8(1), 7352. https://doi.org/10.1038/s41598-018-24580-zCrossRef Ostrom, Q. T., Kinnersley, B., Wrensch, M. R., Eckel-Passow, J. E., Armstrong, G., Rice, T., & consortium, G,. (2018). Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep, 8(1), 7352. https://​doi.​org/​10.​1038/​s41598-018-24580-zCrossRef
166.
170.
go back to reference Bambury, R. M., Teo, M. Y., Power, D. G., Yusuf, A., Murray, S., Battley, J. E., & O’Reilly, S. (2013). The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. Journal of Neuro-oncology, 114(1), 149–154. https://doi.org/10.1007/s11060-013-1164-9CrossRef Bambury, R. M., Teo, M. Y., Power, D. G., Yusuf, A., Murray, S., Battley, J. E., & O’Reilly, S. (2013). The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. Journal of Neuro-oncology, 114(1), 149–154. https://​doi.​org/​10.​1007/​s11060-013-1164-9CrossRef
171.
go back to reference Mason, M., Maurice, C., McNamara, M. G., Tieu, M. T., Lwin, Z., Millar, B. A., & Chung, C. (2017). Neutrophil-lymphocyte ratio dynamics during concurrent chemo-radiotherapy for glioblastoma is an independent predictor for overall survival. Journal of Neuro-oncology, 132(3), 463–471. https://doi.org/10.1007/s11060-017-2395-yCrossRef Mason, M., Maurice, C., McNamara, M. G., Tieu, M. T., Lwin, Z., Millar, B. A., & Chung, C. (2017). Neutrophil-lymphocyte ratio dynamics during concurrent chemo-radiotherapy for glioblastoma is an independent predictor for overall survival. Journal of Neuro-oncology, 132(3), 463–471. https://​doi.​org/​10.​1007/​s11060-017-2395-yCrossRef
173.
go back to reference Hor, W. S., Huang, W. L., Lin, Y. S., & Yang, B. C. (2003). Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: Human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. Journal of Leukocyte Biology, 73(3), 363–368. https://doi.org/10.1189/jlb.0702375CrossRef Hor, W. S., Huang, W. L., Lin, Y. S., & Yang, B. C. (2003). Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: Human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. Journal of Leukocyte Biology, 73(3), 363–368. https://​doi.​org/​10.​1189/​jlb.​0702375CrossRef
174.
go back to reference Chio, C. C., Wang, Y. S., Chen, Y. L., Lin, S. J., & Yang, B. C. (2001). Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. British Journal of Cancer, 85(8), 1185–1192. https://doi.org/10.1054/bjoc.2001.2055CrossRef Chio, C. C., Wang, Y. S., Chen, Y. L., Lin, S. J., & Yang, B. C. (2001). Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. British Journal of Cancer, 85(8), 1185–1192. https://​doi.​org/​10.​1054/​bjoc.​2001.​2055CrossRef
179.
go back to reference Sippel, T. R., White, J., Nag, K., Tsvankin, V., Klaassen, M., Kleinschmidt-DeMasters, B. K., & Waziri, A. (2011). Neutrophil degranulation and immunosuppression in patients with GBM: Restoration of cellular immune function by targeting arginase I. Clinical Cancer Research, 17(22), 6992–7002. https://doi.org/10.1158/1078-0432.CCR-11-1107CrossRef Sippel, T. R., White, J., Nag, K., Tsvankin, V., Klaassen, M., Kleinschmidt-DeMasters, B. K., & Waziri, A. (2011). Neutrophil degranulation and immunosuppression in patients with GBM: Restoration of cellular immune function by targeting arginase I. Clinical Cancer Research, 17(22), 6992–7002. https://​doi.​org/​10.​1158/​1078-0432.​CCR-11-1107CrossRef
183.
189.
go back to reference McNamara, M. G., Lwin, Z., Jiang, H., Templeton, A. J., Zadeh, G., Bernstein, M., & Mason, W. P. (2014). Factors impacting survival following second surgery in patients with glioblastoma in the temozolomide treatment era, incorporating neutrophil/lymphocyte ratio and time to first progression. Journal of Neuro-oncology, 117(1), 147–152. https://doi.org/10.1007/s11060-014-1366-9CrossRef McNamara, M. G., Lwin, Z., Jiang, H., Templeton, A. J., Zadeh, G., Bernstein, M., & Mason, W. P. (2014). Factors impacting survival following second surgery in patients with glioblastoma in the temozolomide treatment era, incorporating neutrophil/lymphocyte ratio and time to first progression. Journal of Neuro-oncology, 117(1), 147–152. https://​doi.​org/​10.​1007/​s11060-014-1366-9CrossRef
190.
go back to reference Haksoyler, V., Besen, A., & A., Koseci, T., Olgun, P., Bayram, E., & Topkan, E. (2021). Neutrophil-to-lymphocyte ratio is prognostic in recurrent glioblastoma multiforme treated with bevacizumab plus irinotecan. Biomarkers in Medicine, 15(11), 851–859. https://doi.org/10.2217/bmm-2021-0271CrossRef Haksoyler, V., Besen, A., & A., Koseci, T., Olgun, P., Bayram, E., & Topkan, E. (2021). Neutrophil-to-lymphocyte ratio is prognostic in recurrent glioblastoma multiforme treated with bevacizumab plus irinotecan. Biomarkers in Medicine, 15(11), 851–859. https://​doi.​org/​10.​2217/​bmm-2021-0271CrossRef
192.
go back to reference Fujita, M., Scheurer, M. E., Decker, S. A., McDonald, H. A., Kohanbash, G., Kastenhuber, E. R., & Okada, H. (2010). Role of type 1 IFNs in antiglioma immunosurveillance–using mouse studies to guide examination of novel prognostic markers in humans. Clinical Cancer Research, 16(13), 3409–3419. https://doi.org/10.1158/1078-0432.CCR-10-0644CrossRef Fujita, M., Scheurer, M. E., Decker, S. A., McDonald, H. A., Kohanbash, G., Kastenhuber, E. R., & Okada, H. (2010). Role of type 1 IFNs in antiglioma immunosurveillance–using mouse studies to guide examination of novel prognostic markers in humans. Clinical Cancer Research, 16(13), 3409–3419. https://​doi.​org/​10.​1158/​1078-0432.​CCR-10-0644CrossRef
193.
go back to reference Quillien, V., Carpentier, A. F., Gey, A., Avril, T., Tartour, E., Sejalon, F., & Vauleon, E. (2019). Absolute numbers of regulatory T cells and neutrophils in corticosteroid-free patients are predictive for response to bevacizumab in recurrent glioblastoma patients. Cancer Immunology, Immunotherapy, 68(6), 871–882. https://doi.org/10.1007/s00262-019-02317-9CrossRef Quillien, V., Carpentier, A. F., Gey, A., Avril, T., Tartour, E., Sejalon, F., & Vauleon, E. (2019). Absolute numbers of regulatory T cells and neutrophils in corticosteroid-free patients are predictive for response to bevacizumab in recurrent glioblastoma patients. Cancer Immunology, Immunotherapy, 68(6), 871–882. https://​doi.​org/​10.​1007/​s00262-019-02317-9CrossRef
198.
go back to reference Brooks, W. H., Roszman, T. L., Mahaley, M. S., & Woosley, R. E. (1977). Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clinical and Experimentel Immunology, 29(1), 61–66. Brooks, W. H., Roszman, T. L., Mahaley, M. S., & Woosley, R. E. (1977). Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clinical and Experimentel Immunology, 29(1), 61–66.
213.
go back to reference Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., & Maloney, D. G. (2016). CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. The Journal of Clinical Investigation, 126(6), 2123–2138. https://doi.org/10.1172/JCI85309CrossRef Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., & Maloney, D. G. (2016). CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. The Journal of Clinical Investigation, 126(6), 2123–2138. https://​doi.​org/​10.​1172/​JCI85309CrossRef
216.
220.
go back to reference O'Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., Maus, M. V. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med, 9(399). https://doi.org/10.1126/scitranslmed.aaa0984 O'Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., Maus, M. V. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med, 9(399). https://​doi.​org/​10.​1126/​scitranslmed.​aaa0984
222.
236.
237.
go back to reference Ishikawa, E., Tsuboi, K., Saijo, K., Harada, H., Takano, S., Nose, T., & Ohno, T. (2004). Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Research, 24(3b), 1861–1871. Ishikawa, E., Tsuboi, K., Saijo, K., Harada, H., Takano, S., Nose, T., & Ohno, T. (2004). Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Research, 24(3b), 1861–1871.
238.
go back to reference Höring, E., Podlech, O., Silkenstedt, B., Rota, I. A., Adamopoulou, E., & Naumann, U. (2013). The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Research, 33(4), 1351–1360. Höring, E., Podlech, O., Silkenstedt, B., Rota, I. A., Adamopoulou, E., & Naumann, U. (2013). The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Research, 33(4), 1351–1360.
239.
go back to reference Gras Navarro, A., Espedal, H., Joseph, J. V., Trachsel-Moncho, L., Bahador, M., Gjertsen, B. T., Chekenya, M. (2019). Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival. Cancers (Basel), 11(7). https://doi.org/10.3390/cancers11070996 Gras Navarro, A., Espedal, H., Joseph, J. V., Trachsel-Moncho, L., Bahador, M., Gjertsen, B. T., Chekenya, M. (2019). Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival. Cancers (Basel), 11(7). https://​doi.​org/​10.​3390/​cancers11070996
242.
go back to reference Gras Navarro, A., Kmiecik, J., Leiss, L., Zelkowski, M., Engelsen, A., Bruserud, Ø., & Chekenya, M. (2014). NK cells with KIR2DS2 immunogenotype have a functional activation advantage to efficiently kill glioblastoma and prolong animal survival. The Journal of Immunology, 193(12), 6192–6206. https://doi.org/10.4049/jimmunol.1400859CrossRef Gras Navarro, A., Kmiecik, J., Leiss, L., Zelkowski, M., Engelsen, A., Bruserud, Ø., & Chekenya, M. (2014). NK cells with KIR2DS2 immunogenotype have a functional activation advantage to efficiently kill glioblastoma and prolong animal survival. The Journal of Immunology, 193(12), 6192–6206. https://​doi.​org/​10.​4049/​jimmunol.​1400859CrossRef
243.
244.
go back to reference Genßler, S., Burger, M. C., Zhang, C., Oelsner, S., Mildenberger, I., Wagner, M., & Wels, W. S. (2016). Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology, 5(4), e1119354. https://doi.org/10.1080/2162402X.2015.1119354CrossRef Genßler, S., Burger, M. C., Zhang, C., Oelsner, S., Mildenberger, I., Wagner, M., & Wels, W. S. (2016). Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology, 5(4), e1119354. https://​doi.​org/​10.​1080/​2162402X.​2015.​1119354CrossRef
247.
go back to reference Zhang, C., Oberoi, P., Oelsner, S., Waldmann, A., Lindner, A., Tonn, T., & Wels, W. S. (2017). Chimeric antigen receptor-engineered NK-92 cells: An off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Frontiers in Immunology, 8, 533. https://doi.org/10.3389/fimmu.2017.00533CrossRef Zhang, C., Oberoi, P., Oelsner, S., Waldmann, A., Lindner, A., Tonn, T., & Wels, W. S. (2017). Chimeric antigen receptor-engineered NK-92 cells: An off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Frontiers in Immunology, 8, 533. https://​doi.​org/​10.​3389/​fimmu.​2017.​00533CrossRef
249.
go back to reference Haspels, H. N., Rahman, M. A., Joseph, J. V., Gras Navarro, A., & Chekenya, M. (2018). Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Frontiers in Immunology, 9, 1345. https://doi.org/10.3389/fimmu.2018.01345CrossRef Haspels, H. N., Rahman, M. A., Joseph, J. V., Gras Navarro, A., & Chekenya, M. (2018). Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Frontiers in Immunology, 9, 1345. https://​doi.​org/​10.​3389/​fimmu.​2018.​01345CrossRef
257.
go back to reference Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., & Weinberg, R. A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507. https://doi.org/10.1038/ng.127CrossRef Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., & Weinberg, R. A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507. https://​doi.​org/​10.​1038/​ng.​127CrossRef
267.
270.
go back to reference Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., & Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research, 38(1), 339. https://doi.org/10.1186/s13046-019-1319-4CrossRef Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., & Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research, 38(1), 339. https://​doi.​org/​10.​1186/​s13046-019-1319-4CrossRef
275.
go back to reference Marhuenda, E., Fabre, C., Zhang, C., Martin-Fernandez, M., Iskratsch, T., Saleh, A., & Bakalara, N. (2021). Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. Journal of Experimental & Clinical Cancer Research, 40(1), 139. https://doi.org/10.1186/s13046-021-01925-7CrossRef Marhuenda, E., Fabre, C., Zhang, C., Martin-Fernandez, M., Iskratsch, T., Saleh, A., & Bakalara, N. (2021). Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. Journal of Experimental & Clinical Cancer Research, 40(1), 139. https://​doi.​org/​10.​1186/​s13046-021-01925-7CrossRef
278.
go back to reference Wei, J., Barr, J., Kong, L. Y., Wang, Y., Wu, A., Sharma, A. K., & Heimberger, A. B. (2010). Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Molecular Cancer Therapeutics, 9(1), 67–78. https://doi.org/10.1158/1535-7163.MCT-09-0734CrossRef Wei, J., Barr, J., Kong, L. Y., Wang, Y., Wu, A., Sharma, A. K., & Heimberger, A. B. (2010). Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Molecular Cancer Therapeutics, 9(1), 67–78. https://​doi.​org/​10.​1158/​1535-7163.​MCT-09-0734CrossRef
282.
285.
go back to reference Batchelor, T. T., Gerstner, E. R., Ye, X., Desideri, S., Duda, D. G., Peereboom, D., & Supko, J. G. (2017). Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro-Oncology, 19(4), 567–575. https://doi.org/10.1093/neuonc/now185CrossRef Batchelor, T. T., Gerstner, E. R., Ye, X., Desideri, S., Duda, D. G., Peereboom, D., & Supko, J. G. (2017). Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro-Oncology, 19(4), 567–575. https://​doi.​org/​10.​1093/​neuonc/​now185CrossRef
290.
go back to reference Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., & Yu, J. (2015). TGF-β signaling and its targeting for glioma treatment. American Journal of Cancer Research, 5(3), 945–955. Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., & Yu, J. (2015). TGF-β signaling and its targeting for glioma treatment. American Journal of Cancer Research, 5(3), 945–955.
295.
go back to reference Filbin, M. G., Dabral, S. K., Pazyra-Murphy, M. F., Ramkissoon, S., Kung, A. L., Pak, E., & Segal, R. A. (2013). Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: New therapeutic opportunities. Nature Medicine, 19(11), 1518–1523. https://doi.org/10.1038/nm.3328CrossRef Filbin, M. G., Dabral, S. K., Pazyra-Murphy, M. F., Ramkissoon, S., Kung, A. L., Pak, E., & Segal, R. A. (2013). Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: New therapeutic opportunities. Nature Medicine, 19(11), 1518–1523. https://​doi.​org/​10.​1038/​nm.​3328CrossRef
296.
go back to reference Vik-Mo, E. O., Nyakas, M., Mikkelsen, B. V., Moe, M. C., Due-Tønnesen, P., Suso, E. M., & Langmoen, I. A. (2013). Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 62(9), 1499–1509. https://doi.org/10.1007/s00262-013-1453-3CrossRef Vik-Mo, E. O., Nyakas, M., Mikkelsen, B. V., Moe, M. C., Due-Tønnesen, P., Suso, E. M., & Langmoen, I. A. (2013). Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 62(9), 1499–1509. https://​doi.​org/​10.​1007/​s00262-013-1453-3CrossRef
297.
300.
301.
go back to reference Cardoso, A. M., Morais, C. M., Pena, F., Marante, T., Cunha, P. P., Jurado, A. S., & Pedroso de Lima, M. C. (2021). Differentiation of glioblastoma stem cells promoted by miR-128 or miR-302a overexpression enhances senescence-associated cytotoxicity of axitinib. Human Molecular Genetics, 30(3–4), 160–171. https://doi.org/10.1093/hmg/ddab011CrossRef Cardoso, A. M., Morais, C. M., Pena, F., Marante, T., Cunha, P. P., Jurado, A. S., & Pedroso de Lima, M. C. (2021). Differentiation of glioblastoma stem cells promoted by miR-128 or miR-302a overexpression enhances senescence-associated cytotoxicity of axitinib. Human Molecular Genetics, 30(3–4), 160–171. https://​doi.​org/​10.​1093/​hmg/​ddab011CrossRef
304.
go back to reference Riess, C., Irmscher, N., Salewski, I., Strüder, D., Classen, C. F., Große-Thie, C., & Maletzki, C. (2021). Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer and Metastasis Reviews, 40(1), 153–171. https://doi.org/10.1007/s10555-020-09940-4CrossRef Riess, C., Irmscher, N., Salewski, I., Strüder, D., Classen, C. F., Große-Thie, C., & Maletzki, C. (2021). Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer and Metastasis Reviews, 40(1), 153–171. https://​doi.​org/​10.​1007/​s10555-020-09940-4CrossRef
310.
go back to reference Patnaik, A., Rosen, L. S., Tolaney, S. M., Tolcher, A. W., Goldman, J. W., Gandhi, L., & Shapiro, G. I. (2016). Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discovery, 6(7), 740–753. https://doi.org/10.1158/2159-8290.CD-16-0095CrossRef Patnaik, A., Rosen, L. S., Tolaney, S. M., Tolcher, A. W., Goldman, J. W., Gandhi, L., & Shapiro, G. I. (2016). Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discovery, 6(7), 740–753. https://​doi.​org/​10.​1158/​2159-8290.​CD-16-0095CrossRef
311.
312.
go back to reference Das, A., Henderson, F. C., Alshareef, M., Porto, G. B. F., Kanginakudru, I., Infinger, L. K., & Cachia, D. (2021). MGMT-inhibitor in combination with TGF-βRI inhibitor or CDK 4/6 inhibitor increases temozolomide sensitivity in temozolomide-resistant glioblastoma cells. Clinical and Translational Oncology, 23(3), 612–619. https://doi.org/10.1007/s12094-020-02456-xCrossRef Das, A., Henderson, F. C., Alshareef, M., Porto, G. B. F., Kanginakudru, I., Infinger, L. K., & Cachia, D. (2021). MGMT-inhibitor in combination with TGF-βRI inhibitor or CDK 4/6 inhibitor increases temozolomide sensitivity in temozolomide-resistant glioblastoma cells. Clinical and Translational Oncology, 23(3), 612–619. https://​doi.​org/​10.​1007/​s12094-020-02456-xCrossRef
317.
go back to reference Kamath, A. A., Friedman, D. D., Akbari, S. H. A., Kim, A. H., Tao, Y., Luo, J., & Leuthardt, E. C. (2019). Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: Safety, efficacy, and outcomes. Neurosurgery, 84(4), 836–843. https://doi.org/10.1093/neuros/nyy375CrossRef Kamath, A. A., Friedman, D. D., Akbari, S. H. A., Kim, A. H., Tao, Y., Luo, J., & Leuthardt, E. C. (2019). Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: Safety, efficacy, and outcomes. Neurosurgery, 84(4), 836–843. https://​doi.​org/​10.​1093/​neuros/​nyy375CrossRef
Metadata
Title
The multifaceted mechanisms of malignant glioblastoma progression and clinical implications
Authors
Rui Sun
Albert H. Kim
Publication date
03-08-2022
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2022
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10051-5

Other articles of this Issue 4/2022

Cancer and Metastasis Reviews 4/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine