Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2009

01-12-2009

Urothelial carcinoma: Stem cells on the edge

Authors: William D. Brandt, William Matsui, Jonathan E. Rosenberg, Xiaobing He, Shizhang Ling, Edward M. Schaeffer, David M. Berman

Published in: Cancer and Metastasis Reviews | Issue 3-4/2009

Login to get access

Abstract

Tumors are heterogeneous collections of cells with highly variable abilities to survive, grow, and metastasize. This variability likely stems from epigenetic and genetic influences, either stochastic or hardwired by cell type-specific lineage programs. That differentiation underlies tumor cell heterogeneity was elegantly demonstrated in hematopoietic tumors, in which rare primitive cells (cancer stem cells (CSCs)) resembling normal hematopoietic stem cells are ultimately responsible for tumor growth and viability. Because of the compelling clinical implications CSCs pose—across the entire spectrum of cancers—investigators applied the CSC model to cancers arising in tissues with crudely understood differentiation programs. Instead of relying on differentiation, these studies used empirically selected markers and statistical arguments to identify CSCs. The empirical approach has stimulated important questions about “stemness” in cancer cells as well as the validity and stoichiometry of CSC assays. The recent identification of urothelial differentiation programs in urothelial carcinomas (UroCas) supports the idea that solid epithelial cancers (carcinomas) develop and differentiate analogously to normal epithelia and provides new insights about the spatial localization and molecular makeup of carcinoma CSCs. Importantly, CSCs from invasive UroCas (UroCSCs) appear well situated to exchange important signals with adjacent stroma, to escape immune surveillance, and to survive cytotoxic therapy. These signals have potential roles in treatment resistance and many participate in druggable cellular pathways. In this review, we discuss the implications of these findings in understanding CSCs and in better understanding how UroCas form, progress, and should be treated.
Literature
1.
go back to reference Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.PubMed Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.PubMed
2.
go back to reference Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23–28.PubMed Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23–28.PubMed
3.
go back to reference He, X., Marchionni, L., Hansel, D. E., et al. (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells, 27(7), 1487–1495.PubMed He, X., Marchionni, L., Hansel, D. E., et al. (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells, 27(7), 1487–1495.PubMed
4.
go back to reference Chan, K., Espinosa, I., Chao, M., et al. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America. Chan, K., Espinosa, I., Chao, M., et al. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America.
5.
go back to reference Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., et al. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol, 294(6), F1415–F1421.PubMed Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., et al. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol, 294(6), F1415–F1421.PubMed
6.
go back to reference Southam, C., & Brunschwig, A. (1961). Quantitative studies of autotransplantation of human cancer. Cancer, 14, 971–978. Southam, C., & Brunschwig, A. (1961). Quantitative studies of autotransplantation of human cancer. Cancer, 14, 971–978.
7.
go back to reference Weissman, I. L., & Shizuru, J. A. (2008). The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112(9), 3543–3553.PubMed Weissman, I. L., & Shizuru, J. A. (2008). The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112(9), 3543–3553.PubMed
8.
go back to reference Bedi, A., Zehnbauer, B. A., Collector, M. I., et al. (1993). BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood, 81(11), 2898–2902.PubMed Bedi, A., Zehnbauer, B. A., Collector, M. I., et al. (1993). BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood, 81(11), 2898–2902.PubMed
9.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMed Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMed
10.
go back to reference Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMed Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMed
11.
go back to reference Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed
12.
go back to reference Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442(7104), 818–822.PubMed Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442(7104), 818–822.PubMed
13.
go back to reference Krivtsov, A. V., Feng, Z., & Armstrong, S. A. (2009). Transformation from committed progenitor to leukemia stem cells. Annals of the New York Academy of Sciences, 1176, 144–149.PubMed Krivtsov, A. V., Feng, Z., & Armstrong, S. A. (2009). Transformation from committed progenitor to leukemia stem cells. Annals of the New York Academy of Sciences, 1176, 144–149.PubMed
14.
go back to reference Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.PubMed Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.PubMed
15.
go back to reference Kelly, P. N., Dakic, A., Adams, J. M., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.PubMed Kelly, P. N., Dakic, A., Adams, J. M., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.PubMed
16.
go back to reference Michor, F., Hughes, T. P., Iwasa, Y., et al. (2005). Dynamics of chronic myeloid leukaemia. Nature, 435(7046), 1267–1270.PubMed Michor, F., Hughes, T. P., Iwasa, Y., et al. (2005). Dynamics of chronic myeloid leukaemia. Nature, 435(7046), 1267–1270.PubMed
17.
go back to reference le Coutre, P., Tassi, E., Varella-Garcia, M., et al. (2000). Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood, 95(5), 1758–1766.PubMed le Coutre, P., Tassi, E., Varella-Garcia, M., et al. (2000). Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood, 95(5), 1758–1766.PubMed
18.
go back to reference Graham, S. M., Jørgensen, H. G., Allan, E., et al. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood, 99(1), 319–325.PubMed Graham, S. M., Jørgensen, H. G., Allan, E., et al. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood, 99(1), 319–325.PubMed
19.
go back to reference Matsui, W., Huff, C. A., Wang, Q., et al. (2004). Characterization of clonogenic multiple myeloma cells. Blood, 103(6), 2332–2336.PubMed Matsui, W., Huff, C. A., Wang, Q., et al. (2004). Characterization of clonogenic multiple myeloma cells. Blood, 103(6), 2332–2336.PubMed
20.
go back to reference Matsui, W., Wang, Q., Barber, J. P., et al. (2008). Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Research, 68(1), 190–197.PubMed Matsui, W., Wang, Q., Barber, J. P., et al. (2008). Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Research, 68(1), 190–197.PubMed
21.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMed Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMed
22.
go back to reference Shipitsin, M., Campbell, L. L., Argani, P., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259–273.PubMed Shipitsin, M., Campbell, L. L., Argani, P., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259–273.PubMed
23.
go back to reference Eramo, A., Lotti, F., Sette, G., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.PubMed Eramo, A., Lotti, F., Sette, G., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.PubMed
24.
go back to reference Dalerba, P., Dylla, S. J., Park, I.-K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMed Dalerba, P., Dylla, S. J., Park, I.-K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMed
25.
go back to reference O’brien, C. A., Pollett, A., Gallinger, S., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMed O’brien, C. A., Pollett, A., Gallinger, S., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMed
26.
go back to reference Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMed Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMed
27.
go back to reference Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.PubMed Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.PubMed
28.
go back to reference Alvero, A. B., Chen, R., Fu, H.-H., et al. (2009). Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle, 8(1), 158–166.PubMed Alvero, A. B., Chen, R., Fu, H.-H., et al. (2009). Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle, 8(1), 158–166.PubMed
29.
go back to reference Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.PubMed Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.PubMed
30.
go back to reference Quintana, E., Shackleton, M., Sabel, M. S., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.PubMed Quintana, E., Shackleton, M., Sabel, M. S., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.PubMed
31.
go back to reference Kennedy, J. A., Barabé, F., Poeppl, A. G., et al. (2007). Comment on "Tumor growth need not be driven by rare cancer stem cells". Science, 318(5857), 1722. Author reply.PubMed Kennedy, J. A., Barabé, F., Poeppl, A. G., et al. (2007). Comment on "Tumor growth need not be driven by rare cancer stem cells". Science, 318(5857), 1722. Author reply.PubMed
32.
go back to reference Donjacour, A. A., & Cunha, G. R. (1991). Stromal regulation of epithelial function. Cancer Treatment and Research, 53, 335–364.PubMed Donjacour, A. A., & Cunha, G. R. (1991). Stromal regulation of epithelial function. Cancer Treatment and Research, 53, 335–364.PubMed
33.
go back to reference Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.PubMed Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.PubMed
34.
go back to reference Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.PubMed Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.PubMed
35.
go back to reference Joseph, N. M., & Morrison, S. J. (2005). Toward an understanding of the physiological function of mammalian stem cells. Dev Cell, 9(2), 173–183.PubMed Joseph, N. M., & Morrison, S. J. (2005). Toward an understanding of the physiological function of mammalian stem cells. Dev Cell, 9(2), 173–183.PubMed
36.
go back to reference Daniel, V. C., Marchionni, L., Hierman, J. S., et al. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Research, 69(8), 3364–3373.PubMed Daniel, V. C., Marchionni, L., Hierman, J. S., et al. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Research, 69(8), 3364–3373.PubMed
37.
go back to reference Jin, L., Hope, K. J., Zhai, Q., et al. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167–1174.PubMed Jin, L., Hope, K. J., Zhai, Q., et al. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167–1174.PubMed
38.
go back to reference Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMed Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMed
39.
go back to reference Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150.PubMed Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150.PubMed
40.
go back to reference Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183.PubMed Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183.PubMed
41.
go back to reference Walkley, C. R., Olsen, G. H., Dworkin, S., et al. (2007). A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell, 129(6), 1097–1110.PubMed Walkley, C. R., Olsen, G. H., Dworkin, S., et al. (2007). A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell, 129(6), 1097–1110.PubMed
42.
go back to reference Olumi, A. F., Grossfeld, G. D., Hayward, S. W., et al. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Research, 59(19), 5002–5011.PubMed Olumi, A. F., Grossfeld, G. D., Hayward, S. W., et al. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Research, 59(19), 5002–5011.PubMed
43.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed
44.
go back to reference Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10), 755–768.PubMed Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10), 755–768.PubMed
45.
go back to reference Hochedlinger, K., Blelloch, R., Brennan, C., et al. (2004). Reprogramming of a melanoma genome by nuclear transplantation. Genes and Development, 18(15), 1875–1885.PubMed Hochedlinger, K., Blelloch, R., Brennan, C., et al. (2004). Reprogramming of a melanoma genome by nuclear transplantation. Genes and Development, 18(15), 1875–1885.PubMed
46.
go back to reference Bissell, M. J., & Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cells, 7(1), 17–23. Bissell, M. J., & Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cells, 7(1), 17–23.
47.
go back to reference Farsund, T. (1976). Kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide. Virchows Arch B Cell Pathol, 21(4), 279–298.PubMed Farsund, T. (1976). Kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide. Virchows Arch B Cell Pathol, 21(4), 279–298.PubMed
48.
go back to reference Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol, 278(6), F867–F874.PubMed Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol, 278(6), F867–F874.PubMed
49.
go back to reference Martin, B. F. (1972). Cell replacement and differentiation in transitional epithelium: a histological and autoradiographic study of the guinea-pig bladder and ureter. Journal of Anatomy, 112(Pt 3), 433–455.PubMed Martin, B. F. (1972). Cell replacement and differentiation in transitional epithelium: a histological and autoradiographic study of the guinea-pig bladder and ureter. Journal of Anatomy, 112(Pt 3), 433–455.PubMed
50.
go back to reference Diggle, C. P., Cruickshank, S., Olsburgh, J. D., et al. (2003). Identification of genes up-regulated in urothelial tumors: the 67-kd laminin receptor and tumor-associated trypsin inhibitor. American Journal of Pathology, 163(2), 493–504.PubMed Diggle, C. P., Cruickshank, S., Olsburgh, J. D., et al. (2003). Identification of genes up-regulated in urothelial tumors: the 67-kd laminin receptor and tumor-associated trypsin inhibitor. American Journal of Pathology, 163(2), 493–504.PubMed
51.
go back to reference Grossman, H. B., Lee, C., Bromberg, J., et al. (2000). Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncology Reports, 7(1), 13–16.PubMed Grossman, H. B., Lee, C., Bromberg, J., et al. (2000). Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncology Reports, 7(1), 13–16.PubMed
52.
go back to reference Yang, Y. M., & Chang, J. W. (2008). Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Investigation, 26(7), 725–733. Yang, Y. M., & Chang, J. W. (2008). Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Investigation, 26(7), 725–733.
53.
go back to reference Chu, P. G., & Weiss, L. M. (2002). Keratin expression in human tissues and neoplasms. Histopathology, 40(5), 403–439.PubMed Chu, P. G., & Weiss, L. M. (2002). Keratin expression in human tissues and neoplasms. Histopathology, 40(5), 403–439.PubMed
54.
go back to reference Baskin, L. S., Hayward, S. W., Young, P. F., et al. (1996). Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anatomica (Basel), 155(3), 163–171. Baskin, L. S., Hayward, S. W., Young, P. F., et al. (1996). Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anatomica (Basel), 155(3), 163–171.
55.
go back to reference Wu, X. R., Manabe, M., Yu, J., et al. (1990). Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. Journal of Biological Chemistry, 265(31), 19170–19179.PubMed Wu, X. R., Manabe, M., Yu, J., et al. (1990). Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. Journal of Biological Chemistry, 265(31), 19170–19179.PubMed
56.
go back to reference De La Rosette, J., Smedts, F., Schoots, C., et al. (2002). Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. Journal of Urology, 168(2), 709–717. De La Rosette, J., Smedts, F., Schoots, C., et al. (2002). Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. Journal of Urology, 168(2), 709–717.
57.
go back to reference Buller, R. E., Skilling, J. S., Sood, A. K., et al. (1998). Field cancerization: why late "recurrent" ovarian cancer is not recurrent. American Journal of Obstetrics and Gynecology, 178(4), 641–649.PubMed Buller, R. E., Skilling, J. S., Sood, A. K., et al. (1998). Field cancerization: why late "recurrent" ovarian cancer is not recurrent. American Journal of Obstetrics and Gynecology, 178(4), 641–649.PubMed
58.
go back to reference Wang, J., Lin, L., Parkash, V., et al. (2003). Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems. International Journal of Cancer, 103(3), 328–334. Wang, J., Lin, L., Parkash, V., et al. (2003). Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems. International Journal of Cancer, 103(3), 328–334.
59.
go back to reference Woodruff, J. D., & Julian, C. G. (1969). Multiple malignancy in the upper genital canal. American Journal of Obstetrics and Gynecology, 103(6), 810–822.PubMed Woodruff, J. D., & Julian, C. G. (1969). Multiple malignancy in the upper genital canal. American Journal of Obstetrics and Gynecology, 103(6), 810–822.PubMed
60.
go back to reference Billerey, C., Chopin, D., Aubriot-Lorton, M. H., et al. (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. American Journal of Pathology, 158(6), 1955–1959.PubMed Billerey, C., Chopin, D., Aubriot-Lorton, M. H., et al. (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. American Journal of Pathology, 158(6), 1955–1959.PubMed
61.
go back to reference van Rhijn, B. W. G., Montironi, R., Zwarthoff, E. C., et al. (2002). Frequent FGFR3 mutations in urothelial papilloma. Journal of Pathology, 198(2), 245–251.PubMed van Rhijn, B. W. G., Montironi, R., Zwarthoff, E. C., et al. (2002). Frequent FGFR3 mutations in urothelial papilloma. Journal of Pathology, 198(2), 245–251.PubMed
62.
go back to reference Wu, X.-R. (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nature Reviews Cancer, 5(9), 713–725.PubMed Wu, X.-R. (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nature Reviews Cancer, 5(9), 713–725.PubMed
63.
go back to reference Dyrskjøt, L., Kruhøffer, M., Thykjaer, T., et al. (2004). Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Research, 64(11), 4040–4048.PubMed Dyrskjøt, L., Kruhøffer, M., Thykjaer, T., et al. (2004). Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Research, 64(11), 4040–4048.PubMed
64.
go back to reference Zieger, K., Dyrskjøt, L., Wiuf, C., et al. (2005). Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clinical Cancer Research, 11(21), 7709–7719.PubMed Zieger, K., Dyrskjøt, L., Wiuf, C., et al. (2005). Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clinical Cancer Research, 11(21), 7709–7719.PubMed
65.
go back to reference Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., et al. (1997). Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Research, 57(7), 1217–1221.PubMed Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., et al. (1997). Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Research, 57(7), 1217–1221.PubMed
66.
go back to reference Cote, R. J., Dunn, M. D., Chatterjee, S. J., et al. (1998). Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Research, 58(6), 1090–1094.PubMed Cote, R. J., Dunn, M. D., Chatterjee, S. J., et al. (1998). Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Research, 58(6), 1090–1094.PubMed
67.
go back to reference Grossman, H. B., Liebert, M., Antelo, M., et al. (1998). p53 and RB expression predict progression in T1 bladder cancer. Clinical Cancer Research, 4(4), 829–834.PubMed Grossman, H. B., Liebert, M., Antelo, M., et al. (1998). p53 and RB expression predict progression in T1 bladder cancer. Clinical Cancer Research, 4(4), 829–834.PubMed
68.
go back to reference Zhang, Z. T., Pak, J., Shapiro, E., et al. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59(14), 3512–3517.PubMed Zhang, Z. T., Pak, J., Shapiro, E., et al. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59(14), 3512–3517.PubMed
69.
go back to reference Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23(6), 675–680.PubMed Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23(6), 675–680.PubMed
70.
go back to reference Burchill, S. A., Neal, D. E., & Lunec, J. (1994). Frequency of H-ras mutations in human bladder cancer detected by direct sequencing. British Journal of Urology, 73(5), 516–521.PubMed Burchill, S. A., Neal, D. E., & Lunec, J. (1994). Frequency of H-ras mutations in human bladder cancer detected by direct sequencing. British Journal of Urology, 73(5), 516–521.PubMed
71.
go back to reference Feinberg, A. P., Vogelstein, B., Droller, M. J., et al. (1983). Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science, 220(4602), 1175–1177.PubMed Feinberg, A. P., Vogelstein, B., Droller, M. J., et al. (1983). Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science, 220(4602), 1175–1177.PubMed
72.
go back to reference Mo, L., Zheng, X., Huang, H.-Y., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. Journal of Clinical Investigation, 117(2), 314–325.PubMed Mo, L., Zheng, X., Huang, H.-Y., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. Journal of Clinical Investigation, 117(2), 314–325.PubMed
73.
go back to reference Grossman, H. B., Natale, R. B., Tangen, C. M., et al. (2003). Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. New England Journal of Medicine, 349(9), 859–866.PubMed Grossman, H. B., Natale, R. B., Tangen, C. M., et al. (2003). Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. New England Journal of Medicine, 349(9), 859–866.PubMed
74.
go back to reference Collaboration ABCAM-a. (2005). Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. European Urology, 48(2), 202–205. discussion 5-6. Collaboration ABCAM-a. (2005). Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. European Urology, 48(2), 202–205. discussion 5-6.
75.
go back to reference Sylvester, R., & Sternberg, C. (2000). The role of adjuvant combination chemotherapy after cystectomy in locally advanced bladder cancer: what we do not know and why. Annals of Oncology, 11(7), 851–856.PubMed Sylvester, R., & Sternberg, C. (2000). The role of adjuvant combination chemotherapy after cystectomy in locally advanced bladder cancer: what we do not know and why. Annals of Oncology, 11(7), 851–856.PubMed
76.
go back to reference Collaboration ABCAM-a (2006) Adjuvant chemotherapy for invasive bladder cancer (individual patient data). Cochrane database of systematic reviews (online) (2):CD006018 Collaboration ABCAM-a (2006) Adjuvant chemotherapy for invasive bladder cancer (individual patient data). Cochrane database of systematic reviews (online) (2):CD006018
77.
go back to reference Sternberg, C. N., de Mulder, P., Schornagel, J. H., et al. (2006). Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. European Journal of Cancer, 42(1), 50–54.PubMed Sternberg, C. N., de Mulder, P., Schornagel, J. H., et al. (2006). Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. European Journal of Cancer, 42(1), 50–54.PubMed
78.
go back to reference von der Maase, H., Hansen, S. W., Roberts, J. T., et al. (2000). Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. Journal of Clinical Oncology, 18(17), 3068–3077.PubMed von der Maase, H., Hansen, S. W., Roberts, J. T., et al. (2000). Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. Journal of Clinical Oncology, 18(17), 3068–3077.PubMed
79.
go back to reference von der Maase, H., Sengelov, L., Roberts, J. T., et al. (2005). Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of Clinical Oncology, 23(21), 4602–4608.PubMed von der Maase, H., Sengelov, L., Roberts, J. T., et al. (2005). Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of Clinical Oncology, 23(21), 4602–4608.PubMed
80.
go back to reference Gupta, P. B., Onder, T. T., Jiang, G., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659.PubMed Gupta, P. B., Onder, T. T., Jiang, G., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659.PubMed
81.
go back to reference Yilmaz, O. H., Valdez, R., Theisen, B. K., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMed Yilmaz, O. H., Valdez, R., Theisen, B. K., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMed
82.
go back to reference Janzen, V., & Scadden, D. T. (2006). Stem cells: good, bad and reformable. Nature, 441(7092), 418–419.PubMed Janzen, V., & Scadden, D. T. (2006). Stem cells: good, bad and reformable. Nature, 441(7092), 418–419.PubMed
83.
go back to reference Zhang, J., Grindley, J. C., Yin, T., et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 441(7092), 518–522.PubMed Zhang, J., Grindley, J. C., Yin, T., et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 441(7092), 518–522.PubMed
84.
go back to reference Liu, R., Wang, X., Chen, G. Y., et al. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 356(3), 217–226.PubMed Liu, R., Wang, X., Chen, G. Y., et al. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 356(3), 217–226.PubMed
85.
go back to reference Wang, W., Goswami, S., Lapidus, K., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMed Wang, W., Goswami, S., Lapidus, K., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMed
86.
go back to reference Dyrskjøt, L., Thykjaer, T., Kruhøffer, M., et al. (2003). Identifying distinct classes of bladder carcinoma using microarrays. Nature Genetics, 33(1), 90–96.PubMed Dyrskjøt, L., Thykjaer, T., Kruhøffer, M., et al. (2003). Identifying distinct classes of bladder carcinoma using microarrays. Nature Genetics, 33(1), 90–96.PubMed
87.
go back to reference Wild, P. J., Herr, A., Wissmann, C., et al. (2005). Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clinical Cancer Research, 11(12), 4415–4429.PubMed Wild, P. J., Herr, A., Wissmann, C., et al. (2005). Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clinical Cancer Research, 11(12), 4415–4429.PubMed
88.
go back to reference Zieger, K., Marcussen, N., Borre, M., et al. (2009). Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. International Journal of Cancer, 125(9), 2095–2103. Zieger, K., Marcussen, N., Borre, M., et al. (2009). Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. International Journal of Cancer, 125(9), 2095–2103.
89.
go back to reference Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res, 18(5), 523–527.PubMed Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res, 18(5), 523–527.PubMed
90.
go back to reference Urakami, S., Shiina, H., Enokida, H., et al. (2006). Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clinical Cancer Research, 12(2), 383–391.PubMed Urakami, S., Shiina, H., Enokida, H., et al. (2006). Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clinical Cancer Research, 12(2), 383–391.PubMed
91.
go back to reference Bui, T. D., O'Brien, T., Crew, J., et al. (1998). High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. British Journal of Cancer, 77(2), 319–324.PubMed Bui, T. D., O'Brien, T., Crew, J., et al. (1998). High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. British Journal of Cancer, 77(2), 319–324.PubMed
92.
go back to reference Urakami, S., Shiina, H., Enokida, H., et al. (2006). Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clinical Cancer Research, 12(7 Pt 1), 2109–2116.PubMed Urakami, S., Shiina, H., Enokida, H., et al. (2006). Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clinical Cancer Research, 12(7 Pt 1), 2109–2116.PubMed
93.
go back to reference Stoehr, R., Krieg, R. C., Knuechel, R., et al. (2002). No evidence for involvement of beta-catenin and APC in urothelial carcinomas. International Journal of Oncology, 20(5), 905–911.PubMed Stoehr, R., Krieg, R. C., Knuechel, R., et al. (2002). No evidence for involvement of beta-catenin and APC in urothelial carcinomas. International Journal of Oncology, 20(5), 905–911.PubMed
94.
go back to reference Kastritis, E., Murray, S., Kyriakou, F., et al. (2009). Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. International Journal of Cancer, 124(1), 103–108. Kastritis, E., Murray, S., Kyriakou, F., et al. (2009). Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. International Journal of Cancer, 124(1), 103–108.
95.
go back to reference Stoehr, R., Wissmann, C., Suzuki, H., et al. (2004). Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Laboratory Investigation, 84(4), 465–478.PubMed Stoehr, R., Wissmann, C., Suzuki, H., et al. (2004). Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Laboratory Investigation, 84(4), 465–478.PubMed
96.
go back to reference Wissmann, C., Wild, P. J., Kaiser, S., et al. (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. Journal of Pathology, 201(2), 204–212.PubMed Wissmann, C., Wild, P. J., Kaiser, S., et al. (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. Journal of Pathology, 201(2), 204–212.PubMed
97.
go back to reference Tang, Y., Simoneau, A. R., Liao, W. X., et al. (2009). WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther, 8(2), 458–468.PubMed Tang, Y., Simoneau, A. R., Liao, W. X., et al. (2009). WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther, 8(2), 458–468.PubMed
98.
go back to reference Schinkel, A. H., & Jonker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews, 55(1), 3–29.PubMed Schinkel, A. H., & Jonker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews, 55(1), 3–29.PubMed
99.
go back to reference Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMed Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMed
100.
go back to reference Chiba, T., Kita, K., Zheng, Y.-W., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240–251.PubMed Chiba, T., Kita, K., Zheng, Y.-W., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240–251.PubMed
101.
go back to reference Haraguchi, N., Utsunomiya, T., Inoue, H., et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513.PubMed Haraguchi, N., Utsunomiya, T., Inoue, H., et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513.PubMed
102.
go back to reference Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.PubMed Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.PubMed
103.
go back to reference Mitsutake, N., Iwao, A., Nagai, K., et al. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 148(4), 1797–1803.PubMed Mitsutake, N., Iwao, A., Nagai, K., et al. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 148(4), 1797–1803.PubMed
104.
go back to reference Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMed Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMed
105.
go back to reference Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.PubMed Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.PubMed
106.
go back to reference Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., et al. (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMed Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., et al. (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMed
107.
go back to reference Oates, J., Grey, B., & Addla, S., et al. (2009). Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers. Stem Cells Dev. Oates, J., Grey, B., & Addla, S., et al. (2009). Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers. Stem Cells Dev.
108.
go back to reference Ning, Z.-F., Huang, Y.-J., Lin, T.-X., et al. (2009). Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. Journal of International Medical Research, 37(3), 621–630.PubMed Ning, Z.-F., Huang, Y.-J., Lin, T.-X., et al. (2009). Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. Journal of International Medical Research, 37(3), 621–630.PubMed
109.
go back to reference Dylla, S. J., Beviglia, L., Park, I.-K., et al. (2008). Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE, 3(6), e2428.PubMed Dylla, S. J., Beviglia, L., Park, I.-K., et al. (2008). Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE, 3(6), e2428.PubMed
110.
go back to reference Kastan, M. B., Schlaffer, E., Russo, J. E., et al. (1990). Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 75(10), 1947–1950.PubMed Kastan, M. B., Schlaffer, E., Russo, J. E., et al. (1990). Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 75(10), 1947–1950.PubMed
111.
go back to reference Weishaupt, K. R., Gomer, C. J., & Dougherty, T. J. (1976). Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Research, 36(7 PT 1), 2326–2329.PubMed Weishaupt, K. R., Gomer, C. J., & Dougherty, T. J. (1976). Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Research, 36(7 PT 1), 2326–2329.PubMed
112.
go back to reference Diehn, M., Cho, R. W., Lobo, N. A., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 458(7239), 780–783.PubMed Diehn, M., Cho, R. W., Lobo, N. A., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 458(7239), 780–783.PubMed
113.
go back to reference Berberat, P. O., Dambrauskas, Z., Gulbinas, A., et al. (2005). Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research, 11(10), 3790–3798.PubMed Berberat, P. O., Dambrauskas, Z., Gulbinas, A., et al. (2005). Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research, 11(10), 3790–3798.PubMed
114.
go back to reference Eisele, L., Klein-Hitpass, L., Chatzimanolis, N., et al. (2007). Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia. Acta Haematologica, 117(1), 8–15.PubMed Eisele, L., Klein-Hitpass, L., Chatzimanolis, N., et al. (2007). Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia. Acta Haematologica, 117(1), 8–15.PubMed
115.
go back to reference Josson, S., Xu, Y., Fang, F., et al. (2006). RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene, 25(10), 1554–1559.PubMed Josson, S., Xu, Y., Fang, F., et al. (2006). RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene, 25(10), 1554–1559.PubMed
116.
go back to reference Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Research, 64(20), 7183–7190.PubMed Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Research, 64(20), 7183–7190.PubMed
117.
go back to reference Todaro, M., Alea, M. P., Di Stefano, A. B., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.PubMed Todaro, M., Alea, M. P., Di Stefano, A. B., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.PubMed
118.
go back to reference Conticello, C., Pedini, F., Zeuner, A., et al. (2004). IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. Journal of Immunology, 172(9), 5467–5477. Conticello, C., Pedini, F., Zeuner, A., et al. (2004). IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. Journal of Immunology, 172(9), 5467–5477.
119.
go back to reference Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer. Annals of the New York Academy of Sciences, 1171(1), 59–76.PubMed Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer. Annals of the New York Academy of Sciences, 1171(1), 59–76.PubMed
120.
go back to reference Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138(2), 286–299.PubMed Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138(2), 286–299.PubMed
121.
go back to reference Ritchie, D. S., & Smyth, M. J. (2009). A new therapeutic target for leukemia comes to the surface. Cell, 138(2), 226–228.PubMed Ritchie, D. S., & Smyth, M. J. (2009). A new therapeutic target for leukemia comes to the surface. Cell, 138(2), 226–228.PubMed
Metadata
Title
Urothelial carcinoma: Stem cells on the edge
Authors
William D. Brandt
William Matsui
Jonathan E. Rosenberg
Xiaobing He
Shizhang Ling
Edward M. Schaeffer
David M. Berman
Publication date
01-12-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9187-6

Other articles of this Issue 3-4/2009

Cancer and Metastasis Reviews 3-4/2009 Go to the issue

Acknowledgments

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine