Skip to main content
Top
Published in: Child and Adolescent Psychiatry and Mental Health 1/2023

Open Access 01-12-2023 | Attention Deficit Hyperactivity Disorder | Research

Male-specific, replicable and functional roles of genetic variants and cerebral gray matter volumes in ADHD: a gene-wide association study across KTN1 and a region-wide functional validation across brain

Authors: Xingguang Luo, Xiandong Lin, Jaime S. Ide, Xinqun Luo, Yong Zhang, Jianying Xu, Leilei Wang, Yu Chen, Wenhong Cheng, Jianming Zheng, Zhiren Wang, Ting Yu, Reyisha Taximaimaiti, Xiaozhong Jing, Xiaoping Wang, Yuping Cao, Yunlong Tan, Chiang-Shan R. Li

Published in: Child and Adolescent Psychiatry and Mental Health | Issue 1/2023

Login to get access

Abstract

Attention deficit hyperactivity disorder (ADHD) is associated with reduction of cortical and subcortical gray matter volumes (GMVs). The kinectin 1 gene (KTN1) has recently been reported to significantly regulate GMVs and ADHD risk. In this study, we aimed to identify sex-specific, replicable risk KTN1 alleles for ADHD and to explore their regulatory effects on mRNA expression and cortical and subcortical GMVs. We examined a total of 1020 KTN1 SNPs in one discovery sample (ABCD cohort: 5573 males and 5082 females) and three independent replication European samples (Samples #1 and #2 each with 802/122 and 472/141 male/female offspring with ADHD; and Sample #3 with 14,154/4945 ADHD and 17,948/16,246 healthy males/females) to identify replicable associations within each sex. We examined the regulatory effects of ADHD-risk alleles on the KTN1 mRNA expression in two European brain cohorts (n = 348), total intracranial volume (TIV) in 46 European cohorts (n = 18,713) and the ABCD cohort, as well as the GMVs of seven subcortical structures in 50 European cohorts (n = 38,258) and of 118 cortical and subcortical regions in the ABCD cohort. We found that four KTN1 variants significantly regulated the risk of ADHD with the same direction of effect in males across discovery and replication samples (0.003 ≤ p ≤ 0.041), but none in females. All four ADHD-risk alleles significantly decreased KTN1 mRNA expression in all brain regions examined (1.2 × 10–5 ≤ p ≤ 0.039). The ADHD-risk alleles significantly increased basal ganglia (2.8 × 10–22 ≤ p ≤ 0.040) and hippocampus (p = 0.010) GMVs but reduced amygdala GMV (p = 0.030) and TIV (0.010 < p ≤ 0.013). The ADHD-risk alleles also significantly reduced some cortical (right superior temporal pole, right rectus) and cerebellar but increased other cortical (0.007 ≤ p ≤ 0.050) GMVs. To conclude, we identified a set of replicable and functional risk KTN1 alleles for ADHD, specifically in males. KTN1 may play a critical role in the pathogenesis of ADHD, and the reduction of specific cortical and subcortical, including amygdalar but not basal ganglia or hippocampal, GMVs may serve as a neural marker of the genetic effects.
Literature
1.
go back to reference Silk TJ, Beare R, Malpas C, Adamson C, Vilgis V, Vance A, Bellgrove MA. Cortical morphometry in attention deficit/hyperactivity disorder: contribution of thickness and surface area to volume. Cortex. 2016;82:1–10.CrossRef Silk TJ, Beare R, Malpas C, Adamson C, Vilgis V, Vance A, Bellgrove MA. Cortical morphometry in attention deficit/hyperactivity disorder: contribution of thickness and surface area to volume. Cortex. 2016;82:1–10.CrossRef
2.
go back to reference Curatolo P, Paloscia C, D’Agati E, Moavero R, Pasini A. The neurobiology of attention deficit/hyperactivity disorder. Eur J Paediatr Neurol. 2009;13(4):299–304.CrossRef Curatolo P, Paloscia C, D’Agati E, Moavero R, Pasini A. The neurobiology of attention deficit/hyperactivity disorder. Eur J Paediatr Neurol. 2009;13(4):299–304.CrossRef
3.
go back to reference Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, Tomas J, Raheb C, Gispert JD, Batlle S, et al. Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett. 2005;389(2):88–93.CrossRef Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, Tomas J, Raheb C, Gispert JD, Batlle S, et al. Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett. 2005;389(2):88–93.CrossRef
4.
go back to reference Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS, Faraone SV, Seidman LJ. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex. 2007;17(6):1364–75.CrossRef Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS, Faraone SV, Seidman LJ. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex. 2007;17(6):1364–75.CrossRef
5.
go back to reference Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, Kennedy DN, Caviness VS, Bush G, Aleardi M, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiat. 2006;60(10):1071–80.CrossRef Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, Kennedy DN, Caviness VS, Bush G, Aleardi M, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiat. 2006;60(10):1071–80.CrossRef
6.
go back to reference Klein M, Souza-Duran FL, Menezes A, Alves TM, Busatto G, Louza MR. Gray matter volume in elderly adults with ADHD: associations of symptoms and comorbidities with brain structures. J Atten Disord. 2021;25(6):829–38.CrossRef Klein M, Souza-Duran FL, Menezes A, Alves TM, Busatto G, Louza MR. Gray matter volume in elderly adults with ADHD: associations of symptoms and comorbidities with brain structures. J Atten Disord. 2021;25(6):829–38.CrossRef
7.
go back to reference Mahone EM, Ranta ME, Crocetti D, O’Brien J, Kaufmann WE, Denckla MB, Mostofsky SH. Comprehensive examination of frontal regions in boys and girls with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc. 2011;17(6):1047–57.CrossRef Mahone EM, Ranta ME, Crocetti D, O’Brien J, Kaufmann WE, Denckla MB, Mostofsky SH. Comprehensive examination of frontal regions in boys and girls with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc. 2011;17(6):1047–57.CrossRef
8.
go back to reference Francx W, Llera A, Mennes M, Zwiers MP, Faraone SV, Oosterlaan J, Heslenfeld D, Hoekstra PJ, Hartman CA, Franke B, et al. Integrated analysis of gray and white matter alterations in attention-deficit/hyperactivity disorder. NeuroImage Clinical. 2016;11:357–67.CrossRef Francx W, Llera A, Mennes M, Zwiers MP, Faraone SV, Oosterlaan J, Heslenfeld D, Hoekstra PJ, Hartman CA, Franke B, et al. Integrated analysis of gray and white matter alterations in attention-deficit/hyperactivity disorder. NeuroImage Clinical. 2016;11:357–67.CrossRef
9.
go back to reference Ranta ME, Crocetti D, Clauss JA, Kraut MA, Mostofsky SH, Kaufmann WE. Manual MRI parcellation of the frontal lobe. Psychiatry Res. 2009;172(2):147–54.CrossRef Ranta ME, Crocetti D, Clauss JA, Kraut MA, Mostofsky SH, Kaufmann WE. Manual MRI parcellation of the frontal lobe. Psychiatry Res. 2009;172(2):147–54.CrossRef
10.
go back to reference Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiat. 2005;57(11):1263–72.CrossRef Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiat. 2005;57(11):1263–72.CrossRef
11.
go back to reference Hoekzema E, Carmona S, Ramos-Quiroga JA, Barba E, Bielsa A, Tremols V, Rovira M, Soliva JC, Casas M, Bulbena A, et al. Training-induced neuroanatomical plasticity in ADHD: a tensor-based morphometric study. Hum Brain Mapp. 2011;32(10):1741–9.CrossRef Hoekzema E, Carmona S, Ramos-Quiroga JA, Barba E, Bielsa A, Tremols V, Rovira M, Soliva JC, Casas M, Bulbena A, et al. Training-induced neuroanatomical plasticity in ADHD: a tensor-based morphometric study. Hum Brain Mapp. 2011;32(10):1741–9.CrossRef
12.
go back to reference Kumar U, Arya A, Agarwal V. Neural alterations in ADHD children as indicated by voxel-based cortical thickness and morphometry analysis. Brain Dev. 2017;39(5):403–10.CrossRef Kumar U, Arya A, Agarwal V. Neural alterations in ADHD children as indicated by voxel-based cortical thickness and morphometry analysis. Brain Dev. 2017;39(5):403–10.CrossRef
13.
go back to reference Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, et al. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53(7):607–16.CrossRef Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, et al. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53(7):607–16.CrossRef
14.
go back to reference Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and function in ADHD children. Brain Topogr. 2011;24(3–4):243–52.CrossRef Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and function in ADHD children. Brain Topogr. 2011;24(3–4):243–52.CrossRef
15.
go back to reference Almeida LG, Ricardo-Garcell J, Prado H, Barajas L, Fernandez-Bouzas A, Avila D, Martinez RB. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: a cross-sectional study. J Psychiatr Res. 2010;44(16):1214–23.CrossRef Almeida LG, Ricardo-Garcell J, Prado H, Barajas L, Fernandez-Bouzas A, Avila D, Martinez RB. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: a cross-sectional study. J Psychiatr Res. 2010;44(16):1214–23.CrossRef
16.
go back to reference Jacobson LA, Crocetti D, Dirlikov B, Slifer K, Denckla MB, Mostofsky SH, Mahone EM. Anomalous brain development is evident in preschoolers with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc. 2018;24(6):531–9.CrossRef Jacobson LA, Crocetti D, Dirlikov B, Slifer K, Denckla MB, Mostofsky SH, Mahone EM. Anomalous brain development is evident in preschoolers with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc. 2018;24(6):531–9.CrossRef
17.
go back to reference Zhao Y, Cui D, Lu W, Li H, Zhang H, Qiu J. Aberrant gray matter volumes and functional connectivity in adolescent patients with ADHD. J Magn Reson Imaging. 2020;51(3):719–26.CrossRef Zhao Y, Cui D, Lu W, Li H, Zhang H, Qiu J. Aberrant gray matter volumes and functional connectivity in adolescent patients with ADHD. J Magn Reson Imaging. 2020;51(3):719–26.CrossRef
18.
go back to reference Sasayama D, Hayashida A, Yamasue H, Harada Y, Kaneko T, Kasai K, Washizuka S, Amano N. Neuroanatomical correlates of attention-deficit-hyperactivity disorder accounting for comorbid oppositional defiant disorder and conduct disorder. Psychiatry Clin Neurosci. 2010;64(4):394–402.CrossRef Sasayama D, Hayashida A, Yamasue H, Harada Y, Kaneko T, Kasai K, Washizuka S, Amano N. Neuroanatomical correlates of attention-deficit-hyperactivity disorder accounting for comorbid oppositional defiant disorder and conduct disorder. Psychiatry Clin Neurosci. 2010;64(4):394–402.CrossRef
19.
go back to reference Kibby MY, Dyer SM, Lee SE, Stacy M. Frontal volume as a potential source of the comorbidity between attention-deficit/hyperactivity disorder and reading disorders. Behav Brain Res. 2020;381: 112382.CrossRef Kibby MY, Dyer SM, Lee SE, Stacy M. Frontal volume as a potential source of the comorbidity between attention-deficit/hyperactivity disorder and reading disorders. Behav Brain Res. 2020;381: 112382.CrossRef
20.
go back to reference Li X, Cao Q, Pu F, Li D, Fan Y, An L, Wang P, Wu Z, Sun L, Li S, et al. Abnormalities of structural covariance networks in drug-naive boys with attention deficit hyperactivity disorder. Psychiatry Res. 2015;231(3):273–8.CrossRef Li X, Cao Q, Pu F, Li D, Fan Y, An L, Wang P, Wu Z, Sun L, Li S, et al. Abnormalities of structural covariance networks in drug-naive boys with attention deficit hyperactivity disorder. Psychiatry Res. 2015;231(3):273–8.CrossRef
21.
go back to reference Kibby MY, Kroese JM, Krebbs H, Hill CE, Hynd GW. The pars triangularis in dyslexia and ADHD: A comprehensive approach. Brain Lang. 2009;111(1):46–54.CrossRef Kibby MY, Kroese JM, Krebbs H, Hill CE, Hynd GW. The pars triangularis in dyslexia and ADHD: A comprehensive approach. Brain Lang. 2009;111(1):46–54.CrossRef
22.
go back to reference Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos FX, Rapoport J. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540–9.CrossRef Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos FX, Rapoport J. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540–9.CrossRef
23.
go back to reference Lisdahl KM, Tamm L, Epstein JN, Jernigan T, Molina BS, Hinshaw SP, Swanson JM, Newman E, Kelly C, Bjork JM, et al. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults. Drug Alcohol Depend. 2016;161:135–46.CrossRef Lisdahl KM, Tamm L, Epstein JN, Jernigan T, Molina BS, Hinshaw SP, Swanson JM, Newman E, Kelly C, Bjork JM, et al. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults. Drug Alcohol Depend. 2016;161:135–46.CrossRef
24.
go back to reference Pastura G, Kubo TTA, Gasparetto EL, Figueiredo O, Mattos P, Prufer Araujo A. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation. Clin Neuroradiol. 2017;27(4):503–9.CrossRef Pastura G, Kubo TTA, Gasparetto EL, Figueiredo O, Mattos P, Prufer Araujo A. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation. Clin Neuroradiol. 2017;27(4):503–9.CrossRef
25.
go back to reference Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2007;48(12):1251–8.CrossRef Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2007;48(12):1251–8.CrossRef
26.
go back to reference Wang LJ, Li SC, Kuo HC, Chou WJ, Lee MJ, Chou MC, Tseng HH, Hsu CF, Lee SY, Lin WC. Gray matter volume and microRNA levels in patients with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2020;270(8):1037–45.CrossRef Wang LJ, Li SC, Kuo HC, Chou WJ, Lee MJ, Chou MC, Tseng HH, Hsu CF, Lee SY, Lin WC. Gray matter volume and microRNA levels in patients with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2020;270(8):1037–45.CrossRef
27.
go back to reference Mizuno Y, Kagitani-Shimono K, Jung M, Makita K, Takiguchi S, Fujisawa TX, Tachibana M, Nakanishi M, Mohri I, Taniike M, et al. Structural brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry. 2019;9(1):332.CrossRef Mizuno Y, Kagitani-Shimono K, Jung M, Makita K, Takiguchi S, Fujisawa TX, Tachibana M, Nakanishi M, Mohri I, Taniike M, et al. Structural brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry. 2019;9(1):332.CrossRef
28.
go back to reference Noordermeer SDS, Luman M, Greven CU, Veroude K, Faraone SV, Hartman CA, Hoekstra PJ, Franke B, Buitelaar JK, Heslenfeld DJ, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiat. 2017;82(9):642–50.CrossRef Noordermeer SDS, Luman M, Greven CU, Veroude K, Faraone SV, Hartman CA, Hoekstra PJ, Franke B, Buitelaar JK, Heslenfeld DJ, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiat. 2017;82(9):642–50.CrossRef
29.
go back to reference Bonath B, Tegelbeckers J, Wilke M, Flechtner HH, Krauel K. Regional gray matter volume differences between adolescents with ADHD and typically developing controls: further evidence for anterior cingulate involvement. J Atten Disord. 2018;22(7):627–38.CrossRef Bonath B, Tegelbeckers J, Wilke M, Flechtner HH, Krauel K. Regional gray matter volume differences between adolescents with ADHD and typically developing controls: further evidence for anterior cingulate involvement. J Atten Disord. 2018;22(7):627–38.CrossRef
30.
go back to reference He N, Li F, Li Y, Guo L, Chen L, Huang X, Lui S, Gong Q. Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder. Neurosci Lett. 2015;600:45–9.CrossRef He N, Li F, Li Y, Guo L, Chen L, Huang X, Lui S, Gong Q. Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder. Neurosci Lett. 2015;600:45–9.CrossRef
31.
go back to reference Moreno-Alcazar A, Ramos-Quiroga JA, Radua J, Salavert J, Palomar G, Bosch R, Salvador R, Blanch J, Casas M, McKenna PJ, et al. Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry. Psychiatry Res Neuroimaging. 2016;254:41–7.CrossRef Moreno-Alcazar A, Ramos-Quiroga JA, Radua J, Salavert J, Palomar G, Bosch R, Salvador R, Blanch J, Casas M, McKenna PJ, et al. Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry. Psychiatry Res Neuroimaging. 2016;254:41–7.CrossRef
32.
go back to reference Villemonteix T, De Brito SA, Slama H, Kavec M, Baleriaux D, Metens T, Baijot S, Mary A, Peigneux P, Massat I. Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: A voxel-based morphometry study. Dev Cogn Neurosci. 2015;14:32–7.CrossRef Villemonteix T, De Brito SA, Slama H, Kavec M, Baleriaux D, Metens T, Baijot S, Mary A, Peigneux P, Massat I. Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: A voxel-based morphometry study. Dev Cogn Neurosci. 2015;14:32–7.CrossRef
33.
go back to reference Machlin L, McLaughlin KA, Sheridan MA. Brain structure mediates the association between socioeconomic status and attention-deficit/hyperactivity disorder. Dev Sci. 2020;23(1): e12844.CrossRef Machlin L, McLaughlin KA, Sheridan MA. Brain structure mediates the association between socioeconomic status and attention-deficit/hyperactivity disorder. Dev Sci. 2020;23(1): e12844.CrossRef
34.
go back to reference Saute R, Dabbs K, Jones JE, Jackson DC, Seidenberg M, Hermann BP. Brain morphology in children with epilepsy and ADHD. PLoS ONE. 2014;9(4): e95269.CrossRef Saute R, Dabbs K, Jones JE, Jackson DC, Seidenberg M, Hermann BP. Brain morphology in children with epilepsy and ADHD. PLoS ONE. 2014;9(4): e95269.CrossRef
35.
go back to reference Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D. Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Res. 2012;204(1):32–9.CrossRef Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D. Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Res. 2012;204(1):32–9.CrossRef
36.
go back to reference Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.CrossRef Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288(14):1740–8.CrossRef
37.
go back to reference Wyciszkiewicz A, Pawlak MA, Krawiec K. Cerebellar volume in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2017;32(2):215–21.CrossRef Wyciszkiewicz A, Pawlak MA, Krawiec K. Cerebellar volume in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2017;32(2):215–21.CrossRef
38.
go back to reference Bussing R, Grudnik J, Mason D, Wasiak M, Leonard C. ADHD and conduct disorder: an MRI study in a community sample. World J Biol Psychiatry. 2002;3(4):216–20.CrossRef Bussing R, Grudnik J, Mason D, Wasiak M, Leonard C. ADHD and conduct disorder: an MRI study in a community sample. World J Biol Psychiatry. 2002;3(4):216–20.CrossRef
39.
go back to reference Rapoport JL, Castellanos FX, Gogate N, Janson K, Kohler S, Nelson P. Imaging normal and abnormal brain development: new perspectives for child psychiatry. Aust N Z J Psychiatry. 2001;35(3):272–81.CrossRef Rapoport JL, Castellanos FX, Gogate N, Janson K, Kohler S, Nelson P. Imaging normal and abnormal brain development: new perspectives for child psychiatry. Aust N Z J Psychiatry. 2001;35(3):272–81.CrossRef
40.
go back to reference Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, Kaiser J, Spencer T, Faraone SV, Makris N. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiat. 2011;69(9):857–66.CrossRef Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, Kaiser J, Spencer T, Faraone SV, Makris N. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiat. 2011;69(9):857–66.CrossRef
41.
go back to reference Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125(2):114–26.CrossRef Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125(2):114–26.CrossRef
42.
go back to reference Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168(11):1154–63.CrossRef Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168(11):1154–63.CrossRef
43.
go back to reference Wang J, Jiang T, Cao Q, Wang Y. Characterizing anatomic differences in boys with attention-deficit/hyperactivity disorder with the use of deformation-based morphometry. AJNR Am J Neuroradiol. 2007;28(3):543–7. Wang J, Jiang T, Cao Q, Wang Y. Characterizing anatomic differences in boys with attention-deficit/hyperactivity disorder with the use of deformation-based morphometry. AJNR Am J Neuroradiol. 2007;28(3):543–7.
44.
go back to reference Geurts HM, Ridderinkhof KR, Scholte HS. The relationship between grey-matter and ASD and ADHD traits in typical adults. J Autism Dev Disord. 2013;43(7):1630–41.CrossRef Geurts HM, Ridderinkhof KR, Scholte HS. The relationship between grey-matter and ASD and ADHD traits in typical adults. J Autism Dev Disord. 2013;43(7):1630–41.CrossRef
45.
go back to reference Sowell ER, Thompson PM, Welcome SE, Henkenius AL, Toga AW, Peterson BS. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet. 2003;362(9397):1699–707.CrossRef Sowell ER, Thompson PM, Welcome SE, Henkenius AL, Toga AW, Peterson BS. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet. 2003;362(9397):1699–707.CrossRef
46.
go back to reference Ellison-Wright I, Ellison-Wright Z, Bullmore E. Structural brain change in Attention Deficit Hyperactivity Disorder identified by meta-analysis. BMC Psychiatry. 2008;8:51.CrossRef Ellison-Wright I, Ellison-Wright Z, Bullmore E. Structural brain change in Attention Deficit Hyperactivity Disorder identified by meta-analysis. BMC Psychiatry. 2008;8:51.CrossRef
47.
go back to reference Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiat. 2007;61(12):1361–9.CrossRef Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiat. 2007;61(12):1361–9.CrossRef
48.
go back to reference Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev. 2010;117(2):541–74.CrossRef Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev. 2010;117(2):541–74.CrossRef
49.
go back to reference Cropley VL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiat. 2006;59(10):898–907.CrossRef Cropley VL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiat. 2006;59(10):898–907.CrossRef
50.
go back to reference Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 2006;120(3):497–517.CrossRef Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 2006;120(3):497–517.CrossRef
51.
go back to reference Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res. 2015;290:17–31.CrossRef Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res. 2015;290:17–31.CrossRef
52.
go back to reference Arnsten AF. Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology. 2006;31(11):2376–83.CrossRef Arnsten AF. Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology. 2006;31(11):2376–83.CrossRef
53.
go back to reference Xu B, Jia T, Macare C, Banaschewski T, Bokde ALW, Bromberg U, Buchel C, Cattrell A, Conrod PJ, Flor H, et al. Impact of a common genetic variation associated with putamen volume on neural mechanisms of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2017;56(5):436–44.CrossRef Xu B, Jia T, Macare C, Banaschewski T, Bokde ALW, Bromberg U, Buchel C, Cattrell A, Conrod PJ, Flor H, et al. Impact of a common genetic variation associated with putamen volume on neural mechanisms of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2017;56(5):436–44.CrossRef
54.
go back to reference Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, Toro R, Wittfeld K, Abramovic L, Andersson M, et al. Common genetic variants influence human subcortical brain structures. Nature. 2015;520(7546):224–9.CrossRef Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, Toro R, Wittfeld K, Abramovic L, Andersson M, et al. Common genetic variants influence human subcortical brain structures. Nature. 2015;520(7546):224–9.CrossRef
55.
go back to reference Chen CH, Wang Y, Lo MT, Schork A, Fan CC, Holland D, Kauppi K, Smeland OB, Djurovic S, Sanyal N, et al. Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure. Sci Rep. 2017;7(1):15736.CrossRef Chen CH, Wang Y, Lo MT, Schork A, Fan CC, Holland D, Kauppi K, Smeland OB, Djurovic S, Sanyal N, et al. Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure. Sci Rep. 2017;7(1):15736.CrossRef
56.
go back to reference Satizabal CL, Adams H, Hibar DP, White CC, Stein JL, Ikram MA. Genetic architecture of subcortical brain structures in over 40,000 individuals worldwide. BioRxiv. 2017;78:6. Satizabal CL, Adams H, Hibar DP, White CC, Stein JL, Ikram MA. Genetic architecture of subcortical brain structures in over 40,000 individuals worldwide. BioRxiv. 2017;78:6.
57.
go back to reference Luo Q, Chen Q, Wang W, Desrivieres S, Quinlan EB, Jia T, Macare C, Robert GH, Cui J, Guedj M, et al. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: a voxelwise and genome-wide association study. JAMA Psychiat. 2019;76(4):435–45.CrossRef Luo Q, Chen Q, Wang W, Desrivieres S, Quinlan EB, Jia T, Macare C, Robert GH, Cui J, Guedj M, et al. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: a voxelwise and genome-wide association study. JAMA Psychiat. 2019;76(4):435–45.CrossRef
58.
go back to reference Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, Marchini J, Smith SM. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature. 2018;562(7726):210–6.CrossRef Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, Marchini J, Smith SM. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature. 2018;562(7726):210–6.CrossRef
59.
go back to reference Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, Bettella F, Witoelar A, Djurovic S, Chen CH, et al. Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. 2018;44(4):854–64.CrossRef Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, Bettella F, Witoelar A, Djurovic S, Chen CH, et al. Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. 2018;44(4):854–64.CrossRef
60.
go back to reference Kumar J, Yu H, Sheetz MP. Kinectin, an essential anchor for kinesin-driven vesicle motility. Science. 1995;267(5205):1834–7.CrossRef Kumar J, Yu H, Sheetz MP. Kinectin, an essential anchor for kinesin-driven vesicle motility. Science. 1995;267(5205):1834–7.CrossRef
61.
go back to reference Zhang X, Tee YH, Heng JK, Zhu Y, Hu X, Margadant F, Ballestrem C, Bershadsky A, Griffiths G, Yu H. Kinectin-mediated endoplasmic reticulum dynamics supports focal adhesion growth in the cellular lamella. J Cell Sci. 2010;123(Pt 22):3901–12.CrossRef Zhang X, Tee YH, Heng JK, Zhu Y, Hu X, Margadant F, Ballestrem C, Bershadsky A, Griffiths G, Yu H. Kinectin-mediated endoplasmic reticulum dynamics supports focal adhesion growth in the cellular lamella. J Cell Sci. 2010;123(Pt 22):3901–12.CrossRef
62.
go back to reference Toyoshima I, Sheetz MP. Kinectin distribution in chicken nervous system. Neurosci Lett. 1996;211(3):171–4.CrossRef Toyoshima I, Sheetz MP. Kinectin distribution in chicken nervous system. Neurosci Lett. 1996;211(3):171–4.CrossRef
63.
go back to reference Luo X, Guo X, Tan Y, Zhang Y, Garcia-Milian R, Wang Z, Shi J, Yu T, Ji J, Wang X, et al. KTN1 variants and risk for attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2020;183(4):234–44.CrossRef Luo X, Guo X, Tan Y, Zhang Y, Garcia-Milian R, Wang Z, Shi J, Yu T, Ji J, Wang X, et al. KTN1 variants and risk for attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2020;183(4):234–44.CrossRef
64.
go back to reference Max JE, Fox PT, Lancaster JL, Kochunov P, Mathews K, Manes FF, Robertson BA, Arndt S, Robin DA, Lansing AE. Putamen lesions and the development of attention-deficit/hyperactivity symptomatology. J Am Acad Child Adolesc Psychiatry. 2002;41(5):563–71.CrossRef Max JE, Fox PT, Lancaster JL, Kochunov P, Mathews K, Manes FF, Robertson BA, Arndt S, Robin DA, Lansing AE. Putamen lesions and the development of attention-deficit/hyperactivity symptomatology. J Am Acad Child Adolesc Psychiatry. 2002;41(5):563–71.CrossRef
65.
go back to reference Achenbach TM, Rescorla LA. Manual for the ASEBA School-Age Forms & Profiles. Burlington: University of Vermont, Research Center for Children, Youth, & Families; 2001. Achenbach TM, Rescorla LA. Manual for the ASEBA School-Age Forms & Profiles. Burlington: University of Vermont, Research Center for Children, Youth, & Families; 2001.
66.
go back to reference Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P. The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav Brain Funct. 2006;2:27.CrossRef Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P. The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav Brain Funct. 2006;2:27.CrossRef
67.
go back to reference Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD, Biederman J, Byrne D, Dechairo B, Guiney A, et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49(9):898–905.CrossRef Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD, Biederman J, Byrne D, Dechairo B, Guiney A, et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49(9):898–905.CrossRef
68.
go back to reference Martin J, Walters RK, Demontis D, Mattheisen M, Lee SH, Robinson E, Brikell I, Ghirardi L, Larsson H, Lichtenstein P, et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol Psychiat. 2018;83(12):1044–53.CrossRef Martin J, Walters RK, Demontis D, Mattheisen M, Lee SH, Robinson E, Brikell I, Ghirardi L, Larsson H, Lichtenstein P, et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol Psychiat. 2018;83(12):1044–53.CrossRef
69.
go back to reference Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Anney R, Franke B, Gill M, Ebstein R, et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry. 2006;11(10):934–53.CrossRef Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Anney R, Franke B, Gill M, Ebstein R, et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry. 2006;11(10):934–53.CrossRef
70.
go back to reference Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, Faraone SV, Nguyen TT, Schafer H, Holmans P, et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49(9):884–97.CrossRef Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, Faraone SV, Nguyen TT, Schafer H, Holmans P, et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49(9):884–97.CrossRef
71.
go back to reference Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6): e1000529.CrossRef Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6): e1000529.CrossRef
72.
go back to reference Zuo L, Gelernter J, Zhang CK, Zhao H, Lu L, Kranzler HR, Malison RT, Li CS, Wang F, Zhang XY, et al. Genome-wide association study of alcohol dependence implicates KIAA0040 on chromosome 1q. Neuropsychopharmacology. 2012;37(2):557–66.CrossRef Zuo L, Gelernter J, Zhang CK, Zhao H, Lu L, Kranzler HR, Malison RT, Li CS, Wang F, Zhang XY, et al. Genome-wide association study of alcohol dependence implicates KIAA0040 on chromosome 1q. Neuropsychopharmacology. 2012;37(2):557–66.CrossRef
73.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRef
74.
go back to reference Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.CrossRef Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.CrossRef
75.
go back to reference Ide JS, Li HT, Chen Y, Le TM, Li CSP, Zhornitsky S, Li CR. Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: An exploratory voxel-based morphometry study of the ABCD project data. Neuroimage. 2020;220: 117085.CrossRef Ide JS, Li HT, Chen Y, Le TM, Li CSP, Zhornitsky S, Li CR. Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: An exploratory voxel-based morphometry study of the ABCD project data. Neuroimage. 2020;220: 117085.CrossRef
76.
go back to reference Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.CrossRef Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.CrossRef
77.
go back to reference Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Coin L, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17(10):1418–28.CrossRef Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Coin L, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17(10):1418–28.CrossRef
78.
go back to reference GTEx Consortium: The Genotype-Tissue Expression (GTEx) project. Nature genetics 2013, 45(6):580–585. GTEx Consortium: The Genotype-Tissue Expression (GTEx) project. Nature genetics 2013, 45(6):580–585.
79.
go back to reference Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Renteria ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivieres S, et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci. 2016;19(12):1569–82.CrossRef Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Renteria ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivieres S, et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci. 2016;19(12):1569–82.CrossRef
80.
go back to reference Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet. 2019;51(11):1624–36.CrossRef Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet. 2019;51(11):1624–36.CrossRef
81.
go back to reference Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907–22.CrossRef Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907–22.CrossRef
83.
go back to reference Luo X, Fang W, Lin X, Guo X, Chen Y, Tan Y, Wang L, Jing X, Wang X, Zhang Y, et al. Sex-different interrelationships of rs945270, cerebral gray matter volumes, and attention deficit hyperactivity disorder: a region-wide study across brain. Transl Psychiatry. 2022;12(1):225.CrossRef Luo X, Fang W, Lin X, Guo X, Chen Y, Tan Y, Wang L, Jing X, Wang X, Zhang Y, et al. Sex-different interrelationships of rs945270, cerebral gray matter volumes, and attention deficit hyperactivity disorder: a region-wide study across brain. Transl Psychiatry. 2022;12(1):225.CrossRef
84.
go back to reference Duan K, Chen J, Calhoun VD, Lin D, Jiang W, Franke B, Buitelaar JK, Hoogman M, Arias-Vasquez A, Turner JA, et al. Neural correlates of cognitive function and symptoms in attention-deficit/hyperactivity disorder in adults. NeuroImage Clinical. 2018;19:374–83.CrossRef Duan K, Chen J, Calhoun VD, Lin D, Jiang W, Franke B, Buitelaar JK, Hoogman M, Arias-Vasquez A, Turner JA, et al. Neural correlates of cognitive function and symptoms in attention-deficit/hyperactivity disorder in adults. NeuroImage Clinical. 2018;19:374–83.CrossRef
85.
go back to reference Tajima-Pozo K, Yus M, Ruiz-Manrique G, Lewczuk A, Arrazola J, Montanes-Rada F. Amygdala abnormalities in adults with ADHD. J Atten Disord. 2018;22(7):671–8.CrossRef Tajima-Pozo K, Yus M, Ruiz-Manrique G, Lewczuk A, Arrazola J, Montanes-Rada F. Amygdala abnormalities in adults with ADHD. J Atten Disord. 2018;22(7):671–8.CrossRef
86.
go back to reference Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex. 2017;27(1):777–92. Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex. 2017;27(1):777–92.
87.
go back to reference Orrison W: Atlas of Brain Function, 2nd edn: Thieme; 2008. Orrison W: Atlas of Brain Function, 2nd edn: Thieme; 2008.
88.
go back to reference Chai Y, Chimelis-Santiago JR, Bixler KA, Aalsma M, Yu M, Hulvershorn LA. Sex-specific frontal-striatal connectivity differences among adolescents with externalizing disorders. NeuroImage Clinical. 2021;32: 102789.CrossRef Chai Y, Chimelis-Santiago JR, Bixler KA, Aalsma M, Yu M, Hulvershorn LA. Sex-specific frontal-striatal connectivity differences among adolescents with externalizing disorders. NeuroImage Clinical. 2021;32: 102789.CrossRef
89.
go back to reference Rosch KS, Mostofsky SH, Nebel MB. ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting. J Neurodev Disord. 2018;10(1):34.CrossRef Rosch KS, Mostofsky SH, Nebel MB. ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting. J Neurodev Disord. 2018;10(1):34.CrossRef
Metadata
Title
Male-specific, replicable and functional roles of genetic variants and cerebral gray matter volumes in ADHD: a gene-wide association study across KTN1 and a region-wide functional validation across brain
Authors
Xingguang Luo
Xiandong Lin
Jaime S. Ide
Xinqun Luo
Yong Zhang
Jianying Xu
Leilei Wang
Yu Chen
Wenhong Cheng
Jianming Zheng
Zhiren Wang
Ting Yu
Reyisha Taximaimaiti
Xiaozhong Jing
Xiaoping Wang
Yuping Cao
Yunlong Tan
Chiang-Shan R. Li
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Child and Adolescent Psychiatry and Mental Health / Issue 1/2023
Electronic ISSN: 1753-2000
DOI
https://doi.org/10.1186/s13034-022-00536-0

Other articles of this Issue 1/2023

Child and Adolescent Psychiatry and Mental Health 1/2023 Go to the issue