Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2009

Open Access 01-12-2009

Biology of urothelial tumorigenesis: insights from genetically engineered mice

Author: Xue-Ru Wu

Published in: Cancer and Metastasis Reviews | Issue 3-4/2009

Login to get access

Abstract

Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer.
Literature
1.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMed
2.
go back to reference Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.PubMed Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.PubMed
3.
go back to reference Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.PubMed Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.PubMed
4.
go back to reference Hunter, K. W. (2006). Context-dependent cancer risk. Nature Genetics, 38, 864–865.PubMed Hunter, K. W. (2006). Context-dependent cancer risk. Nature Genetics, 38, 864–865.PubMed
5.
go back to reference Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMed Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMed
6.
go back to reference Nathke, I. (2006). Cytoskeleton out of the cupboard: Colon cancer and cytoskeletal changes induced by loss of APC. Nature Reviews Cancer, 6, 967–974.PubMed Nathke, I. (2006). Cytoskeleton out of the cupboard: Colon cancer and cytoskeletal changes induced by loss of APC. Nature Reviews Cancer, 6, 967–974.PubMed
7.
go back to reference de la Chapelle, A. (2004). Genetic predisposition to colorectal cancer. Nature Reviews Cancer, 4, 769–780.PubMed de la Chapelle, A. (2004). Genetic predisposition to colorectal cancer. Nature Reviews Cancer, 4, 769–780.PubMed
8.
go back to reference Linehan, W. M., & Zbar, B. (2004). Focus on kidney cancer. Cancer Cell, 6, 223–228.PubMed Linehan, W. M., & Zbar, B. (2004). Focus on kidney cancer. Cancer Cell, 6, 223–228.PubMed
9.
go back to reference Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22, 4991–5004.PubMed Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22, 4991–5004.PubMed
10.
go back to reference Malkin, D. (1994). Germline p53 mutations and heritable cancer. Annual Review of Genetics, 28, 443–465.PubMed Malkin, D. (1994). Germline p53 mutations and heritable cancer. Annual Review of Genetics, 28, 443–465.PubMed
11.
go back to reference Li, F. P., Fraumeni, J. F., Jr., Mulvihill, J. J., Blattner, W. A., Dreyfus, M. G., Tucker, M. A., et al. (1988). A cancer family syndrome in twenty-four kindreds. Cancer Research, 48, 5358–5362.PubMed Li, F. P., Fraumeni, J. F., Jr., Mulvihill, J. J., Blattner, W. A., Dreyfus, M. G., Tucker, M. A., et al. (1988). A cancer family syndrome in twenty-four kindreds. Cancer Research, 48, 5358–5362.PubMed
12.
go back to reference Aoki, Y., Niihori, T., Kawame, H., Kurosawa, K., Ohashi, H., Tanaka, Y., et al. (2005). Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nature Genetics, 37, 1038–1040.PubMed Aoki, Y., Niihori, T., Kawame, H., Kurosawa, K., Ohashi, H., Tanaka, Y., et al. (2005). Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nature Genetics, 37, 1038–1040.PubMed
13.
go back to reference Gripp, K. W. (2005). Tumor predisposition in Costello syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 137, 72–77. Gripp, K. W. (2005). Tumor predisposition in Costello syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 137, 72–77.
14.
go back to reference Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.PubMed Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.PubMed
15.
go back to reference Watt, F. M., Frye, M., & Benitah, S. A. (2008). MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nature Review Cancer, 8, 234–242. Watt, F. M., Frye, M., & Benitah, S. A. (2008). MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nature Review Cancer, 8, 234–242.
16.
go back to reference Ahuja, D., Saenz-Robles, M. T., & Pipas, J. M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene, 24, 7729–7745.PubMed Ahuja, D., Saenz-Robles, M. T., & Pipas, J. M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene, 24, 7729–7745.PubMed
17.
go back to reference Rassoulzadegan, M., & Cuzin, F. (1987). “Sub-threshold neoplastic states” created in transgenic mice. Oncogene Research, 1, 1–6.PubMed Rassoulzadegan, M., & Cuzin, F. (1987). “Sub-threshold neoplastic states” created in transgenic mice. Oncogene Research, 1, 1–6.PubMed
18.
go back to reference Ghebranious, N., & Donehower, L. A. (1998). Mouse models in tumor suppression. Oncogene, 17, 3385–3400.PubMed Ghebranious, N., & Donehower, L. A. (1998). Mouse models in tumor suppression. Oncogene, 17, 3385–3400.PubMed
19.
go back to reference Wu, X.-R., Sun, T.-T., McConkey, D. J., Shrader, M., & Papageorgiou, A. (2006). Animal models of bladder cancer. In S. P. Lerner, M. P. Schoenberg & C. N. Sternberg (Eds.), Textbook of bladder cancer (pp. 157–169). Boca Raton: Taylor & Francis. Wu, X.-R., Sun, T.-T., McConkey, D. J., Shrader, M., & Papageorgiou, A. (2006). Animal models of bladder cancer. In S. P. Lerner, M. P. Schoenberg & C. N. Sternberg (Eds.), Textbook of bladder cancer (pp. 157–169). Boca Raton: Taylor & Francis.
20.
go back to reference Dinney, C. P., McConkey, D. J., Millikan, R. E., Wu, X., Bar-Eli, M., Adam, L., et al. (2004). Focus on bladder cancer. Cancer Cell, 6, 111–116.PubMed Dinney, C. P., McConkey, D. J., Millikan, R. E., Wu, X., Bar-Eli, M., Adam, L., et al. (2004). Focus on bladder cancer. Cancer Cell, 6, 111–116.PubMed
21.
go back to reference Cohen, S. M. (2002). Comparative pathology of proliferative lesions of the urinary bladder. Toxicologic Pathology, 30, 663–671.PubMed Cohen, S. M. (2002). Comparative pathology of proliferative lesions of the urinary bladder. Toxicologic Pathology, 30, 663–671.PubMed
22.
go back to reference Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G., & Sun, T. T. (2009). Uroplakins in urothelial biology, function, and disease. Kidney International, 75, 1153–1165.PubMed Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G., & Sun, T. T. (2009). Uroplakins in urothelial biology, function, and disease. Kidney International, 75, 1153–1165.PubMed
23.
go back to reference Sun, T. T. (2006). Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. American Journal of Physiology and Renal Physiology, 291, F9–F21. Sun, T. T. (2006). Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. American Journal of Physiology and Renal Physiology, 291, F9–F21.
24.
go back to reference Khandelwal, P., Abraham, S. N., & Apodaca, G. (2009). Cell biology and physiology of the uroepithelium. American Journal of Physiology and Renal Physiology (in press) Khandelwal, P., Abraham, S. N., & Apodaca, G. (2009). Cell biology and physiology of the uroepithelium. American Journal of Physiology and Renal Physiology (in press)
25.
go back to reference Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. American Journal of Physiology and Renal Physiology, 278, F867–F874. Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. American Journal of Physiology and Renal Physiology, 278, F867–F874.
26.
go back to reference Negrete, H. O., Lavelle, J. P., Berg, J., Lewis, S. A., & Zeidel, M. L. (1996). Permeability properties of the intact mammalian bladder epithelium. American Journal of Physiology, 271, F886–F894.PubMed Negrete, H. O., Lavelle, J. P., Berg, J., Lewis, S. A., & Zeidel, M. L. (1996). Permeability properties of the intact mammalian bladder epithelium. American Journal of Physiology, 271, F886–F894.PubMed
27.
go back to reference Hicks, R. M. (1975). The mammalian urinary bladder: An accommodating organ. Biological Reviews of the Cambridge Philosophical Society, 50, 215–246.PubMed Hicks, R. M. (1975). The mammalian urinary bladder: An accommodating organ. Biological Reviews of the Cambridge Philosophical Society, 50, 215–246.PubMed
28.
go back to reference Walker, R. E. (1960). Renewal of cell populations in the female mouse. American Journal of Anatomy, 102, 95–100. Walker, R. E. (1960). Renewal of cell populations in the female mouse. American Journal of Anatomy, 102, 95–100.
29.
go back to reference Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., Chan, C. W., & Isseroff, R. R. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. American Journal of Physiology and Renal Physiology, 294, F1415–F1421. Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., Chan, C. W., & Isseroff, R. R. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. American Journal of Physiology and Renal Physiology, 294, F1415–F1421.
30.
go back to reference Chow, N. H., Liu, H. S., Yang, H. B., Chan, S. H., & Su, I. J. (1997). Expression patterns of erbB receptor family in normal urothelium and transitional cell carcinoma. An immunohistochemical study. Virchows Archiv, 430, 461–466.PubMed Chow, N. H., Liu, H. S., Yang, H. B., Chan, S. H., & Su, I. J. (1997). Expression patterns of erbB receptor family in normal urothelium and transitional cell carcinoma. An immunohistochemical study. Virchows Archiv, 430, 461–466.PubMed
31.
go back to reference Messing, E. M. (1990). Clinical implications of the expression of epidermal growth factor receptors in human transitional cell carcinoma. Cancer Research, 50, 2530–2537.PubMed Messing, E. M. (1990). Clinical implications of the expression of epidermal growth factor receptors in human transitional cell carcinoma. Cancer Research, 50, 2530–2537.PubMed
32.
go back to reference Messing, E. M. (1992). Growth factors and bladder cancer: clinical implications of the interactions between growth factors and their urothelial receptors. Seminars in Surgical Oncology, 8, 285–292.PubMed Messing, E. M. (1992). Growth factors and bladder cancer: clinical implications of the interactions between growth factors and their urothelial receptors. Seminars in Surgical Oncology, 8, 285–292.PubMed
33.
go back to reference Hicks, R. M. (1965). The fine structure of the transitional epithelium of rat ureter. Journal of Cell Biology, 26, 25–48.PubMed Hicks, R. M. (1965). The fine structure of the transitional epithelium of rat ureter. Journal of Cell Biology, 26, 25–48.PubMed
34.
go back to reference Koss, L. G. (1969). The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Laboratory Investigation, 21, 154–168.PubMed Koss, L. G. (1969). The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Laboratory Investigation, 21, 154–168.PubMed
35.
go back to reference Porter, K. R., & Bonneville, M. A. (1963). An introduction to the fine structure of cells and tissues. Philadelphia: Lea & Febiger. Porter, K. R., & Bonneville, M. A. (1963). An introduction to the fine structure of cells and tissues. Philadelphia: Lea & Febiger.
36.
go back to reference Wu, X. R., & Sun, T. T. (1993). Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein. Journal of Cell Science, 106, 31–43.PubMed Wu, X. R., & Sun, T. T. (1993). Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein. Journal of Cell Science, 106, 31–43.PubMed
37.
go back to reference Lin, J. H., Wu, X. R., Kreibich, G., & Sun, T. T. (1994). Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. Journal of Biological Chemistry, 269, 1775–1784.PubMed Lin, J. H., Wu, X. R., Kreibich, G., & Sun, T. T. (1994). Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. Journal of Biological Chemistry, 269, 1775–1784.PubMed
38.
go back to reference Yu, J., Lin, J. H., Wu, X. R., & Sun, T. T. (1994). Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. Journal of Cell Biology, 125, 171–182.PubMed Yu, J., Lin, J. H., Wu, X. R., & Sun, T. T. (1994). Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. Journal of Cell Biology, 125, 171–182.PubMed
39.
go back to reference Yu, J., Manabe, M., Wu, X. R., Xu, C., Surya, B., & Sun, T. T. (1990). Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. Journal Cell Biology, 111, 1207–1216. Yu, J., Manabe, M., Wu, X. R., Xu, C., Surya, B., & Sun, T. T. (1990). Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. Journal Cell Biology, 111, 1207–1216.
40.
go back to reference Wu, X. R., Lin, J. H., Walz, T., Haner, M., Yu, J., Aebi, U., et al. (1994). Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. Journal of Biological Chemistry, 269, 13716–13724.PubMed Wu, X. R., Lin, J. H., Walz, T., Haner, M., Yu, J., Aebi, U., et al. (1994). Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. Journal of Biological Chemistry, 269, 13716–13724.PubMed
41.
go back to reference Deng, F. M., Liang, F. X., Tu, L., Resing, K. A., Hu, P., Supino, M., et al. (2002). Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. Journal of Cell Biology, 159, 685–694.PubMed Deng, F. M., Liang, F. X., Tu, L., Resing, K. A., Hu, P., Supino, M., et al. (2002). Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. Journal of Cell Biology, 159, 685–694.PubMed
42.
go back to reference Moll, R., Wu, X. R., Lin, J. H., & Sun, T. T. (1995). Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. American Journal of Pathology, 147, 1383–1397.PubMed Moll, R., Wu, X. R., Lin, J. H., & Sun, T. T. (1995). Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. American Journal of Pathology, 147, 1383–1397.PubMed
43.
go back to reference Wu, R. L., Osman, I., Wu, X. R., Lu, M. L., Zhang, Z. F., Liang, F. X., et al. (1998). Uroplakin II gene is expressed in transitional cell carcinoma but not in bilharzial bladder squamous cell carcinoma: alternative pathways of bladder epithelial differentiation and tumor formation [published erratum appears in Cancer Res 1998 Jul 1;58(13):2904]. Cancer Research, 58, 1291–1297.PubMed Wu, R. L., Osman, I., Wu, X. R., Lu, M. L., Zhang, Z. F., Liang, F. X., et al. (1998). Uroplakin II gene is expressed in transitional cell carcinoma but not in bilharzial bladder squamous cell carcinoma: alternative pathways of bladder epithelial differentiation and tumor formation [published erratum appears in Cancer Res 1998 Jul 1;58(13):2904]. Cancer Research, 58, 1291–1297.PubMed
44.
go back to reference Cheng, J., Huang, H., Zhang, Z. T., Shapiro, E., Pellicer, A., Sun, T. T., et al. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Research, 62, 4157–4163.PubMed Cheng, J., Huang, H., Zhang, Z. T., Shapiro, E., Pellicer, A., Sun, T. T., et al. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Research, 62, 4157–4163.PubMed
45.
go back to reference Signoretti, S., Pires, M. M., Lindauer, M., Horner, J. W., Grisanzio, C., Dhar, S., et al. (2005). p63 regulates commitment to the prostate cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 102, 11355–11360.PubMed Signoretti, S., Pires, M. M., Lindauer, M., Horner, J. W., Grisanzio, C., Dhar, S., et al. (2005). p63 regulates commitment to the prostate cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 102, 11355–11360.PubMed
46.
go back to reference Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. Journal of Clinical Investigation, 117, 314–325.PubMed Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. Journal of Clinical Investigation, 117, 314–325.PubMed
47.
go back to reference Gao, J., Huang, H. Y., Pak, J., Cheng, J., Zhang, Z. T., Shapiro, E., et al. (2004). p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene, 23, 687–696.PubMed Gao, J., Huang, H. Y., Pak, J., Cheng, J., Zhang, Z. T., Shapiro, E., et al. (2004). p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene, 23, 687–696.PubMed
48.
go back to reference He, F., Mo, L., Zheng, X. -Y., Hu, C., Lepor, H., Lee, E. Y.-H. P., et al. (2009). Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Research (in press) He, F., Mo, L., Zheng, X. -Y., Hu, C., Lepor, H., Lee, E. Y.-H. P., et al. (2009). Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Research (in press)
49.
go back to reference Wu, X. R. (2005). Urothelial tumorigenesis: A tale of divergent pathways. Nature Reviews Cancer, 5, 713–725.PubMed Wu, X. R. (2005). Urothelial tumorigenesis: A tale of divergent pathways. Nature Reviews Cancer, 5, 713–725.PubMed
50.
go back to reference Zhang, Z. T., Pak, J., Huang, H. Y., Shapiro, E., Sun, T. T., Pellicer, A., et al. (2001). Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene, 20, 1973–1980.PubMed Zhang, Z. T., Pak, J., Huang, H. Y., Shapiro, E., Sun, T. T., Pellicer, A., et al. (2001). Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene, 20, 1973–1980.PubMed
51.
go back to reference Garcia-Espana, A., Salazar, E., Sun, T. T., Wu, X. R., & Pellicer, A. (2005). Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: implications for tumor behavior. Cancer Research, 65, 1150–1157.PubMed Garcia-Espana, A., Salazar, E., Sun, T. T., Wu, X. R., & Pellicer, A. (2005). Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: implications for tumor behavior. Cancer Research, 65, 1150–1157.PubMed
52.
go back to reference Franceschini, P., Licata, D., Di Cara, G., Guala, A., Bianchi, M., Ingrosso, G., et al. (1999). Bladder carcinoma in Costello syndrome: report on a patient born to consanguineous parents and review. American Journal of Medical Genetics, 86, 174–179.PubMed Franceschini, P., Licata, D., Di Cara, G., Guala, A., Bianchi, M., Ingrosso, G., et al. (1999). Bladder carcinoma in Costello syndrome: report on a patient born to consanguineous parents and review. American Journal of Medical Genetics, 86, 174–179.PubMed
53.
go back to reference Gripp, K. W., Scott, C. I., Jr., Nicholson, L., & Figueroa, T. E. (2000). Second case of bladder carcinoma in a patient with Costello syndrome. American Journal of Medical Genetics, 90, 256–259.PubMed Gripp, K. W., Scott, C. I., Jr., Nicholson, L., & Figueroa, T. E. (2000). Second case of bladder carcinoma in a patient with Costello syndrome. American Journal of Medical Genetics, 90, 256–259.PubMed
54.
go back to reference Urakami, S., Igawa, M., Shiina, H., Shigeno, K., Kikuno, N., & Yoshino, T. (2002). Recurrent transitional cell carcinoma in a child with the Costello syndrome. Journal of Urology, 168, 1133–1134.PubMed Urakami, S., Igawa, M., Shiina, H., Shigeno, K., Kikuno, N., & Yoshino, T. (2002). Recurrent transitional cell carcinoma in a child with the Costello syndrome. Journal of Urology, 168, 1133–1134.PubMed
55.
go back to reference Agazie, Y. M., Movilla, N., Ischenko, I., & Hayman, M. J. (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22, 6909–6918.PubMed Agazie, Y. M., Movilla, N., Ischenko, I., & Hayman, M. J. (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22, 6909–6918.PubMed
56.
go back to reference Kanai, M., Goke, M., Tsunekawa, S., & Podolsky, D. K. (1997). Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein. Journal of Biological Chemistry, 272, 6621–6628.PubMed Kanai, M., Goke, M., Tsunekawa, S., & Podolsky, D. K. (1997). Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein. Journal of Biological Chemistry, 272, 6621–6628.PubMed
57.
go back to reference Cappellen, D., De Oliveira, C., Ricol, D., de Medina, S., Bourdin, J., Sastre-Garau, X., et al. (1999). Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nature Genetics, 23, 18–20.PubMed Cappellen, D., De Oliveira, C., Ricol, D., de Medina, S., Bourdin, J., Sastre-Garau, X., et al. (1999). Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nature Genetics, 23, 18–20.PubMed
58.
go back to reference Rieger-Christ, K. M., Mourtzinos, A., Lee, P. J., Zagha, R. M., Cain, J., Silverman, M., et al. (2003). Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer, 98, 737–744.PubMed Rieger-Christ, K. M., Mourtzinos, A., Lee, P. J., Zagha, R. M., Cain, J., Silverman, M., et al. (2003). Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer, 98, 737–744.PubMed
59.
go back to reference van Rhijn, B. W., van der Kwast, T. H., Vis, A. N., Kirkels, W. J., Boeve, E. R., Jobsis, A. C., et al. (2004). FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Research, 64, 1911–1914.PubMed van Rhijn, B. W., van der Kwast, T. H., Vis, A. N., Kirkels, W. J., Boeve, E. R., Jobsis, A. C., et al. (2004). FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Research, 64, 1911–1914.PubMed
60.
go back to reference Naski, M. C., Wang, Q., Xu, J., & Ornitz, D. M. (1996). Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genetics, 13, 233–237.PubMed Naski, M. C., Wang, Q., Xu, J., & Ornitz, D. M. (1996). Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genetics, 13, 233–237.PubMed
61.
go back to reference Monsonego-Ornan, E., Adar, R., Feferman, T., Segev, O., & Yayon, A. (2000). The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Molecular and Cellular Biology, 20, 516–522.PubMed Monsonego-Ornan, E., Adar, R., Feferman, T., Segev, O., & Yayon, A. (2000). The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Molecular and Cellular Biology, 20, 516–522.PubMed
62.
go back to reference Jebar, A. H., Hurst, C. D., Tomlinson, D. C., Johnston, C., Taylor, C. F., & Knowles, M. A. (2005). FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene, 24, 5218–5225.PubMed Jebar, A. H., Hurst, C. D., Tomlinson, D. C., Johnston, C., Taylor, C. F., & Knowles, M. A. (2005). FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene, 24, 5218–5225.PubMed
63.
go back to reference Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39, 75–79.PubMed Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39, 75–79.PubMed
64.
go back to reference Madhunapantula, S. V., & Robertson, G. P. (2008). Is B-Raf a good therapeutic target for melanoma and other malignancies? Cancer Research, 68, 5–8.PubMed Madhunapantula, S. V., & Robertson, G. P. (2008). Is B-Raf a good therapeutic target for melanoma and other malignancies? Cancer Research, 68, 5–8.PubMed
65.
go back to reference Sibley, K., Stern, P., & Knowles, M. A. (2001). Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene, 20, 4416–4418.PubMed Sibley, K., Stern, P., & Knowles, M. A. (2001). Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene, 20, 4416–4418.PubMed
66.
go back to reference Wu, R., Connolly, D., Ngelangel, C., Bosch, F. X., Munoz, N., & Cho, K. R. (2000). Somatic mutations of fibroblast growth factor receptor 3 (FGFR3) are uncommon in carcinomas of the uterine cervix. Oncogene, 19, 5543–5546.PubMed Wu, R., Connolly, D., Ngelangel, C., Bosch, F. X., Munoz, N., & Cho, K. R. (2000). Somatic mutations of fibroblast growth factor receptor 3 (FGFR3) are uncommon in carcinomas of the uterine cervix. Oncogene, 19, 5543–5546.PubMed
67.
go back to reference Fracchiolla, N. S., Luminari, S., Baldini, L., Lombardi, L., Maiolo, A. T., & Neri, A. (1998). FGFR3 gene mutations associated with human skeletal disorders occur rarely in multiple myeloma. Blood, 92, 2987–2989.PubMed Fracchiolla, N. S., Luminari, S., Baldini, L., Lombardi, L., Maiolo, A. T., & Neri, A. (1998). FGFR3 gene mutations associated with human skeletal disorders occur rarely in multiple myeloma. Blood, 92, 2987–2989.PubMed
68.
go back to reference Reznikoff, C. A., Belair, C. D., Yeager, T. R., Savelieva, E., Blelloch, R. H., Puthenveettil, J. A., et al. (1996). A molecular genetic model of human bladder cancer pathogenesis. Seminars in Oncology, 23, 571–584.PubMed Reznikoff, C. A., Belair, C. D., Yeager, T. R., Savelieva, E., Blelloch, R. H., Puthenveettil, J. A., et al. (1996). A molecular genetic model of human bladder cancer pathogenesis. Seminars in Oncology, 23, 571–584.PubMed
69.
go back to reference Cote, R. J., Dunn, M. D., Chatterjee, S. J., Stein, J. P., Shi, S. R., Tran, Q. C., et al. (1998). Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Research, 58, 1090–1094.PubMed Cote, R. J., Dunn, M. D., Chatterjee, S. J., Stein, J. P., Shi, S. R., Tran, Q. C., et al. (1998). Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Research, 58, 1090–1094.PubMed
70.
go back to reference Grossman, H. B., Liebert, M., Antelo, M., Dinney, C. P., Hu, S. X., Palmer, J. L., et al. (1998). p53 and Rb expression predict progression in T1 bladder cancer. Clinical Cancer Research, 4, 829–834.PubMed Grossman, H. B., Liebert, M., Antelo, M., Dinney, C. P., Hu, S. X., Palmer, J. L., et al. (1998). p53 and Rb expression predict progression in T1 bladder cancer. Clinical Cancer Research, 4, 829–834.PubMed
71.
go back to reference Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., Drobnjak, M., Charytonowicz, E., Hu, S. X., et al. (1997). Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Research, 57, 1217–1221.PubMed Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., Drobnjak, M., Charytonowicz, E., Hu, S. X., et al. (1997). Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Research, 57, 1217–1221.PubMed
72.
go back to reference Clarke, A. R., Maandag, E. R., van Roon, M., van der Lugt, N. M., van der Valk, M., Hooper, M. L., et al. (1992). Requirement for a functional Rb-1 gene in murine development. Nature, 359, 328–330.PubMed Clarke, A. R., Maandag, E. R., van Roon, M., van der Lugt, N. M., van der Valk, M., Hooper, M. L., et al. (1992). Requirement for a functional Rb-1 gene in murine development. Nature, 359, 328–330.PubMed
73.
go back to reference Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., & Weinberg, R. A. (1992). Effects of an Rb mutation in the mouse. Nature, 359, 295–300.PubMed Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., & Weinberg, R. A. (1992). Effects of an Rb mutation in the mouse. Nature, 359, 295–300.PubMed
74.
go back to reference Lee, E. Y., Chang, C. Y., Hu, N., Wang, Y. C., Lai, C. C., Herrup, K., et al. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature, 359, 288–294.PubMed Lee, E. Y., Chang, C. Y., Hu, N., Wang, Y. C., Lai, C. C., Herrup, K., et al. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature, 359, 288–294.PubMed
75.
go back to reference Mo, L., Cheng, J., Lee, E. Y., Sun, T. T., & Wu, X. R. (2005). Gene deletion in urothelium by specific expression of Cre recombinase. American Journal of Physiology and Renal Physiology, 289, F562–F568. Mo, L., Cheng, J., Lee, E. Y., Sun, T. T., & Wu, X. R. (2005). Gene deletion in urothelium by specific expression of Cre recombinase. American Journal of Physiology and Renal Physiology, 289, F562–F568.
76.
go back to reference Flesken-Nikitin, A., Choi, K. C., Eng, J. P., Shmidt, E. N., & Nikitin, A. Y. (2003). Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Research, 63, 3459–3463.PubMed Flesken-Nikitin, A., Choi, K. C., Eng, J. P., Shmidt, E. N., & Nikitin, A. Y. (2003). Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Research, 63, 3459–3463.PubMed
77.
go back to reference Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J., & Berns, A. (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes and Development, 14, 994–1004.PubMed Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J., & Berns, A. (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes and Development, 14, 994–1004.PubMed
78.
go back to reference Cheng, J., Huang, H., Pak, J., Shapiro, E., Sun, T. T., Cordon-Cardo, C., et al. (2003). Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder. Cancer Research, 63, 179–185.PubMed Cheng, J., Huang, H., Pak, J., Shapiro, E., Sun, T. T., Cordon-Cardo, C., et al. (2003). Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder. Cancer Research, 63, 179–185.PubMed
79.
go back to reference Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T., & Wu, X. R. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59, 3512–3517.PubMed Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T., & Wu, X. R. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59, 3512–3517.PubMed
80.
go back to reference Grippo, P. J., & Sandgren, E. P. (2000). Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. American Journal of Pathology, 157, 805–813.PubMed Grippo, P. J., & Sandgren, E. P. (2000). Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. American Journal of Pathology, 157, 805–813.PubMed
81.
go back to reference Ali, S. H., & DeCaprio, J. A. (2001). Cellular transformation by SV40 large T antigen: interaction with host proteins. Seminars in Cancer Biology, 11, 15–23.PubMed Ali, S. H., & DeCaprio, J. A. (2001). Cellular transformation by SV40 large T antigen: interaction with host proteins. Seminars in Cancer Biology, 11, 15–23.PubMed
82.
go back to reference Sun, A., Bagella, L., Tutton, S., Romano, G., & Giordano, A. (2007). From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. Journal of Cellular Biochemistry, 102, 1400–1404.PubMed Sun, A., Bagella, L., Tutton, S., Romano, G., & Giordano, A. (2007). From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. Journal of Cellular Biochemistry, 102, 1400–1404.PubMed
83.
go back to reference Vidal, A., Carneiro, C., & Zalvide, J. B. (2007). Of mice without pockets: mouse models to study the function of Rb family proteins. Front and Bioscience, 12, 4483–4496. Vidal, A., Carneiro, C., & Zalvide, J. B. (2007). Of mice without pockets: mouse models to study the function of Rb family proteins. Front and Bioscience, 12, 4483–4496.
84.
go back to reference Crosby, M. E., & Almasan, A. (2004). Opposing roles of E2Fs in cell proliferation and death. Cancer Biology Therapeutic, 3, 1208–1211.CrossRef Crosby, M. E., & Almasan, A. (2004). Opposing roles of E2Fs in cell proliferation and death. Cancer Biology Therapeutic, 3, 1208–1211.CrossRef
85.
go back to reference MacPherson, D., Sage, J., Kim, T., Ho, D., McLaughlin, M. E., & Jacks, T. (2004). Cell type-specific effects of Rb deletion in the murine retina. Genes and Development, 18, 1681–1694.PubMed MacPherson, D., Sage, J., Kim, T., Ho, D., McLaughlin, M. E., & Jacks, T. (2004). Cell type-specific effects of Rb deletion in the murine retina. Genes and Development, 18, 1681–1694.PubMed
86.
go back to reference Lara, M. F., Santos, M., Ruiz, S., Segrelles, C., Moral, M., Martinez-Cruz, A. B., et al. (2008). p107 acts as a tumor suppressor in pRb-deficient epidermis. Molecular Carcinogenesis, 47, 105–113.PubMed Lara, M. F., Santos, M., Ruiz, S., Segrelles, C., Moral, M., Martinez-Cruz, A. B., et al. (2008). p107 acts as a tumor suppressor in pRb-deficient epidermis. Molecular Carcinogenesis, 47, 105–113.PubMed
87.
go back to reference Chow, L. M., & Baker, S. J. (2006). PTEN function in normal and neoplastic growth. Cancer Letters, 241, 184–196.PubMed Chow, L. M., & Baker, S. J. (2006). PTEN function in normal and neoplastic growth. Cancer Letters, 241, 184–196.PubMed
88.
go back to reference Vazquez, F., Matsuoka, S., Sellers, W. R., Yanagida, T., Ueda, M., & Devreotes, P. N. (2006). Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 103, 3633–3638.PubMed Vazquez, F., Matsuoka, S., Sellers, W. R., Yanagida, T., Ueda, M., & Devreotes, P. N. (2006). Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 103, 3633–3638.PubMed
89.
go back to reference Tanaka, M., Koul, D., Davies, M. A., Liebert, M., Steck, P. A., & Grossman, H. B. (2000). MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene, 19, 5406–5412.PubMed Tanaka, M., Koul, D., Davies, M. A., Liebert, M., Steck, P. A., & Grossman, H. B. (2000). MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene, 19, 5406–5412.PubMed
90.
go back to reference Gildea, J. J., Herlevsen, M., Harding, M. A., Gulding, K. M., Moskaluk, C. A., Frierson, H. F., et al. (2004). PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene, 23, 6788–6797.PubMed Gildea, J. J., Herlevsen, M., Harding, M. A., Gulding, K. M., Moskaluk, C. A., Frierson, H. F., et al. (2004). PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene, 23, 6788–6797.PubMed
91.
go back to reference Li, J., Simpson, L., Takahashi, M., Miliaresis, C., Myers, M. P., Tonks, N., et al. (1998). The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Research, 58, 5667–5672.PubMed Li, J., Simpson, L., Takahashi, M., Miliaresis, C., Myers, M. P., Tonks, N., et al. (1998). The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Research, 58, 5667–5672.PubMed
92.
go back to reference Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19, 348–355.PubMed Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19, 348–355.PubMed
93.
go back to reference Podsypanina, K., Ellenson, L. H., Nemes, A., Gu, J., Tamura, M., Yamada, K. M., et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proceedings of the National Academy of Sciences of the United States of America, 96, 1563–1568.PubMed Podsypanina, K., Ellenson, L. H., Nemes, A., Gu, J., Tamura, M., Yamada, K. M., et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proceedings of the National Academy of Sciences of the United States of America, 96, 1563–1568.PubMed
94.
go back to reference Suzuki, A., de la Pompa, J. L., Stambolic, V., Elia, A. J., Sasaki, T., del Barco Barrantes, I., et al. (1998). High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology, 8, 1169–1178.PubMed Suzuki, A., de la Pompa, J. L., Stambolic, V., Elia, A. J., Sasaki, T., del Barco Barrantes, I., et al. (1998). High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology, 8, 1169–1178.PubMed
95.
go back to reference Yoo, L. I., Liu, D. W., Le Vu, S., Bronson, R. T., Wu, H., & Yuan, J. (2006). Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Research, 66, 1929–1939.PubMed Yoo, L. I., Liu, D. W., Le Vu, S., Bronson, R. T., Wu, H., & Yuan, J. (2006). Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Research, 66, 1929–1939.PubMed
96.
go back to reference Ma, X., Ziel-van der Made, A. C., Autar, B., van der Korput, H. A., Vermeij, M., van Duijn, P., et al. (2005). Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Research, 65, 5730–5739.PubMed Ma, X., Ziel-van der Made, A. C., Autar, B., van der Korput, H. A., Vermeij, M., van Duijn, P., et al. (2005). Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Research, 65, 5730–5739.PubMed
97.
go back to reference Leslie, N. R., & Downes, C. P. (2004). PTEN function: How normal cells control it and tumour cells lose it. Biochemical Journal, 382, 1–11.PubMed Leslie, N. R., & Downes, C. P. (2004). PTEN function: How normal cells control it and tumour cells lose it. Biochemical Journal, 382, 1–11.PubMed
98.
go back to reference Gustafson, S., Zbuk, K. M., Scacheri, C., & Eng, C. (2007). Cowden syndrome. Seminars in Oncology, 34, 428–434.PubMed Gustafson, S., Zbuk, K. M., Scacheri, C., & Eng, C. (2007). Cowden syndrome. Seminars in Oncology, 34, 428–434.PubMed
99.
go back to reference Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66, 8389–8396.PubMed Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66, 8389–8396.PubMed
100.
go back to reference Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., Wang, X., Shen, T. H., Matos, T., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23, 675–680.PubMed Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., Wang, X., Shen, T. H., Matos, T., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23, 675–680.PubMed
101.
go back to reference Aveyard, J. S., Skilleter, A., Habuchi, T., & Knowles, M. A. (1999). Somatic mutation of PTEN in bladder carcinoma. British Journal of Cancer, 80, 904–908.PubMed Aveyard, J. S., Skilleter, A., Habuchi, T., & Knowles, M. A. (1999). Somatic mutation of PTEN in bladder carcinoma. British Journal of Cancer, 80, 904–908.PubMed
102.
go back to reference Kagan, J., Liu, J., Stein, J. D., Wagner, S. S., Babkowski, R., Grossman, B. H., et al. (1998). Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene, 16, 909–913.PubMed Kagan, J., Liu, J., Stein, J. D., Wagner, S. S., Babkowski, R., Grossman, B. H., et al. (1998). Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene, 16, 909–913.PubMed
103.
go back to reference Cappellen, D., Diez, G., de Medina, S., Chopin, D., Thiery, J. P., & Radvanyi, F. (1997). Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene, 14, 3059–3066.PubMed Cappellen, D., Diez, G., de Medina, S., Chopin, D., Thiery, J. P., & Radvanyi, F. (1997). Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene, 14, 3059–3066.PubMed
104.
go back to reference Hurst, C. D., Fiegler, H., Carr, P., Williams, S., Carter, N. P., & Knowles, M. A. (2004). High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene, 23, 2250–2263.PubMed Hurst, C. D., Fiegler, H., Carr, P., Williams, S., Carter, N. P., & Knowles, M. A. (2004). High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene, 23, 2250–2263.PubMed
105.
go back to reference Wang, D. S., Rieger-Christ, K., Latini, J. M., Moinzadeh, A., Stoffel, J., Pezza, J. A., et al. (2000). Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. International Journal of Cancer, 88, 620–625. Wang, D. S., Rieger-Christ, K., Latini, J. M., Moinzadeh, A., Stoffel, J., Pezza, J. A., et al. (2000). Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. International Journal of Cancer, 88, 620–625.
106.
go back to reference Liu, J., Babaian, D. C., Liebert, M., Steck, P. A., & Kagan, J. (2000). Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Molecular Carcinogenesis, 29, 143–150.PubMed Liu, J., Babaian, D. C., Liebert, M., Steck, P. A., & Kagan, J. (2000). Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Molecular Carcinogenesis, 29, 143–150.PubMed
107.
go back to reference Cairns, P., Evron, E., Okami, K., Halachmi, N., Esteller, M., Herman, J. G., et al. (1998). Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene, 16, 3215–3218.PubMed Cairns, P., Evron, E., Okami, K., Halachmi, N., Esteller, M., Herman, J. G., et al. (1998). Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene, 16, 3215–3218.PubMed
108.
go back to reference Pagliaro, L. C., Keyhani, A., Williams, D., Woods, D., Liu, B., Perrotte, P., et al. (2003). Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. Journal of Clinical Oncology, 21, 2247–2253.PubMed Pagliaro, L. C., Keyhani, A., Williams, D., Woods, D., Liu, B., Perrotte, P., et al. (2003). Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. Journal of Clinical Oncology, 21, 2247–2253.PubMed
109.
go back to reference Zhang, X., Multani, A. S., Zhou, J. H., Shay, J. W., McConkey, D., Dong, L., et al. (2003). Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Research, 63, 760–765.PubMed Zhang, X., Multani, A. S., Zhou, J. H., Shay, J. W., McConkey, D., Dong, L., et al. (2003). Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Research, 63, 760–765.PubMed
Metadata
Title
Biology of urothelial tumorigenesis: insights from genetically engineered mice
Author
Xue-Ru Wu
Publication date
01-12-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9189-4

Other articles of this Issue 3-4/2009

Cancer and Metastasis Reviews 3-4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine