Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2009

Open Access 01-12-2009

Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer

Authors: Margaret A. Knowles, Fiona M. Platt, Rebecca L. Ross, Carolyn D. Hurst

Published in: Cancer and Metastasis Reviews | Issue 3-4/2009

Login to get access

Abstract

The phosphatidylinositol 3-kinase (PI3K) pathway is a critical signal transduction pathway that regulates multiple cellular functions. Aberrant activation of this pathway has been identified in a wide range of cancers. Several pathway components including AKT, PI3K and mTOR represent potential therapeutic targets and many small molecule inhibitors are in development or early clinical trials. The complex regulation of the pathway, together with the multiple mechanisms by which it can be activated, make this a highly challenging pathway to target. For successful inhibition, detailed molecular information on individual tumours will be required and it is already clear that different tumour types show distinct combinations of alterations. Recent results have identified alterations in pathway components PIK3CA, PTEN, AKT1 and TSC1 in bladder cancer, some of which are significantly related to tumour phenotype and clinical behaviour. Co-existence of alterations to several PI3K pathway genes in some bladder tumours indicates that these proteins may have functions that are not related solely to the known canonical pathway.
Literature
2.
go back to reference Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and premise. Cancer Cell, 4, 257–262.CrossRefPubMed Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and premise. Cancer Cell, 4, 257–262.CrossRefPubMed
3.
go back to reference Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.CrossRefPubMed Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.CrossRefPubMed
5.
6.
go back to reference Philp, A. J., Campbell, I. G., Leet, C., Vincan, E., Rockman, S. P., Whitehead, R. H., et al. (2001). The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Research, 61, 7426–7429.PubMed Philp, A. J., Campbell, I. G., Leet, C., Vincan, E., Rockman, S. P., Whitehead, R. H., et al. (2001). The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Research, 61, 7426–7429.PubMed
7.
go back to reference Parsons, D. W., Wang, T. L., Samuels, Y., Bardelli, A., Cummins, J. M., DeLong, L., et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature, 436, 792.CrossRefPubMed Parsons, D. W., Wang, T. L., Samuels, Y., Bardelli, A., Cummins, J. M., DeLong, L., et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature, 436, 792.CrossRefPubMed
8.
go back to reference Samuels, Y., & Ericson, K. (2006). Oncogenic PI3K and its role in cancer. Current Opinion in Oncology, 18, 77–82.CrossRefPubMed Samuels, Y., & Ericson, K. (2006). Oncogenic PI3K and its role in cancer. Current Opinion in Oncology, 18, 77–82.CrossRefPubMed
9.
go back to reference Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448, 439–444.CrossRefPubMed Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448, 439–444.CrossRefPubMed
10.
go back to reference Ramjaun, A. R., & Downward, J. (2007). Ras and phosphoinositide 3-Kinase: partners in development and tumorigenesis. Cell Cycle, 66(23), 2902–2905. Ramjaun, A. R., & Downward, J. (2007). Ras and phosphoinositide 3-Kinase: partners in development and tumorigenesis. Cell Cycle, 66(23), 2902–2905.
11.
go back to reference Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., & Pandolfi, P. P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 121, 179–193.CrossRefPubMed Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., & Pandolfi, P. P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 121, 179–193.CrossRefPubMed
12.
go back to reference Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27, 5497–5510.CrossRefPubMed Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27, 5497–5510.CrossRefPubMed
13.
go back to reference Wu, X. R. (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nature Reviews Cancer, 5, 713–725.CrossRefPubMed Wu, X. R. (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nature Reviews Cancer, 5, 713–725.CrossRefPubMed
14.
go back to reference Knowles, M. A. (2006). Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis, 27, 361–373.CrossRefPubMed Knowles, M. A. (2006). Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis, 27, 361–373.CrossRefPubMed
15.
go back to reference Knowles, M. A. (2008). Bladder cancer subtypes defined by genomic alterations. Scandinavian Journal of Urology and Nephrology 42(S218t) 116-130. Knowles, M. A. (2008). Bladder cancer subtypes defined by genomic alterations. Scandinavian Journal of Urology and Nephrology 42(S218t) 116-130.
16.
go back to reference Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.CrossRefPubMed Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.CrossRefPubMed
17.
go back to reference Bozulic, L., Surucu, B., Hynx, D., & Hemmings, B. A. (2008). PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Molecular Cell, 30, 203–213.CrossRefPubMed Bozulic, L., Surucu, B., Hynx, D., & Hemmings, B. A. (2008). PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Molecular Cell, 30, 203–213.CrossRefPubMed
18.
go back to reference Cappellen, D., Diez, G., de Medina, S., Chopin, D., Thiery, J. P., & Radvanyi, F. (1997). Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene, 14, 3059–3066.CrossRefPubMed Cappellen, D., Diez, G., de Medina, S., Chopin, D., Thiery, J. P., & Radvanyi, F. (1997). Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene, 14, 3059–3066.CrossRefPubMed
19.
go back to reference Cairns, P., Evron, E., Okami, K., Halachmi, N., Esteller, M., Herman, J. G., et al. (1998). Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene, 16, 3215–3218.CrossRefPubMed Cairns, P., Evron, E., Okami, K., Halachmi, N., Esteller, M., Herman, J. G., et al. (1998). Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene, 16, 3215–3218.CrossRefPubMed
20.
go back to reference Aveyard, J. S., Skilleter, A., Habuchi, T., & Knowles, M. A. (1999). Somatic mutation of PTEN in bladder carcinoma. British Journal of Cancer, 80, 904–908.CrossRefPubMed Aveyard, J. S., Skilleter, A., Habuchi, T., & Knowles, M. A. (1999). Somatic mutation of PTEN in bladder carcinoma. British Journal of Cancer, 80, 904–908.CrossRefPubMed
21.
go back to reference Wang, D. S., Rieger-Christ, K., Latini, J. M., Moinzadeh, A., Stoffel, J., Pezza, J. A., et al. (2000). Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. International Journal of Cancer, 88, 620–625.CrossRef Wang, D. S., Rieger-Christ, K., Latini, J. M., Moinzadeh, A., Stoffel, J., Pezza, J. A., et al. (2000). Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. International Journal of Cancer, 88, 620–625.CrossRef
22.
go back to reference Zhao, L., & Vogt, P. K. (2008). Helical domain and kinase domain mutations in p110(alpha) of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 105, 2652–2657.CrossRefPubMed Zhao, L., & Vogt, P. K. (2008). Helical domain and kinase domain mutations in p110(alpha) of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 105, 2652–2657.CrossRefPubMed
23.
go back to reference Platt, F. M., Hurst, C. D., Taylor, C. F., Gregory, W. M., Harnden, P., & Knowles, M. A. (2009). Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clinical Cancer Research, 15, 6008–6017.CrossRefPubMed Platt, F. M., Hurst, C. D., Taylor, C. F., Gregory, W. M., Harnden, P., & Knowles, M. A. (2009). Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clinical Cancer Research, 15, 6008–6017.CrossRefPubMed
24.
go back to reference Lopez-Knowles, E., Hernandez, S., Malats, N., Kogevinas, M., Lloreta, J., Carrato, A., et al. (2006). PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Research, 66, 7401–7404.CrossRefPubMed Lopez-Knowles, E., Hernandez, S., Malats, N., Kogevinas, M., Lloreta, J., Carrato, A., et al. (2006). PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Research, 66, 7401–7404.CrossRefPubMed
25.
go back to reference Hurst, C. D., Zuiverloon, T. C., Hafner, C., Zwarthoff, E. C., & Knowles, M. A. (2009). A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Research Notes, 2, 66.CrossRefPubMed Hurst, C. D., Zuiverloon, T. C., Hafner, C., Zwarthoff, E. C., & Knowles, M. A. (2009). A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Research Notes, 2, 66.CrossRefPubMed
26.
go back to reference Samuels, Y., & Velculescu, V. E. (2004). Oncogenic mutations of PIK3CA in human cancers. Cell Cycle, 3, 1221–1224.PubMed Samuels, Y., & Velculescu, V. E. (2004). Oncogenic mutations of PIK3CA in human cancers. Cell Cycle, 3, 1221–1224.PubMed
27.
go back to reference Jebar, A. H., Hurst, C. D., Tomlinson, D. C., Johnston, C., Taylor, C. F., & Knowles, M. A. (2005). FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene, 24, 5218–5225.CrossRefPubMed Jebar, A. H., Hurst, C. D., Tomlinson, D. C., Johnston, C., Taylor, C. F., & Knowles, M. A. (2005). FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene, 24, 5218–5225.CrossRefPubMed
28.
go back to reference Billerey, C., Chopin, D., Aubriot-Lorton, M. H., Ricol, D., Diez, G., de Medina, S., et al. (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. American Journal of Pathology, 158, 1955–1959.PubMed Billerey, C., Chopin, D., Aubriot-Lorton, M. H., Ricol, D., Diez, G., de Medina, S., et al. (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. American Journal of Pathology, 158, 1955–1959.PubMed
29.
go back to reference Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., et al. (2007). Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proceedings of the National Academy of Sciences of the United States of America, 104, 13450–13454.CrossRefPubMed Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., et al. (2007). Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proceedings of the National Academy of Sciences of the United States of America, 104, 13450–13454.CrossRefPubMed
30.
go back to reference Gu, J., Tamura, M., Pankov, R., Danen, E. H., Takino, T., Matsumoto, K., et al. (1999). Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. Journal of Cell Biology, 146, 389–403.CrossRefPubMed Gu, J., Tamura, M., Pankov, R., Danen, E. H., Takino, T., Matsumoto, K., et al. (1999). Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. Journal of Cell Biology, 146, 389–403.CrossRefPubMed
31.
go back to reference Planchon, S. M., Waite, K. A., & Eng, C. (2008). The nuclear affairs of PTEN. Journal of Cell Science, 121, 249–253.CrossRefPubMed Planchon, S. M., Waite, K. A., & Eng, C. (2008). The nuclear affairs of PTEN. Journal of Cell Science, 121, 249–253.CrossRefPubMed
32.
go back to reference Kagan, J., Liu, J., Stein, J. D., Wagner, S. S., Babkowski, R., Grossman, B. H., et al. (1998). Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene, 16, 909–913.CrossRefPubMed Kagan, J., Liu, J., Stein, J. D., Wagner, S. S., Babkowski, R., Grossman, B. H., et al. (1998). Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene, 16, 909–913.CrossRefPubMed
33.
go back to reference Liu, J., Babaian, D. C., Liebert, M., Steck, P. A., & Kagan, J. (2000). Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Molecular Carcinogenesis, 29, 143–150.CrossRefPubMed Liu, J., Babaian, D. C., Liebert, M., Steck, P. A., & Kagan, J. (2000). Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Molecular Carcinogenesis, 29, 143–150.CrossRefPubMed
34.
go back to reference Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in pten-deficient mice and reduced PTEN Protein in human bladder cancer patients. Cancer Research, 66, 8389–8396.CrossRefPubMed Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in pten-deficient mice and reduced PTEN Protein in human bladder cancer patients. Cancer Research, 66, 8389–8396.CrossRefPubMed
35.
go back to reference Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., Wang, X., Shen, T. H., Matos, T., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23, 675–680.CrossRefPubMed Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., Wang, X., Shen, T. H., Matos, T., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23, 675–680.CrossRefPubMed
36.
go back to reference Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19, 348–355.CrossRefPubMed Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19, 348–355.CrossRefPubMed
37.
go back to reference Wu, X., Obata, T., Khan, Q., Highshaw, R. A., De Vere White, R., & Sweeney, C. (2004). The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU International, 93, 143–150.CrossRefPubMed Wu, X., Obata, T., Khan, Q., Highshaw, R. A., De Vere White, R., & Sweeney, C. (2004). The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU International, 93, 143–150.CrossRefPubMed
38.
go back to reference Dey, N., Crosswell, H. E., De, P., Parsons, R., Peng, Q., Su, J. D., et al. (2008). The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Research, 68, 1862–1871.CrossRefPubMed Dey, N., Crosswell, H. E., De, P., Parsons, R., Peng, Q., Su, J. D., et al. (2008). The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Research, 68, 1862–1871.CrossRefPubMed
39.
go back to reference Chiang, G. J., Billmeyer, B. R., Canes, D., Stoffel, J., Moinzadeh, A., Austin, C. A., et al. (2005). The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt. BJU International, 96, 416–422.CrossRefPubMed Chiang, G. J., Billmeyer, B. R., Canes, D., Stoffel, J., Moinzadeh, A., Austin, C. A., et al. (2005). The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt. BJU International, 96, 416–422.CrossRefPubMed
40.
go back to reference Gildea, J. J., Herlevsen, M., Harding, M. A., Gulding, K. M., Moskaluk, C. A., Frierson, H. F., et al. (2004). PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene, 23, 6788–6797.CrossRefPubMed Gildea, J. J., Herlevsen, M., Harding, M. A., Gulding, K. M., Moskaluk, C. A., Frierson, H. F., et al. (2004). PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene, 23, 6788–6797.CrossRefPubMed
41.
go back to reference Yoo, L. I., Liu, D. W., Le Vu, S., Bronson, R. T., Wu, H., & Yuan, J. (2006). Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Research, 66, 1929–1939.CrossRefPubMed Yoo, L. I., Liu, D. W., Le Vu, S., Bronson, R. T., Wu, H., & Yuan, J. (2006). Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Research, 66, 1929–1939.CrossRefPubMed
42.
go back to reference Askham, J. M., Platt, F., Chambers, P. A., Snowden, H., Taylor, C. F., & Knowles, M. A. (2009). AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene (in press) Askham, J. M., Platt, F., Chambers, P. A., Snowden, H., Taylor, C. F., & Knowles, M. A. (2009). AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene (in press)
43.
go back to reference Gomez, M., Sampson, J., & Whittemore, V. (1999). The tuberous sclerosis complex. Oxford University Press. Gomez, M., Sampson, J., & Whittemore, V. (1999). The tuberous sclerosis complex. Oxford University Press.
44.
go back to reference van Slegtenhorst, M., de Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277, 805–808.CrossRefPubMed van Slegtenhorst, M., de Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277, 805–808.CrossRefPubMed
45.
go back to reference Consortium. (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. The European chromosome 16 tuberous sclerosis consortium. Cell, 75, 1305–1315. Consortium. (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. The European chromosome 16 tuberous sclerosis consortium. Cell, 75, 1305–1315.
46.
go back to reference Plank, T. L., Yeung, R. S., & Henske, E. P. (1998). Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Research, 58, 4766–4770.PubMed Plank, T. L., Yeung, R. S., & Henske, E. P. (1998). Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Research, 58, 4766–4770.PubMed
47.
go back to reference Johnson, M. W., Emelin, J. K., Park, S. H., & Vinters, H. V. (1999). Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathology, 9, 45–54.PubMedCrossRef Johnson, M. W., Emelin, J. K., Park, S. H., & Vinters, H. V. (1999). Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathology, 9, 45–54.PubMedCrossRef
48.
go back to reference Hodges, A. K., Li, S., Maynard, J., Parry, L., Braverman, R., Cheadle, J. P., et al. (2001). Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Human Molecular Genetics, 10, 2899–2905.CrossRefPubMed Hodges, A. K., Li, S., Maynard, J., Parry, L., Braverman, R., Cheadle, J. P., et al. (2001). Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Human Molecular Genetics, 10, 2899–2905.CrossRefPubMed
49.
go back to reference Inoki, K., Li, Y., Xu, T., & Guan, K. L. (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development, 17, 1829–1834.CrossRefPubMed Inoki, K., Li, Y., Xu, T., & Guan, K. L. (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development, 17, 1829–1834.CrossRefPubMed
50.
go back to reference Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., & Blenis, J. (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Current Biology, 13, 1259–1268.CrossRefPubMed Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., & Blenis, J. (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Current Biology, 13, 1259–1268.CrossRefPubMed
51.
go back to reference Hornigold, N., Devlin, J., Davies, A. M., Aveyard, J. S., Habuchi, T., & Knowles, M. A. (1999). Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene, 18, 2657–2661.CrossRefPubMed Hornigold, N., Devlin, J., Davies, A. M., Aveyard, J. S., Habuchi, T., & Knowles, M. A. (1999). Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene, 18, 2657–2661.CrossRefPubMed
52.
go back to reference Adachi, H., Igawa, M., Shiina, H., Urakami, S., Shigeno, K., & Hino, O. (2003). Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. Journal of Urology, 170, 601–604.CrossRefPubMed Adachi, H., Igawa, M., Shiina, H., Urakami, S., Shigeno, K., & Hino, O. (2003). Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. Journal of Urology, 170, 601–604.CrossRefPubMed
53.
go back to reference Cairns, P., Shaw, M. E., & Knowles, M. A. (1993). Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene, 8, 1083–1085.PubMed Cairns, P., Shaw, M. E., & Knowles, M. A. (1993). Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene, 8, 1083–1085.PubMed
54.
go back to reference Habuchi, T., Devlin, J., Elder, P. A., & Knowles, M. A. (1995). Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene, 11, 1671–1674.PubMed Habuchi, T., Devlin, J., Elder, P. A., & Knowles, M. A. (1995). Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene, 11, 1671–1674.PubMed
55.
go back to reference Simoneau, M., Aboulkassim, T. O., LaRue, H., Rousseau, F., & Fradet, Y. (1999). Four tumor suppressor loci on chromosome 9q in bladder cancer: evidence for two novel candidate regions at 9q22.3 and 9q31. Oncogene, 18, 157–163.CrossRefPubMed Simoneau, M., Aboulkassim, T. O., LaRue, H., Rousseau, F., & Fradet, Y. (1999). Four tumor suppressor loci on chromosome 9q in bladder cancer: evidence for two novel candidate regions at 9q22.3 and 9q31. Oncogene, 18, 157–163.CrossRefPubMed
56.
go back to reference van Tilborg, A. A., Groenfeld, L. E., van der Kwast, T. H., & Zwarthoff, E. C. (1999). Evidence for two candidate tumour suppressor loci on chromosome 9q in transitional cell carcinoma (TCC) of the bladder but no homozygous deletions in bladder tumour cell lines. British Journal of Cancer, 80, 489–494.CrossRefPubMed van Tilborg, A. A., Groenfeld, L. E., van der Kwast, T. H., & Zwarthoff, E. C. (1999). Evidence for two candidate tumour suppressor loci on chromosome 9q in transitional cell carcinoma (TCC) of the bladder but no homozygous deletions in bladder tumour cell lines. British Journal of Cancer, 80, 489–494.CrossRefPubMed
57.
go back to reference Knowles, M. A., Habuchi, T., Kennedy, W., & Cuthbert-Heavens, D. (2003). Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Research, 63, 7652–7656.PubMed Knowles, M. A., Habuchi, T., Kennedy, W., & Cuthbert-Heavens, D. (2003). Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Research, 63, 7652–7656.PubMed
58.
go back to reference Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17, 2006–2017.CrossRefPubMed Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17, 2006–2017.CrossRefPubMed
59.
go back to reference Mozaffari, M., Hoogeveen-Westerveld, M., Kwiatkowski, D., Sampson, J., Ekong, R., Povey, S., et al. (2009). Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex. BMC Medical Genetic, 10, 88.CrossRef Mozaffari, M., Hoogeveen-Westerveld, M., Kwiatkowski, D., Sampson, J., Ekong, R., Povey, S., et al. (2009). Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex. BMC Medical Genetic, 10, 88.CrossRef
60.
go back to reference Nellist, M., van den Heuvel, D., Schluep, D., Exalto, C., Goedbloed, M., Maat-Kievit, A., et al. (2009). Missense mutations to the TSC1 gene cause tuberous sclerosis complex. European Journal of Human Genetics, 17, 319–328.CrossRefPubMed Nellist, M., van den Heuvel, D., Schluep, D., Exalto, C., Goedbloed, M., Maat-Kievit, A., et al. (2009). Missense mutations to the TSC1 gene cause tuberous sclerosis complex. European Journal of Human Genetics, 17, 319–328.CrossRefPubMed
61.
go back to reference Henske, E. P., Scheithauer, B. W., Short, M. P., Wollmann, R., Nahmias, J., Hornigold, N., et al. (1996). Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. American Journal of Human Genetics, 59, 400–406.PubMed Henske, E. P., Scheithauer, B. W., Short, M. P., Wollmann, R., Nahmias, J., Hornigold, N., et al. (1996). Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. American Journal of Human Genetics, 59, 400–406.PubMed
62.
go back to reference Cheadle, J. P., Reeve, M. P., Sampson, J. R., & Kwiatkowski, D. J. (2000). Molecular genetic advances in tuberous sclerosis. Human Genetics, 107, 97–114.CrossRefPubMed Cheadle, J. P., Reeve, M. P., Sampson, J. R., & Kwiatkowski, D. J. (2000). Molecular genetic advances in tuberous sclerosis. Human Genetics, 107, 97–114.CrossRefPubMed
63.
go back to reference Soltoff, S. P., Carraway, K. L., 3 rd, Prigent, S. A., Gullick, W. G., & Cantley, L. C. (1994). ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Molecular and Cellular Biology, 14, 3550–3558. Soltoff, S. P., Carraway, K. L., 3 rd, Prigent, S. A., Gullick, W. G., & Cantley, L. C. (1994). ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Molecular and Cellular Biology, 14, 3550–3558.
64.
go back to reference Moriyama, M., Akiyama, T., Yamamoto, T., Kawamoto, T., Kato, T., Sato, K., et al. (1991). Expression of c-erbB-2 gene product in urinary bladder cancer. Journal of Urology, 145, 423–427.PubMed Moriyama, M., Akiyama, T., Yamamoto, T., Kawamoto, T., Kato, T., Sato, K., et al. (1991). Expression of c-erbB-2 gene product in urinary bladder cancer. Journal of Urology, 145, 423–427.PubMed
65.
go back to reference Sato, K., Moriyama, M., Mori, S., Saito, M., Watanuki, T., Terada, K., et al. (1992). An immunohistologic evaluation of C-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer, 70, 2493–2498.CrossRefPubMed Sato, K., Moriyama, M., Mori, S., Saito, M., Watanuki, T., Terada, K., et al. (1992). An immunohistologic evaluation of C-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer, 70, 2493–2498.CrossRefPubMed
66.
go back to reference Lipponen, P., & Eskelinen, M. (1994). Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. British Journal of Cancer, 69, 1120–1125.PubMed Lipponen, P., & Eskelinen, M. (1994). Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. British Journal of Cancer, 69, 1120–1125.PubMed
67.
go back to reference Chow, N. H., Chan, S. H., Tzai, T. S., Ho, C. L., & Liu, H. S. (2001). Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clinical Cancer Research, 7, 1957–1962.PubMed Chow, N. H., Chan, S. H., Tzai, T. S., Ho, C. L., & Liu, H. S. (2001). Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clinical Cancer Research, 7, 1957–1962.PubMed
68.
go back to reference Memon, A. A., Sorensen, B. S., Melgard, P., Fokdal, L., Thykjaer, T., & Nexo, E. (2004). Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients. British Journal of Cancer, 91, 2034–2041.CrossRefPubMed Memon, A. A., Sorensen, B. S., Melgard, P., Fokdal, L., Thykjaer, T., & Nexo, E. (2004). Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients. British Journal of Cancer, 91, 2034–2041.CrossRefPubMed
69.
go back to reference Memon, A. A., Sorensen, B. S., Meldgaard, P., Fokdal, L., Thykjaer, T., & Nexo, E. (2006). The relation between survival and expression of HER1 and HER2 depends on the expression of HER3 and HER4: a study in bladder cancer patients. British Journal of Cancer, 94, 1703–1709.PubMed Memon, A. A., Sorensen, B. S., Meldgaard, P., Fokdal, L., Thykjaer, T., & Nexo, E. (2006). The relation between survival and expression of HER1 and HER2 depends on the expression of HER3 and HER4: a study in bladder cancer patients. British Journal of Cancer, 94, 1703–1709.PubMed
70.
go back to reference Kassouf, W., Black, P. C., Tuziak, T., Bondaruk, J., Lee, S., Brown, G. A., et al. (2008). Distinctive expression pattern of ErbB family receptors signifies an aggressive variant of bladder cancer. Journal of Urology, 179, 353–358.CrossRefPubMed Kassouf, W., Black, P. C., Tuziak, T., Bondaruk, J., Lee, S., Brown, G. A., et al. (2008). Distinctive expression pattern of ErbB family receptors signifies an aggressive variant of bladder cancer. Journal of Urology, 179, 353–358.CrossRefPubMed
71.
go back to reference Jimenez, R. E., Hussain, M., Bianco, F. J., Jr., Vaishampayan, U., Tabazcka, P., Sakr, W. A., et al. (2001). Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clinical Cancer Research, 7, 2440–2447.PubMed Jimenez, R. E., Hussain, M., Bianco, F. J., Jr., Vaishampayan, U., Tabazcka, P., Sakr, W. A., et al. (2001). Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clinical Cancer Research, 7, 2440–2447.PubMed
72.
go back to reference Kruger, S., Weitsch, G., Buttner, H., Matthiensen, A., Bohmer, T., Marquardt, T., et al. (2002). HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. International Journal of Cancer, 102, 514–518.CrossRef Kruger, S., Weitsch, G., Buttner, H., Matthiensen, A., Bohmer, T., Marquardt, T., et al. (2002). HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. International Journal of Cancer, 102, 514–518.CrossRef
73.
go back to reference Cheng, H. L., Trink, B., Tzai, T. S., Liu, H. S., Chan, S. H., Ho, C. L., et al. (2002). Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. Journal of Clinical Oncology, 20, 1544–1550.CrossRefPubMed Cheng, H. L., Trink, B., Tzai, T. S., Liu, H. S., Chan, S. H., Ho, C. L., et al. (2002). Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. Journal of Clinical Oncology, 20, 1544–1550.CrossRefPubMed
74.
go back to reference Cheng, H. L., Liu, H. S., Lin, Y. J., Chen, H. H., Hsu, P. Y., Chang, T. Y., et al. (2005). Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. British Journal of Cancer, 92, 1906–1914.CrossRefPubMed Cheng, H. L., Liu, H. S., Lin, Y. J., Chen, H. H., Hsu, P. Y., Chang, T. Y., et al. (2005). Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. British Journal of Cancer, 92, 1906–1914.CrossRefPubMed
75.
go back to reference Sanchez-Carbayo, M., Socci, N. D., Lozano, J. J., Haab, B. B., & Cordon-Cardo, C. (2006). Profiling bladder cancer using targeted antibody arrays. American Journal of Pathology, 168, 93–103.CrossRefPubMed Sanchez-Carbayo, M., Socci, N. D., Lozano, J. J., Haab, B. B., & Cordon-Cardo, C. (2006). Profiling bladder cancer using targeted antibody arrays. American Journal of Pathology, 168, 93–103.CrossRefPubMed
76.
go back to reference Rieger-Christ, K. M., Cain, J. W., Braasch, J. W., Dugan, J. M., Silverman, M. L., Bouyounes, B., et al. (2001). Expression of classic cadherins type I in urothelial neoplastic progression. Human Pathology, 32, 18–23.CrossRefPubMed Rieger-Christ, K. M., Cain, J. W., Braasch, J. W., Dugan, J. M., Silverman, M. L., Bouyounes, B., et al. (2001). Expression of classic cadherins type I in urothelial neoplastic progression. Human Pathology, 32, 18–23.CrossRefPubMed
77.
go back to reference Rieger-Christ, K. M., Lee, P., Zagha, R., Kosakowski, M., Moinzadeh, A., Stoffel, J., et al. (2004). Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene, 23, 4745–4753.CrossRefPubMed Rieger-Christ, K. M., Lee, P., Zagha, R., Kosakowski, M., Moinzadeh, A., Stoffel, J., et al. (2004). Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene, 23, 4745–4753.CrossRefPubMed
78.
go back to reference di Martino, E., L’Hote, C. G., Kennedy, W., Tomlinson, D. C., & Knowles, M. A. (2009). Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene (in press). di Martino, E., L’Hote, C. G., Kennedy, W., Tomlinson, D. C., & Knowles, M. A. (2009). Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene (in press).
79.
go back to reference Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., et al. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current Biology, 13, 2004–2008.CrossRefPubMed Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., et al. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current Biology, 13, 2004–2008.CrossRefPubMed
80.
go back to reference Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., et al. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.CrossRefPubMed Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., et al. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.CrossRefPubMed
81.
go back to reference Sommerhaug, R. G., & Mason, T. (1970). Peutz-Jeghers syndrome and ureteral polyposis. JAMA, 211, 120–122.CrossRefPubMed Sommerhaug, R. G., & Mason, T. (1970). Peutz-Jeghers syndrome and ureteral polyposis. JAMA, 211, 120–122.CrossRefPubMed
82.
go back to reference Sanchez-Cespedes, M. (2007). A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene, 26, 7825–7832.CrossRefPubMed Sanchez-Cespedes, M. (2007). A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene, 26, 7825–7832.CrossRefPubMed
83.
go back to reference Adley, B. P., Smith, N. D., Nayar, R., & Yang, X. J. (2006). Birt-Hogg-Dube syndrome: clinicopathologic findings and genetic alterations. Archives of Pathology and Laboratory Medicine, 130, 1865–1870.PubMed Adley, B. P., Smith, N. D., Nayar, R., & Yang, X. J. (2006). Birt-Hogg-Dube syndrome: clinicopathologic findings and genetic alterations. Archives of Pathology and Laboratory Medicine, 130, 1865–1870.PubMed
84.
go back to reference Engelman, J. A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews Cancer, 9, 550–562.CrossRefPubMed Engelman, J. A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews Cancer, 9, 550–562.CrossRefPubMed
85.
go back to reference Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Review Drug Discovery, 8, 627–644.CrossRef Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Review Drug Discovery, 8, 627–644.CrossRef
86.
go back to reference O’Reilly, K. E., Rojo, F., She, Q. B., Solit, D., Mills, G. B., Smith, D., et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Research, 66, 1500–1508.CrossRefPubMed O’Reilly, K. E., Rojo, F., She, Q. B., Solit, D., Mills, G. B., Smith, D., et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Research, 66, 1500–1508.CrossRefPubMed
87.
go back to reference Hussain, M. H., MacVicar, G. R., Petrylak, D. P., Dunn, R. L., Vaishampayan, U., Lara, P. N., Jr., et al. (2007). Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II national cancer institute trial. Journal of Clinical Oncology, 25, 2218–2224.CrossRefPubMed Hussain, M. H., MacVicar, G. R., Petrylak, D. P., Dunn, R. L., Vaishampayan, U., Lara, P. N., Jr., et al. (2007). Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II national cancer institute trial. Journal of Clinical Oncology, 25, 2218–2224.CrossRefPubMed
Metadata
Title
Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer
Authors
Margaret A. Knowles
Fiona M. Platt
Rebecca L. Ross
Carolyn D. Hurst
Publication date
01-12-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9198-3

Other articles of this Issue 3-4/2009

Cancer and Metastasis Reviews 3-4/2009 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine