Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Amyotrophic Lateral Sclerosis | Review

Fluid biomarkers for amyotrophic lateral sclerosis: a review

Authors: Katherine E. Irwin, Udit Sheth, Philip C. Wong, Tania F. Gendron

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Literature
2.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.PubMedCrossRef Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.PubMedCrossRef
3.
go back to reference Cellura E, Spataro R, Taiello AC, La Bella V. Factors affecting the diagnostic delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg. 2012;114:550–4.PubMedCrossRef Cellura E, Spataro R, Taiello AC, La Bella V. Factors affecting the diagnostic delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg. 2012;114:550–4.PubMedCrossRef
4.
go back to reference Chen JJ. Overview of current and emerging therapies for amytrophic lateral sclerosis. Am J Manag Care. 2020;26:191–s197.CrossRef Chen JJ. Overview of current and emerging therapies for amytrophic lateral sclerosis. Am J Manag Care. 2020;26:191–s197.CrossRef
5.
go back to reference Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring: Food and Drug Administration (US); 2016. Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring: Food and Drug Administration (US); 2016.
6.
go back to reference Bendotti C, Bonetto V, Pupillo E, Logroscino G, Al-Chalabi A, Lunetta C, Riva N, Mora G, Lauria G, Weishaupt JH, et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21:485–95.PubMedCrossRef Bendotti C, Bonetto V, Pupillo E, Logroscino G, Al-Chalabi A, Lunetta C, Riva N, Mora G, Lauria G, Weishaupt JH, et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21:485–95.PubMedCrossRef
7.
go back to reference Benatar M, Wuu J, Andersen PM, Lombardi V, Malaspina A. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol. 2018;84:130–9.PubMedCrossRef Benatar M, Wuu J, Andersen PM, Lombardi V, Malaspina A. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol. 2018;84:130–9.PubMedCrossRef
8.
go back to reference Mitsumoto H, Brooks BR, Silani V. Clinical trials in Amyotrophic Lateral Sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014;13:1127–38.PubMedCrossRef Mitsumoto H, Brooks BR, Silani V. Clinical trials in Amyotrophic Lateral Sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014;13:1127–38.PubMedCrossRef
9.
go back to reference Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67:2013–8.PubMedCrossRef Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67:2013–8.PubMedCrossRef
10.
go back to reference Schreiber S, Spotorno N, Schreiber F, Acosta-Cabronero J, Kaufmann J, Machts J, Debska-Vielhaber G, Garz C, Bittner D, Hensiek N, et al. Significance of CSF NfL and tau in ALS. J Neurol. 2018;265:2633–45.PubMedCrossRef Schreiber S, Spotorno N, Schreiber F, Acosta-Cabronero J, Kaufmann J, Machts J, Debska-Vielhaber G, Garz C, Bittner D, Hensiek N, et al. Significance of CSF NfL and tau in ALS. J Neurol. 2018;265:2633–45.PubMedCrossRef
12.
13.
go back to reference de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2020;92:86–95.PubMedCrossRef de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2020;92:86–95.PubMedCrossRef
14.
go back to reference Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.PubMedCrossRef Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.PubMedCrossRef
15.
go back to reference Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.PubMedPubMedCentralCrossRef Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.PubMedPubMedCentralCrossRef
16.
go back to reference Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010;30:639–49.PubMedPubMedCentralCrossRef Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010;30:639–49.PubMedPubMedCentralCrossRef
17.
go back to reference Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A. 2008;105:6439–44.PubMedPubMedCentralCrossRef Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A. 2008;105:6439–44.PubMedPubMedCentralCrossRef
18.
go back to reference Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD, Lin WL, Tong J, Castanedes-Casey M, Ash P, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A. 2009;106:7607–12.PubMedPubMedCentralCrossRef Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD, Lin WL, Tong J, Castanedes-Casey M, Ash P, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A. 2009;106:7607–12.PubMedPubMedCentralCrossRef
19.
go back to reference Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, Burberry A, Steinbaugh MJ, Gamage KK, Kirchner R, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167–79.PubMedPubMedCentralCrossRef Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, Burberry A, Steinbaugh MJ, Gamage KK, Kirchner R, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167–79.PubMedPubMedCentralCrossRef
20.
go back to reference Melamed Z, Lopez-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon MA, Beccari MS, Artates JW, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180–90.PubMedPubMedCentralCrossRef Melamed Z, Lopez-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon MA, Beccari MS, Artates JW, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180–90.PubMedPubMedCentralCrossRef
21.
go back to reference Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603:131–7.PubMedPubMedCentralCrossRef Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603:131–7.PubMedPubMedCentralCrossRef
22.
go back to reference Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, Briner A, Rodriguez CM, Guo C, Akiyama T, et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature. 2022;603:124–30.PubMedPubMedCentralCrossRef Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, Briner A, Rodriguez CM, Guo C, Akiyama T, et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature. 2022;603:124–30.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Yang C, Wang H, Qiao T, Yang B, Aliaga L, Qiu L, Tan W, Salameh J, McKenna-Yasek DM, Smith T, et al. Partial loss of TDP-43 function causes phenotypes of Amyotrophic Lateral Sclerosis. Proc Natl Acad Sci U S A. 2014;111:E1121–1129.PubMedPubMedCentral Yang C, Wang H, Qiao T, Yang B, Aliaga L, Qiu L, Tan W, Salameh J, McKenna-Yasek DM, Smith T, et al. Partial loss of TDP-43 function causes phenotypes of Amyotrophic Lateral Sclerosis. Proc Natl Acad Sci U S A. 2014;111:E1121–1129.PubMedPubMedCentral
25.
go back to reference Yu H, Lu S, Gasior K, Singh D, Vazquez-Sanchez S, Tapia O, Toprani D, Beccari MS, Yates JR 3rd, Da Cruz S, et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science. 2021;371:eabb4309.PubMedCrossRef Yu H, Lu S, Gasior K, Singh D, Vazquez-Sanchez S, Tapia O, Toprani D, Beccari MS, Yates JR 3rd, Da Cruz S, et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science. 2021;371:eabb4309.PubMedCrossRef
26.
go back to reference Shefner JM, Bedlack R, Andrews JA, Berry JD, Bowser R, Brown R, Glass JD, Maragakis NJ, Miller TM, Rothstein JD, Cudkowicz ME. Amyotrophic Lateral Sclerosis clinical trials and interpretation of functional end points and fluid biomarkers: a review. JAMA Neurol. 2022;79:1312–8.PubMedCrossRef Shefner JM, Bedlack R, Andrews JA, Berry JD, Bowser R, Brown R, Glass JD, Maragakis NJ, Miller TM, Rothstein JD, Cudkowicz ME. Amyotrophic Lateral Sclerosis clinical trials and interpretation of functional end points and fluid biomarkers: a review. JAMA Neurol. 2022;79:1312–8.PubMedCrossRef
27.
go back to reference Behler A, Muller HP, Ludolph AC, Kassubek J. Diffusion tensor imaging in amyotrophic lateral sclerosis: machine learning for biomarker development. Int J Mol Sci. 2023;24:1911.PubMedPubMedCentralCrossRef Behler A, Muller HP, Ludolph AC, Kassubek J. Diffusion tensor imaging in amyotrophic lateral sclerosis: machine learning for biomarker development. Int J Mol Sci. 2023;24:1911.PubMedPubMedCentralCrossRef
31.
go back to reference Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: from biomarkers to therapeutic targets. Front Immunol. 2022;13:1059994.PubMedPubMedCentralCrossRef Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: from biomarkers to therapeutic targets. Front Immunol. 2022;13:1059994.PubMedPubMedCentralCrossRef
32.
go back to reference Liu H, Lan S, Shi XJ, Fan FC, Liu QS, Cong L, Cheng Y. Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res Bull. 2023;194:82–9.PubMedCrossRef Liu H, Lan S, Shi XJ, Fan FC, Liu QS, Cong L, Cheng Y. Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res Bull. 2023;194:82–9.PubMedCrossRef
33.
34.
go back to reference Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol. 2007;14:1329–33.PubMedCrossRef Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol. 2007;14:1329–33.PubMedCrossRef
35.
go back to reference Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84:2247–57.PubMedPubMedCentralCrossRef Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84:2247–57.PubMedPubMedCentralCrossRef
36.
go back to reference Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S, Kassubek J, Kubisch C, et al. Neurofilaments in the diagnosis of motoneuron Diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87:12–20.PubMed Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S, Kassubek J, Kubisch C, et al. Neurofilaments in the diagnosis of motoneuron Diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87:12–20.PubMed
37.
go back to reference Gaiani A, Martinelli I, Bello L, Querin G, Puthenparampil M, Ruggero S, Toffanin E, Cagnin A, Briani C, Pegoraro E, Soraru G. Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of Disease. JAMA Neurol. 2017;74:525–32.PubMedPubMedCentralCrossRef Gaiani A, Martinelli I, Bello L, Querin G, Puthenparampil M, Ruggero S, Toffanin E, Cagnin A, Briani C, Pegoraro E, Soraru G. Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of Disease. JAMA Neurol. 2017;74:525–32.PubMedPubMedCentralCrossRef
38.
go back to reference Illan-Gala I, Alcolea D, Montal V, Dols-Icardo O, Munoz L, de Luna N, Turon-Sans J, Cortes-Vicente E, Sanchez-Saudinos MB, Subirana A, et al. CSF sAPPbeta, YKL-40, and NfL along the ALS-FTD spectrum. Neurology. 2018;91:e1619–1628.PubMedCrossRef Illan-Gala I, Alcolea D, Montal V, Dols-Icardo O, Munoz L, de Luna N, Turon-Sans J, Cortes-Vicente E, Sanchez-Saudinos MB, Subirana A, et al. CSF sAPPbeta, YKL-40, and NfL along the ALS-FTD spectrum. Neurology. 2018;91:e1619–1628.PubMedCrossRef
39.
go back to reference Scarafino A, D’Errico E, Introna A, Fraddosio A, Distaso E, Tempesta I, Morea A, Mastronardi A, Leante R, Ruggieri M, et al. Diagnostic and prognostic power of CSF tau in amyotrophic lateral sclerosis. J Neurol. 2018;265:2353–62.PubMedCrossRef Scarafino A, D’Errico E, Introna A, Fraddosio A, Distaso E, Tempesta I, Morea A, Mastronardi A, Leante R, Ruggieri M, et al. Diagnostic and prognostic power of CSF tau in amyotrophic lateral sclerosis. J Neurol. 2018;265:2353–62.PubMedCrossRef
40.
go back to reference Kasai T, Kojima Y, Ohmichi T, Tatebe H, Tsuji Y, Noto YI, Kitani-Morii F, Shinomoto M, Allsop D, Mizuno T, Tokuda T. Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. Ann Clin Transl Neurol. 2019;6:2489–502.PubMedPubMedCentralCrossRef Kasai T, Kojima Y, Ohmichi T, Tatebe H, Tsuji Y, Noto YI, Kitani-Morii F, Shinomoto M, Allsop D, Mizuno T, Tokuda T. Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. Ann Clin Transl Neurol. 2019;6:2489–502.PubMedPubMedCentralCrossRef
41.
go back to reference Abu-Rumeileh S, Vacchiano V, Zenesini C, Polischi B, de Pasqua S, Fileccia E, Mammana A, Di Stasi V, Capellari S, Salvi F, et al. Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in Amyotrophic Lateral Sclerosis. J Neurol. 2020;267:1699–708.PubMedCrossRef Abu-Rumeileh S, Vacchiano V, Zenesini C, Polischi B, de Pasqua S, Fileccia E, Mammana A, Di Stasi V, Capellari S, Salvi F, et al. Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in Amyotrophic Lateral Sclerosis. J Neurol. 2020;267:1699–708.PubMedCrossRef
42.
go back to reference Thouvenot E, Demattei C, Lehmann S, Maceski-Maleska A, Hirtz C, Juntas-Morales R, Pageot N, Esselin F, Alphandery S, Vincent T, Camu W. Serum neurofilament light chain at time of diagnosis is an Independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur J Neurol. 2020;27:251–7.PubMedCrossRef Thouvenot E, Demattei C, Lehmann S, Maceski-Maleska A, Hirtz C, Juntas-Morales R, Pageot N, Esselin F, Alphandery S, Vincent T, Camu W. Serum neurofilament light chain at time of diagnosis is an Independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur J Neurol. 2020;27:251–7.PubMedCrossRef
43.
go back to reference Brodovitch A, Boucraut J, Delmont E, Parlanti A, Grapperon AM, Attarian S, Verschueren A. Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci Rep. 2021;11:703.PubMedPubMedCentralCrossRef Brodovitch A, Boucraut J, Delmont E, Parlanti A, Grapperon AM, Attarian S, Verschueren A. Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci Rep. 2021;11:703.PubMedPubMedCentralCrossRef
44.
go back to reference Dreger M, Steinbach R, Gaur N, Metzner K, Stubendorff B, Witte OW, Grosskreutz J. Cerebrospinal fluid neurofilament light chain (NfL) predicts disease aggressiveness in amyotrophic lateral sclerosis: an application of the D50 disease progression model. Front Neurosci. 2021;15:651651.PubMedPubMedCentralCrossRef Dreger M, Steinbach R, Gaur N, Metzner K, Stubendorff B, Witte OW, Grosskreutz J. Cerebrospinal fluid neurofilament light chain (NfL) predicts disease aggressiveness in amyotrophic lateral sclerosis: an application of the D50 disease progression model. Front Neurosci. 2021;15:651651.PubMedPubMedCentralCrossRef
45.
go back to reference Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol. 2012;19:1561–7.PubMedCrossRef Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol. 2012;19:1561–7.PubMedCrossRef
46.
go back to reference Vacchiano V, Mastrangelo A, Zenesini C, Masullo M, Quadalti C, Avoni P, Polischi B, Cherici A, Capellari S, Salvi F, et al. Plasma and CSF neurofilament light chain in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Front Aging Neurosci. 2021;13:753242.PubMedPubMedCentralCrossRef Vacchiano V, Mastrangelo A, Zenesini C, Masullo M, Quadalti C, Avoni P, Polischi B, Cherici A, Capellari S, Salvi F, et al. Plasma and CSF neurofilament light chain in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Front Aging Neurosci. 2021;13:753242.PubMedPubMedCentralCrossRef
47.
go back to reference Gong ZY, Lv GP, Gao LN, Lu Y, Guo J, Zang DW. Neurofilament subunit L levels in the Cerebrospinal Fluid and serum of patients with amyotrophic lateral sclerosis. Neurodegener Dis. 2018;18:165–72.PubMedCrossRef Gong ZY, Lv GP, Gao LN, Lu Y, Guo J, Zang DW. Neurofilament subunit L levels in the Cerebrospinal Fluid and serum of patients with amyotrophic lateral sclerosis. Neurodegener Dis. 2018;18:165–72.PubMedCrossRef
48.
go back to reference Rossi D, Volanti P, Brambilla L, Colletti T, Spataro R, La Bella V. CSF neurofilament proteins as diagnostic and prognostic biomarkers for amyotrophic lateral sclerosis. J Neurol. 2018;265:510–21.PubMedCrossRef Rossi D, Volanti P, Brambilla L, Colletti T, Spataro R, La Bella V. CSF neurofilament proteins as diagnostic and prognostic biomarkers for amyotrophic lateral sclerosis. J Neurol. 2018;265:510–21.PubMedCrossRef
49.
go back to reference Kojima Y, Kasai T, Noto YI, Ohmichi T, Tatebe H, Kitaoji T, Tsuji Y, Kitani-Morii F, Shinomoto M, Allsop D, et al. Amyotrophic Lateral Sclerosis: correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PLoS One. 2021;16:e0260323.PubMedPubMedCentralCrossRef Kojima Y, Kasai T, Noto YI, Ohmichi T, Tatebe H, Kitaoji T, Tsuji Y, Kitani-Morii F, Shinomoto M, Allsop D, et al. Amyotrophic Lateral Sclerosis: correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PLoS One. 2021;16:e0260323.PubMedPubMedCentralCrossRef
50.
go back to reference Thompson AG, Gray E, Verber N, Bobeva Y, Lombardi V, Shepheard SR, Yildiz O, Feneberg E, Farrimond L, Dharmadasa T, et al. Multicentre appraisal of Amyotrophic Lateral Sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 2022;4:fcac029.PubMedPubMedCentralCrossRef Thompson AG, Gray E, Verber N, Bobeva Y, Lombardi V, Shepheard SR, Yildiz O, Feneberg E, Farrimond L, Dharmadasa T, et al. Multicentre appraisal of Amyotrophic Lateral Sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 2022;4:fcac029.PubMedPubMedCentralCrossRef
51.
go back to reference Gille B, De Schaepdryver M, Goossens J, Dedeene L, De Vocht J, Oldoni E, Goris A, Van Den Bosch L, Depreitere B, Claeys KG, et al. Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2019;45:291–304.PubMedCrossRef Gille B, De Schaepdryver M, Goossens J, Dedeene L, De Vocht J, Oldoni E, Goris A, Van Den Bosch L, Depreitere B, Claeys KG, et al. Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2019;45:291–304.PubMedCrossRef
52.
go back to reference Verde F, Steinacker P, Weishaupt JH, et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(2):157–64. Verde F, Steinacker P, Weishaupt JH, et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(2):157–64.
53.
go back to reference De Schaepdryver M, Lunetta C, Tarlarini C, Mosca L, Chio A, Van Damme P, Poesen K. Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2020;91:436–7.PubMedCrossRef De Schaepdryver M, Lunetta C, Tarlarini C, Mosca L, Chio A, Van Damme P, Poesen K. Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2020;91:436–7.PubMedCrossRef
54.
go back to reference Behzadi A, Pujol-Calderon F, Tjust AE, Wuolikainen A, Hoglund K, Forsberg K, Portelius E, Blennow K, Zetterberg H, Andersen PM. Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci Rep. 2021;11:22128.PubMedPubMedCentralCrossRef Behzadi A, Pujol-Calderon F, Tjust AE, Wuolikainen A, Hoglund K, Forsberg K, Portelius E, Blennow K, Zetterberg H, Andersen PM. Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci Rep. 2021;11:22128.PubMedPubMedCentralCrossRef
55.
go back to reference De Schaepdryver M, Jeromin A, Gille B, Claeys KG, Herbst V, Brix B, Van Damme P, Poesen K. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2018;89:367–73.PubMedCrossRef De Schaepdryver M, Jeromin A, Gille B, Claeys KG, Herbst V, Brix B, Van Damme P, Poesen K. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2018;89:367–73.PubMedCrossRef
56.
go back to reference Simonini C, Zucchi E, Bedin R, Martinelli I, Gianferrari G, Fini N, Soraru G, Liguori R, Vacchiano V, Mandrioli J. CSF heavy neurofilament may discriminate and predict Motor Neuron Diseases with Upper Motor Neuron involvement. Biomedicines. 2021;9:1623.PubMedPubMedCentralCrossRef Simonini C, Zucchi E, Bedin R, Martinelli I, Gianferrari G, Fini N, Soraru G, Liguori R, Vacchiano V, Mandrioli J. CSF heavy neurofilament may discriminate and predict Motor Neuron Diseases with Upper Motor Neuron involvement. Biomedicines. 2021;9:1623.PubMedPubMedCentralCrossRef
57.
go back to reference Boylan KB, Glass JD, Crook JE, Yang C, Thomas CS, Desaro P, Johnston A, Overstreet K, Kelly C, Polak M, Shaw G. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:467–72.PubMedCrossRef Boylan KB, Glass JD, Crook JE, Yang C, Thomas CS, Desaro P, Johnston A, Overstreet K, Kelly C, Polak M, Shaw G. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:467–72.PubMedCrossRef
58.
go back to reference Zecca C, Dell’Abate MT, Pasculli G, Capozzo R, Barone R, Arima S, Pollice A, Brescia V, Tortelli R, Logroscino G. Role of plasma phosphorylated neurofilament heavy chain (pNfH) in amyotrophic lateral sclerosis. J Cell Mol Med. 2022;26:3608–15.PubMedPubMedCentralCrossRef Zecca C, Dell’Abate MT, Pasculli G, Capozzo R, Barone R, Arima S, Pollice A, Brescia V, Tortelli R, Logroscino G. Role of plasma phosphorylated neurofilament heavy chain (pNfH) in amyotrophic lateral sclerosis. J Cell Mol Med. 2022;26:3608–15.PubMedPubMedCentralCrossRef
59.
go back to reference Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem. 2011;117:528–37.PubMedPubMedCentralCrossRef Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem. 2011;117:528–37.PubMedPubMedCentralCrossRef
60.
go back to reference Gendron TF, Group CONS, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 2017;82:139–46.PubMedPubMedCentralCrossRef Gendron TF, Group CONS, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 2017;82:139–46.PubMedPubMedCentralCrossRef
61.
go back to reference Falzone YM, Domi T, Agosta F, Pozzi L, Schito P, Fazio R, Del Carro U, Barbieri A, Comola M, Leocani L, et al. Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron Disease. J Neurol. 2020;267:2272–80.PubMedPubMedCentralCrossRef Falzone YM, Domi T, Agosta F, Pozzi L, Schito P, Fazio R, Del Carro U, Barbieri A, Comola M, Leocani L, et al. Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron Disease. J Neurol. 2020;267:2272–80.PubMedPubMedCentralCrossRef
62.
go back to reference van der Ende EL, Meeter LH, Poos JM, Panman JL, Jiskoot LC, Dopper EGP, Papma JM, de Jong FJ, Verberk IMW, Teunissen C, et al. Serum neurofilament light chain in genetic frontotemporal Dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 2019;18:1103–11.PubMedCrossRef van der Ende EL, Meeter LH, Poos JM, Panman JL, Jiskoot LC, Dopper EGP, Papma JM, de Jong FJ, Verberk IMW, Teunissen C, et al. Serum neurofilament light chain in genetic frontotemporal Dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 2019;18:1103–11.PubMedCrossRef
63.
go back to reference De Schaepdryver M, Goossens J, De Meyer S, Jeromin A, Masrori P, Brix B, Claeys KG, Schaeverbeke J, Adamczuk K, Vandenberghe R, et al. Serum neurofilament heavy chains as early marker of motor neuron degeneration. Ann Clin Transl Neurol. 2019;6:1971–9.PubMedPubMedCentralCrossRef De Schaepdryver M, Goossens J, De Meyer S, Jeromin A, Masrori P, Brix B, Claeys KG, Schaeverbeke J, Adamczuk K, Vandenberghe R, et al. Serum neurofilament heavy chains as early marker of motor neuron degeneration. Ann Clin Transl Neurol. 2019;6:1971–9.PubMedPubMedCentralCrossRef
64.
go back to reference Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, Chio A, Van Damme P, Ludolph AC, Glass JD, et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2022;387:1099–110.PubMedCrossRef Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, Chio A, Van Damme P, Ludolph AC, Glass JD, et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2022;387:1099–110.PubMedCrossRef
65.
go back to reference Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological Diseases. PLoS One. 2013;8:e75091.PubMedPubMedCentralCrossRef Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological Diseases. PLoS One. 2013;8:e75091.PubMedPubMedCentralCrossRef
66.
go back to reference Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, Carare RO, Meuth SG, Vielhaber S, Kortvelyessy P. CSF neurofilament light chain levels in primary progressive MS: signs of axonal neurodegeneration. Front Neurol. 2018;9:1037.PubMedPubMedCentralCrossRef Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, Carare RO, Meuth SG, Vielhaber S, Kortvelyessy P. CSF neurofilament light chain levels in primary progressive MS: signs of axonal neurodegeneration. Front Neurol. 2018;9:1037.PubMedPubMedCentralCrossRef
67.
go back to reference Pijnenburg YA, Verwey NA, van der Flier WM, Scheltens P, Teunissen CE. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal Dementia subtypes. Alzheimers Dement (Amst). 2015;1:505–12.PubMedCrossRef Pijnenburg YA, Verwey NA, van der Flier WM, Scheltens P, Teunissen CE. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal Dementia subtypes. Alzheimers Dement (Amst). 2015;1:505–12.PubMedCrossRef
69.
go back to reference Mattsson N, Andreasson U, Zetterberg H, Blennow K. Alzheimer’s Disease Neuroimaging I: Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74:557–66.PubMedPubMedCentralCrossRef Mattsson N, Andreasson U, Zetterberg H, Blennow K. Alzheimer’s Disease Neuroimaging I: Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74:557–66.PubMedPubMedCentralCrossRef
70.
go back to reference Gendron TF, Badi MK, Heckman MG, Jansen-West KR, Vilanilam GK, Johnson PW, Burch AR, Walton RL, Ross OA, Brott TG, et al. Plasma neurofilament light predicts mortality in patients with stroke. Sci Transl Med. 2020;12:12.CrossRef Gendron TF, Badi MK, Heckman MG, Jansen-West KR, Vilanilam GK, Johnson PW, Burch AR, Walton RL, Ross OA, Brott TG, et al. Plasma neurofilament light predicts mortality in patients with stroke. Sci Transl Med. 2020;12:12.CrossRef
71.
go back to reference Prudencio M, Erben Y, Marquez CP, Jansen-West KR, Franco-Mesa C, Heckman MG, White LJ, Dunmore JA, Cook CN, Lilley MT, et al. Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Sci Transl Med. 2021;13:eabi7643.PubMedPubMedCentralCrossRef Prudencio M, Erben Y, Marquez CP, Jansen-West KR, Franco-Mesa C, Heckman MG, White LJ, Dunmore JA, Cook CN, Lilley MT, et al. Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Sci Transl Med. 2021;13:eabi7643.PubMedPubMedCentralCrossRef
72.
go back to reference Olsson B, Portelius E, Cullen NC, Sandelius A, Zetterberg H, Andreasson U, Hoglund K, Irwin DJ, Grossman M, Weintraub D, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 2019;76:318–25.PubMedCrossRef Olsson B, Portelius E, Cullen NC, Sandelius A, Zetterberg H, Andreasson U, Hoglund K, Irwin DJ, Grossman M, Weintraub D, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 2019;76:318–25.PubMedCrossRef
73.
go back to reference Ashton NJ, Janelidze S, Al Khleifat A, Leuzy A, van der Ende EL, Karikari TK, Benedet AL, Pascoal TA, Lleo A, Parnetti L, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun. 2021;12:3400.PubMedPubMedCentralCrossRef Ashton NJ, Janelidze S, Al Khleifat A, Leuzy A, van der Ende EL, Karikari TK, Benedet AL, Pascoal TA, Lleo A, Parnetti L, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun. 2021;12:3400.PubMedPubMedCentralCrossRef
75.
go back to reference Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol. 2009;256:615–9.PubMedCrossRef Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol. 2009;256:615–9.PubMedCrossRef
76.
go back to reference Feneberg E, Oeckl P, Steinacker P, Verde F, Barro C, Van Damme P, Gray E, Grosskreutz J, Jardel C, Kuhle J, et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology. 2018;90:e22–30.PubMedCrossRef Feneberg E, Oeckl P, Steinacker P, Verde F, Barro C, Van Damme P, Gray E, Grosskreutz J, Jardel C, Kuhle J, et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology. 2018;90:e22–30.PubMedCrossRef
77.
go back to reference Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol. 2000;57:109–13.PubMedCrossRef Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol. 2000;57:109–13.PubMedCrossRef
78.
go back to reference Benatar M, Wuu J, Turner MR. Neurofilament light chain in drug development for Amyotrophic Lateral Sclerosis: a critical appraisal. Brain. 2022;146(7):2711–6.PubMedCentralCrossRef Benatar M, Wuu J, Turner MR. Neurofilament light chain in drug development for Amyotrophic Lateral Sclerosis: a critical appraisal. Brain. 2022;146(7):2711–6.PubMedCentralCrossRef
79.
go back to reference Benatar M, Zhang L, Wang L, Granit V, Statland J, Barohn R, Swenson A, Ravits J, Jackson C, Burns TM, et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology. 2020;95:e59–69.PubMedPubMedCentralCrossRef Benatar M, Zhang L, Wang L, Granit V, Statland J, Barohn R, Swenson A, Ravits J, Jackson C, Burns TM, et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology. 2020;95:e59–69.PubMedPubMedCentralCrossRef
80.
go back to reference Benatar M, Wuu J, Lombardi V, Jeromin A, Bowser R, Andersen PM, Malaspina A. Neurofilaments in pre-symptomatic ALS and the impact of genotype. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:538–48.PubMedPubMedCentralCrossRef Benatar M, Wuu J, Lombardi V, Jeromin A, Bowser R, Andersen PM, Malaspina A. Neurofilaments in pre-symptomatic ALS and the impact of genotype. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:538–48.PubMedPubMedCentralCrossRef
81.
go back to reference Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169:13–21.PubMedCrossRef Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169:13–21.PubMedCrossRef
82.
go back to reference Saracino D, Dorgham K, Camuzat A, Rinaldi D, Rametti-Lacroux A, Houot M, Clot F, Martin-Hardy P, Jornea L, Azuar C, et al. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated Diseases: from tailored references to clinical applications. J Neurol Neurosurg Psychiatry. 2021;92:1278–88.PubMedCrossRef Saracino D, Dorgham K, Camuzat A, Rinaldi D, Rametti-Lacroux A, Houot M, Clot F, Martin-Hardy P, Jornea L, Azuar C, et al. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated Diseases: from tailored references to clinical applications. J Neurol Neurosurg Psychiatry. 2021;92:1278–88.PubMedCrossRef
83.
go back to reference Bjornevik K, O’Reilly EJ, Molsberry S, Kolonel LN, Le Marchand L, Paganoni S, Schwarzschild MA, Benkert P, Kuhle J, Ascherio A. Prediagnostic neurofilament light chain levels in amyotrophic lateral sclerosis. Neurology. 2021;97(15):e1466–74.PubMedPubMedCentralCrossRef Bjornevik K, O’Reilly EJ, Molsberry S, Kolonel LN, Le Marchand L, Paganoni S, Schwarzschild MA, Benkert P, Kuhle J, Ascherio A. Prediagnostic neurofilament light chain levels in amyotrophic lateral sclerosis. Neurology. 2021;97(15):e1466–74.PubMedPubMedCentralCrossRef
84.
go back to reference Staffaroni AM, Quintana M, Wendelberger B, Heuer HW, Russell LL, Cobigo Y, Wolf A, Goh SM, Petrucelli L, Gendron TF, et al. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med. 2022;28:2194–206.PubMedPubMedCentralCrossRef Staffaroni AM, Quintana M, Wendelberger B, Heuer HW, Russell LL, Cobigo Y, Wolf A, Goh SM, Petrucelli L, Gendron TF, et al. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med. 2022;28:2194–206.PubMedPubMedCentralCrossRef
85.
go back to reference Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, Farahany NA, Harrington EA, Chen W, Mitchell AA, et al. Design of a randomized, placebo-controlled, phase 3 Trial of Tofersen Initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS Study. Neurotherapeutics. 2022;19:1248–58.PubMedPubMedCentralCrossRef Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, Farahany NA, Harrington EA, Chen W, Mitchell AA, et al. Design of a randomized, placebo-controlled, phase 3 Trial of Tofersen Initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS Study. Neurotherapeutics. 2022;19:1248–58.PubMedPubMedCentralCrossRef
86.
go back to reference McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, Schoch KM, Hoye ML, Shabsovich M, Sun L, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128:3558–67.PubMedPubMedCentralCrossRef McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, Schoch KM, Hoye ML, Shabsovich M, Sun L, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128:3558–67.PubMedPubMedCentralCrossRef
87.
88.
go back to reference Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for Amyotrophic Lateral Sclerosis (ALS). Expert Opin Ther Targets. 2020;24:295–310.PubMedCrossRef Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for Amyotrophic Lateral Sclerosis (ALS). Expert Opin Ther Targets. 2020;24:295–310.PubMedCrossRef
89.
go back to reference Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116:2290–6.PubMedPubMedCentralCrossRef Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116:2290–6.PubMedPubMedCentralCrossRef
90.
go back to reference Winer L, Srinivasan D, Chun S, Lacomis D, Jaffa M, Fagan A, Holtzman DM, Wancewicz E, Bennett CF, Bowser R, et al. SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. JAMA Neurol. 2013;70:201–7.PubMedCrossRef Winer L, Srinivasan D, Chun S, Lacomis D, Jaffa M, Fagan A, Holtzman DM, Wancewicz E, Bennett CF, Bowser R, et al. SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. JAMA Neurol. 2013;70:201–7.PubMedCrossRef
91.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.PubMedPubMedCentralCrossRef DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.PubMedPubMedCentralCrossRef
92.
go back to reference Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.PubMedPubMedCentralCrossRef Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.PubMedPubMedCentralCrossRef
93.
go back to reference Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, Carlomagno Y, Daughrity LM, Jansen-West K, Perkerson EA, et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated Amyotrophic Lateral Sclerosis. Sci Transl Med. 2017;9:eaai7866.PubMedPubMedCentralCrossRef Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, Carlomagno Y, Daughrity LM, Jansen-West K, Perkerson EA, et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated Amyotrophic Lateral Sclerosis. Sci Transl Med. 2017;9:eaai7866.PubMedPubMedCentralCrossRef
94.
go back to reference Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A. 2013;110:E4530–4539.PubMedPubMedCentralCrossRef Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A. 2013;110:E4530–4539.PubMedPubMedCentralCrossRef
95.
go back to reference Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80:415–28.PubMedPubMedCentralCrossRef Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80:415–28.PubMedPubMedCentralCrossRef
96.
go back to reference Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5:208ra149.PubMedPubMedCentralCrossRef Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5:208ra149.PubMedPubMedCentralCrossRef
97.
go back to reference Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014;83:1043–50.PubMedPubMedCentralCrossRef Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014;83:1043–50.PubMedPubMedCentralCrossRef
98.
go back to reference O’Rourke JG, Bogdanik L, Muhammad A, Gendron TF, Kim KJ, Austin A, Cady J, Liu EY, Zarrow J, Grant S, et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron. 2015;88:892–901.PubMedPubMedCentralCrossRef O’Rourke JG, Bogdanik L, Muhammad A, Gendron TF, Kim KJ, Austin A, Cady J, Liu EY, Zarrow J, Grant S, et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron. 2015;88:892–901.PubMedPubMedCentralCrossRef
99.
go back to reference Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, et al. Gain of toxicity from ALS/FTD-Linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-Containing RNAs. Neuron. 2016;90:535–50.PubMedPubMedCentralCrossRef Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, et al. Gain of toxicity from ALS/FTD-Linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-Containing RNAs. Neuron. 2016;90:535–50.PubMedPubMedCentralCrossRef
100.
go back to reference Lehmer C, Oeckl P, Weishaupt JH, Volk AE, Diehl-Schmid J, Schroeter ML, Lauer M, Kornhuber J, Levin J, Fassbender K, et al. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol Med. 2017;9:859–68.PubMedPubMedCentralCrossRef Lehmer C, Oeckl P, Weishaupt JH, Volk AE, Diehl-Schmid J, Schroeter ML, Lauer M, Kornhuber J, Levin J, Fassbender K, et al. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol Med. 2017;9:859–68.PubMedPubMedCentralCrossRef
101.
go back to reference Meeter LHH, Gendron TF, Sias AC, Jiskoot LC, Russo SP, Donker Kaat L, Papma JM, Panman JL, van der Ende EL, Dopper EG, et al. Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann Clin Transl Neurol. 2018;5:583–97.PubMedPubMedCentralCrossRef Meeter LHH, Gendron TF, Sias AC, Jiskoot LC, Russo SP, Donker Kaat L, Papma JM, Panman JL, van der Ende EL, Dopper EG, et al. Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann Clin Transl Neurol. 2018;5:583–97.PubMedPubMedCentralCrossRef
102.
go back to reference Wilson KM, Katona E, Glaria I, Carcole M, Swift IJ, Sogorb-Esteve A, Heller C, Bouzigues A, Heslegrave AJ, Keshavan A, et al. Development of a sensitive trial-ready poly(GP) CSF biomarker assay for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2022;93:761–71.PubMedCrossRef Wilson KM, Katona E, Glaria I, Carcole M, Swift IJ, Sogorb-Esteve A, Heller C, Bouzigues A, Heslegrave AJ, Keshavan A, et al. Development of a sensitive trial-ready poly(GP) CSF biomarker assay for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2022;93:761–71.PubMedCrossRef
103.
go back to reference Krishnan G, Raitcheva D, Bartlett D, Prudencio M, McKenna-Yasek DM, Douthwright C, Oskarsson BE, Ladha S, King OD, Barmada SJ, et al. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nat Commun. 2022;13:2799.PubMedPubMedCentralCrossRef Krishnan G, Raitcheva D, Bartlett D, Prudencio M, McKenna-Yasek DM, Douthwright C, Oskarsson BE, Ladha S, King OD, Barmada SJ, et al. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nat Commun. 2022;13:2799.PubMedPubMedCentralCrossRef
104.
go back to reference Liu Y, Dodart JC, Tran H, Berkovitch S, Braun M, Byrne M, Durbin AF, Hu XS, Iwamoto N, Jang HG, et al. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nat Commun. 2021;12:847.PubMedPubMedCentralCrossRef Liu Y, Dodart JC, Tran H, Berkovitch S, Braun M, Byrne M, Durbin AF, Hu XS, Iwamoto N, Jang HG, et al. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nat Commun. 2021;12:847.PubMedPubMedCentralCrossRef
105.
go back to reference Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, Metterville J, Shin M, Sanil N, Dooley C, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28:117–24.PubMedCrossRef Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, Metterville J, Shin M, Sanil N, Dooley C, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28:117–24.PubMedCrossRef
106.
go back to reference Nelson PT, Brayne C, Flanagan ME, Abner EL, Agrawal S, Attems J, Castellani RJ, Corrada MM, Cykowski MD, Di J, et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s Disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 2022;144:27–44.PubMedPubMedCentralCrossRef Nelson PT, Brayne C, Flanagan ME, Abner EL, Agrawal S, Attems J, Castellani RJ, Corrada MM, Cykowski MD, Di J, et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s Disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 2022;144:27–44.PubMedPubMedCentralCrossRef
107.
go back to reference Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, Liesinger AM, Petersen RC, Parisi JE, Dickson DW. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131:571–85.PubMedPubMedCentralCrossRef Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, Liesinger AM, Petersen RC, Parisi JE, Dickson DW. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131:571–85.PubMedPubMedCentralCrossRef
108.
go back to reference Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML, Knopman DS, Boeve BF, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s Disease. Acta Neuropathol. 2014;127:811–24.PubMedPubMedCentralCrossRef Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML, Knopman DS, Boeve BF, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s Disease. Acta Neuropathol. 2014;127:811–24.PubMedPubMedCentralCrossRef
110.
go back to reference Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, et al. Neurodegenerative Disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141:2181–93.PubMedPubMedCentralCrossRef Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, et al. Neurodegenerative Disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141:2181–93.PubMedPubMedCentralCrossRef
111.
go back to reference Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–34.PubMedCrossRef Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–34.PubMedCrossRef
112.
go back to reference Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–11.PubMedCrossRef Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–11.PubMedCrossRef
113.
go back to reference Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I, Tumani H, Lee VM, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol. 2008;65:1481–7.PubMedPubMedCentralCrossRef Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I, Tumani H, Lee VM, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol. 2008;65:1481–7.PubMedPubMedCentralCrossRef
114.
go back to reference Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ, Mann DM, Allsop D, Nakagawa M. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 2009;117:55–62.PubMedCrossRef Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ, Mann DM, Allsop D, Nakagawa M. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 2009;117:55–62.PubMedCrossRef
115.
go back to reference Hosokawa M, Arai T, Yamashita M, Tsuji H, Nonaka T, Masuda-Suzukake M, Tamaoka A, Hasegawa M, Akiyama H. Differential diagnosis of amyotrophic lateral sclerosis from Guillain-Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. Int J Neurosci. 2014;124:344–9.PubMedCrossRef Hosokawa M, Arai T, Yamashita M, Tsuji H, Nonaka T, Masuda-Suzukake M, Tamaoka A, Hasegawa M, Akiyama H. Differential diagnosis of amyotrophic lateral sclerosis from Guillain-Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. Int J Neurosci. 2014;124:344–9.PubMedCrossRef
116.
go back to reference Noto Y, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S, Mori M, Uchiyama T, Isose S, Nasu S, et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler. 2011;12:140–3.PubMedCrossRef Noto Y, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S, Mori M, Uchiyama T, Isose S, Nasu S, et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler. 2011;12:140–3.PubMedCrossRef
117.
go back to reference Verstraete E, Kuiperij HB, van Blitterswijk MM, Veldink JH, Schelhaas HJ, van den Berg LH, Verbeek MM. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13:446–51.PubMedCrossRef Verstraete E, Kuiperij HB, van Blitterswijk MM, Veldink JH, Schelhaas HJ, van den Berg LH, Verbeek MM. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13:446–51.PubMedCrossRef
118.
go back to reference Beyer L, Gunther R, Koch JC, Klebe S, Hagenacker T, Lingor P, Biesalski AS, Hermann A, Nabers A, Gold R, et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2021;8:271–7.PubMedCrossRef Beyer L, Gunther R, Koch JC, Klebe S, Hagenacker T, Lingor P, Biesalski AS, Hermann A, Nabers A, Gold R, et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2021;8:271–7.PubMedCrossRef
119.
go back to reference Ren Y, Li S, Chen S, Sun X, Yang F, Wang H, Li M, Cui F, Huang X. TDP-43 and phosphorylated TDP-43 levels in Paired plasma and CSF samples in amyotrophic lateral sclerosis. Front Neurol. 2021;12:663637.PubMedPubMedCentralCrossRef Ren Y, Li S, Chen S, Sun X, Yang F, Wang H, Li M, Cui F, Huang X. TDP-43 and phosphorylated TDP-43 levels in Paired plasma and CSF samples in amyotrophic lateral sclerosis. Front Neurol. 2021;12:663637.PubMedPubMedCentralCrossRef
120.
go back to reference Majumder V, Gregory JM, Barria MA, Green A, Pal S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 2018;18:90.PubMedPubMedCentralCrossRef Majumder V, Gregory JM, Barria MA, Green A, Pal S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 2018;18:90.PubMedPubMedCentralCrossRef
121.
122.
go back to reference Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific autoantibody decline in patients with amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2012;8:e937.CrossRef Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific autoantibody decline in patients with amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2012;8:e937.CrossRef
123.
go back to reference Bourbouli M, Rentzos M, Bougea A, Zouvelou V, Constantinides VC, Zaganas I, Evdokimidis I, Kapaki E, Paraskevas GP. Cerebrospinal fluid TAR DNA-binding protein 43 combined with tau proteins as a candidate biomarker for amyotrophic lateral sclerosis and frontotemporal dementia spectrum disorders. Dement Geriatr Cogn Disord. 2017;44:144–52.PubMedCrossRef Bourbouli M, Rentzos M, Bougea A, Zouvelou V, Constantinides VC, Zaganas I, Evdokimidis I, Kapaki E, Paraskevas GP. Cerebrospinal fluid TAR DNA-binding protein 43 combined with tau proteins as a candidate biomarker for amyotrophic lateral sclerosis and frontotemporal dementia spectrum disorders. Dement Geriatr Cogn Disord. 2017;44:144–52.PubMedCrossRef
124.
go back to reference Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995;69:3584–96.PubMedPubMedCentralCrossRef Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995;69:3584–96.PubMedPubMedCentralCrossRef
125.
126.
go back to reference Menon P, Kiernan MC, Yiannikas C, Stroud J, Vucic S. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol. 2013;124:410–6.PubMedCrossRef Menon P, Kiernan MC, Yiannikas C, Stroud J, Vucic S. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol. 2013;124:410–6.PubMedCrossRef
127.
128.
go back to reference Calvo A, Vasta R, Moglia C, Matteoni E, Canosa A, Mattei A, La Mancusa C, Focaraccio L, Mazzini L, Chio A, et al. Prognostic role of slow vital capacity in amyotrophic lateral sclerosis. J Neurol. 2020;267:1615–21.PubMedCrossRef Calvo A, Vasta R, Moglia C, Matteoni E, Canosa A, Mattei A, La Mancusa C, Focaraccio L, Mazzini L, Chio A, et al. Prognostic role of slow vital capacity in amyotrophic lateral sclerosis. J Neurol. 2020;267:1615–21.PubMedCrossRef
129.
go back to reference Williams SM, Venkataraman L, Tian H, Khan G, Harris BT, Sierks MR. Novel atomic force microscopy based biopanning for isolation of morphology specific reagents against TDP-43 variants in amyotrophic lateral sclerosis. J Vis Exp. 2015;12(96):e52584. Williams SM, Venkataraman L, Tian H, Khan G, Harris BT, Sierks MR. Novel atomic force microscopy based biopanning for isolation of morphology specific reagents against TDP-43 variants in amyotrophic lateral sclerosis. J Vis Exp. 2015;12(96):e52584.
130.
go back to reference Tan Q, Yalamanchili HK, Park J, De Maio A, Lu HC, Wan YW, White JJ, Bondar VV, Sayegh LS, Liu X, et al. Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet. 2016;25:5083–93.PubMedPubMedCentral Tan Q, Yalamanchili HK, Park J, De Maio A, Lu HC, Wan YW, White JJ, Bondar VV, Sayegh LS, Liu X, et al. Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet. 2016;25:5083–93.PubMedPubMedCentral
131.
132.
go back to reference Britson KA, Ling JP, Braunstein KE, Montagne JM, Kastenschmidt JM, Wilson A, Ikenaga C, Tsao W, Pinal-Fernandez I, Russell KA, et al. Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Sci Transl Med. 2022;14:eabi9196.PubMedPubMedCentralCrossRef Britson KA, Ling JP, Braunstein KE, Montagne JM, Kastenschmidt JM, Wilson A, Ikenaga C, Tsao W, Pinal-Fernandez I, Russell KA, et al. Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Sci Transl Med. 2022;14:eabi9196.PubMedPubMedCentralCrossRef
133.
go back to reference Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, Hanson PI, Kimonis V, Pestronk A. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79:1186–9.PubMedCrossRef Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, Hanson PI, Kimonis V, Pestronk A. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79:1186–9.PubMedCrossRef
134.
go back to reference Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.PubMedPubMedCentralCrossRef Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.PubMedPubMedCentralCrossRef
136.
go back to reference Johnson ECB, Bian S, Haque RU, Carter EK, Watson CM, Gordon BA, Ping L, Duong DM, Epstein MP, McDade E, et al. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease. Nat Med. 2023;29:1979–88.PubMedPubMedCentralCrossRef Johnson ECB, Bian S, Haque RU, Carter EK, Watson CM, Gordon BA, Ping L, Duong DM, Epstein MP, McDade E, et al. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease. Nat Med. 2023;29:1979–88.PubMedPubMedCentralCrossRef
137.
go back to reference Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW. Staging TDP-43 pathology in Alzheimer’s Disease. Acta Neuropathol. 2014;127:441–50.PubMedCrossRef Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW. Staging TDP-43 pathology in Alzheimer’s Disease. Acta Neuropathol. 2014;127:441–50.PubMedCrossRef
138.
139.
go back to reference Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, Salachas F, Corcia P, Frochot V, Lacorte JM, et al. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11:166–71.PubMedCrossRef Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, Salachas F, Corcia P, Frochot V, Lacorte JM, et al. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11:166–71.PubMedCrossRef
140.
go back to reference Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B, Couratier P. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr. 2001;74:328–34.PubMedCrossRef Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B, Couratier P. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr. 2001;74:328–34.PubMedCrossRef
141.
go back to reference Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P. Nutritional status is a prognostic factor for survival in ALS patients. Neurology. 1999;53:1059–63.PubMedCrossRef Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P. Nutritional status is a prognostic factor for survival in ALS patients. Neurology. 1999;53:1059–63.PubMedCrossRef
142.
go back to reference Funalot B, Desport JC, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:113–7.PubMedCrossRef Funalot B, Desport JC, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:113–7.PubMedCrossRef
143.
go back to reference Steinacker P, Verde F, Fang L, Feneberg E, Oeckl P, Roeber S, Anderl-Straub S, Danek A, Diehl-Schmid J, Fassbender K, et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry. 2018;89:239–47.PubMedCrossRef Steinacker P, Verde F, Fang L, Feneberg E, Oeckl P, Roeber S, Anderl-Straub S, Danek A, Diehl-Schmid J, Fassbender K, et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry. 2018;89:239–47.PubMedCrossRef
144.
go back to reference Thompson AG, Gray E, Bampton A, Raciborska D, Talbot K, Turner MR. CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90:1215–20.PubMedCrossRef Thompson AG, Gray E, Bampton A, Raciborska D, Talbot K, Turner MR. CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90:1215–20.PubMedCrossRef
145.
go back to reference Gille B, De Schaepdryver M, Dedeene L, Goossens J, Claeys KG, Van Den Bosch L, Tournoy J, Van Damme P, Poesen K. Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry. 2019;90:1338–46.PubMed Gille B, De Schaepdryver M, Dedeene L, Goossens J, Claeys KG, Van Den Bosch L, Tournoy J, Van Damme P, Poesen K. Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry. 2019;90:1338–46.PubMed
146.
go back to reference Vu L, An J, Kovalik T, Gendron T, Petrucelli L, Bowser R. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J Neurol Neurosurg Psychiatry. 2020;91:350–8.PubMedCrossRef Vu L, An J, Kovalik T, Gendron T, Petrucelli L, Bowser R. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J Neurol Neurosurg Psychiatry. 2020;91:350–8.PubMedCrossRef
147.
go back to reference Gaur N, Steinbach R, Plaas M, Witte OW, Brill MS, Grosskreutz J. Chitinase dysregulation predicts disease aggressiveness in ALS: insights from the D50 progression model. J Neurol Neurosurg Psychiatry. 2023;94:585–8.PubMedCrossRef Gaur N, Steinbach R, Plaas M, Witte OW, Brill MS, Grosskreutz J. Chitinase dysregulation predicts disease aggressiveness in ALS: insights from the D50 progression model. J Neurol Neurosurg Psychiatry. 2023;94:585–8.PubMedCrossRef
148.
go back to reference Sussmuth SD, Sperfeld AD, Hinz A, Brettschneider J, Endruhn S, Ludolph AC, Tumani H. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology. 2010;74:982–7.PubMedCrossRef Sussmuth SD, Sperfeld AD, Hinz A, Brettschneider J, Endruhn S, Ludolph AC, Tumani H. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology. 2010;74:982–7.PubMedCrossRef
149.
go back to reference Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G, Kuhle J, Lule D, Meyer T, Oeckl P, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:112–9.PubMedCrossRef Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G, Kuhle J, Lule D, Meyer T, Oeckl P, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:112–9.PubMedCrossRef
150.
go back to reference McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular vesicles in amyotrophic lateral sclerosis. Life (Basel). 2022;13:121.PubMed McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular vesicles in amyotrophic lateral sclerosis. Life (Basel). 2022;13:121.PubMed
151.
go back to reference Otake K, Kamiguchi H, Hirozane Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med Genomics. 2019;12:7.PubMedPubMedCentralCrossRef Otake K, Kamiguchi H, Hirozane Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med Genomics. 2019;12:7.PubMedPubMedCentralCrossRef
152.
go back to reference Hayashi N, Doi H, Kurata Y, Kagawa H, Atobe Y, Funakoshi K, Tada M, Katsumoto A, Tanaka K, Kunii M, et al. Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurosci Res. 2020;160:43–9.PubMedCrossRef Hayashi N, Doi H, Kurata Y, Kagawa H, Atobe Y, Funakoshi K, Tada M, Katsumoto A, Tanaka K, Kunii M, et al. Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurosci Res. 2020;160:43–9.PubMedCrossRef
153.
go back to reference Saucier D, Wajnberg G, Roy J, Beauregard A-P, Crapoulet N, Fournier S, Ghosh A, Lewis S, Marrero A, O’Connell C, et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Brain Res. 2018;1708:100–8.PubMedCrossRef Saucier D, Wajnberg G, Roy J, Beauregard A-P, Crapoulet N, Fournier S, Ghosh A, Lewis S, Marrero A, O’Connell C, et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Brain Res. 2018;1708:100–8.PubMedCrossRef
154.
go back to reference Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med. 2019;17:170.PubMedPubMedCentralCrossRef Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med. 2019;17:170.PubMedPubMedCentralCrossRef
155.
go back to reference Xu Q, Zhao Y, Zhou X, Luan J, Cui Y, Han J. Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients. Intractable Rare Dis Res. 2018;7:13–8.PubMedPubMedCentralCrossRef Xu Q, Zhao Y, Zhou X, Luan J, Cui Y, Han J. Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients. Intractable Rare Dis Res. 2018;7:13–8.PubMedPubMedCentralCrossRef
156.
go back to reference Katsu M, Hama Y, Utsumi J, Takashina K, Yasumatsu H, Mori F, Wakabayashi K, Shoji M, Sasaki H. MicroRNA expression profiles of neuron-derived extracellular vesicles in plasma from patients with amyotrophic lateral sclerosis. Neurosci Lett. 2019;708:134176.PubMedCrossRef Katsu M, Hama Y, Utsumi J, Takashina K, Yasumatsu H, Mori F, Wakabayashi K, Shoji M, Sasaki H. MicroRNA expression profiles of neuron-derived extracellular vesicles in plasma from patients with amyotrophic lateral sclerosis. Neurosci Lett. 2019;708:134176.PubMedCrossRef
157.
go back to reference Morasso CF, Sproviero D, Mimmi MC, Giannini M, Gagliardi S, Vanna R, Diamanti L, Bernuzzi S, Piccotti F, Truffi M, et al. Raman spectroscopy reveals biochemical differences in plasma derived extracellular vesicles from sporadic amyotrophic lateral sclerosis patients. Nanomedicine. 2020;29:102249.PubMedCrossRef Morasso CF, Sproviero D, Mimmi MC, Giannini M, Gagliardi S, Vanna R, Diamanti L, Bernuzzi S, Piccotti F, Truffi M, et al. Raman spectroscopy reveals biochemical differences in plasma derived extracellular vesicles from sporadic amyotrophic lateral sclerosis patients. Nanomedicine. 2020;29:102249.PubMedCrossRef
158.
go back to reference Joilin G, Gray E, Thompson AG, Bobeva Y, Talbot K, Weishaupt J, Ludolph A, Malaspina A, Leigh PN, Newbury SF, et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Commun. 2020;2:fcaa053.PubMedPubMedCentralCrossRef Joilin G, Gray E, Thompson AG, Bobeva Y, Talbot K, Weishaupt J, Ludolph A, Malaspina A, Leigh PN, Newbury SF, et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Commun. 2020;2:fcaa053.PubMedPubMedCentralCrossRef
159.
go back to reference Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, Kazoka M, Wollff H, Heath PR, Shaw PJ, Kirby J. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for Amyotrophic Lateral Sclerosis (ALS). Neurobiol Aging. 2017;55:123–31.PubMedPubMedCentralCrossRef Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, Kazoka M, Wollff H, Heath PR, Shaw PJ, Kirby J. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for Amyotrophic Lateral Sclerosis (ALS). Neurobiol Aging. 2017;55:123–31.PubMedPubMedCentralCrossRef
160.
go back to reference Liguori M, Nuzziello N, Introna A, Consiglio A, Licciulli F, D’Errico E, Scarafino A, Distaso E, Simone IL. Dysregulation of MicroRNAs and Target genes networks in Peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Front Mol Neurosci. 2018;11:288.PubMedPubMedCentralCrossRef Liguori M, Nuzziello N, Introna A, Consiglio A, Licciulli F, D’Errico E, Scarafino A, Distaso E, Simone IL. Dysregulation of MicroRNAs and Target genes networks in Peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Front Mol Neurosci. 2018;11:288.PubMedPubMedCentralCrossRef
162.
163.
go back to reference Shefner JM, Cudkowicz ME, Zhang H, Schoenfeld D, Jillapalli D, Northeast ALSC. The use of statistical MUNE in a multicenter clinical trial. Muscle Nerve. 2004;30:463–9.PubMedCrossRef Shefner JM, Cudkowicz ME, Zhang H, Schoenfeld D, Jillapalli D, Northeast ALSC. The use of statistical MUNE in a multicenter clinical trial. Muscle Nerve. 2004;30:463–9.PubMedCrossRef
164.
go back to reference de Carvalho M, Swash M. Sensitivity of electrophysiological tests for upper and lower motor neuron dysfunction in ALS: a six-month longitudinal study. Muscle Nerve. 2010;41:208–11.PubMedCrossRef de Carvalho M, Swash M. Sensitivity of electrophysiological tests for upper and lower motor neuron dysfunction in ALS: a six-month longitudinal study. Muscle Nerve. 2010;41:208–11.PubMedCrossRef
165.
go back to reference Shefner JM, Watson ML, Simionescu L, Caress JB, Burns TM, Maragakis NJ, Benatar M, David WS, Sharma KR, Rutkove SB. Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology. 2011;77:235–41.PubMedPubMedCentralCrossRef Shefner JM, Watson ML, Simionescu L, Caress JB, Burns TM, Maragakis NJ, Benatar M, David WS, Sharma KR, Rutkove SB. Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology. 2011;77:235–41.PubMedPubMedCentralCrossRef
166.
go back to reference Alberich LC, Vázquez-Costa JF, Ten-Esteve A, Mazón M, Martí-Bonmatí L. Imaging Biomarkers in Amyotrophic Lateral Sclerosis . In: Peplow PV, Martinez B, Gennarelli TA. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. 2022. https://doi.org/10.1007/978-1-0716-1712-0_20. Alberich LC, Vázquez-Costa JF, Ten-Esteve A, Mazón M, Martí-Bonmatí L. Imaging Biomarkers in Amyotrophic Lateral Sclerosis . In: Peplow PV, Martinez B, Gennarelli TA. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. 2022. https://​doi.​org/​10.​1007/​978-1-0716-1712-0_​20.
167.
go back to reference Menke RA, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging endpoints in amyotrophic lateral sclerosis. Neurotherapeutics. 2017;14:11–23.PubMedCrossRef Menke RA, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging endpoints in amyotrophic lateral sclerosis. Neurotherapeutics. 2017;14:11–23.PubMedCrossRef
168.
go back to reference Senda J, Atsuta N, Watanabe H, Bagarinao E, Imai K, Yokoi D, Riku Y, Masuda M, Nakamura R, Watanabe H, et al. Structural MRI correlates of amyotrophic lateral sclerosis progression. J Neurol Neurosurg Psychiatry. 2017;88:901–7.PubMedCrossRef Senda J, Atsuta N, Watanabe H, Bagarinao E, Imai K, Yokoi D, Riku Y, Masuda M, Nakamura R, Watanabe H, et al. Structural MRI correlates of amyotrophic lateral sclerosis progression. J Neurol Neurosurg Psychiatry. 2017;88:901–7.PubMedCrossRef
169.
170.
go back to reference Youn BY, Ko Y, Moon S, Lee J, Ko SG, Kim JY. Digital biomarkers for neuromuscular disorders: a systematic scoping review. Diagnostics (Basel). 2021;11:1275.PubMedCrossRef Youn BY, Ko Y, Moon S, Lee J, Ko SG, Kim JY. Digital biomarkers for neuromuscular disorders: a systematic scoping review. Diagnostics (Basel). 2021;11:1275.PubMedCrossRef
171.
go back to reference Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain. 2022;145:1598–609.PubMedPubMedCentralCrossRef Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain. 2022;145:1598–609.PubMedPubMedCentralCrossRef
172.
go back to reference Hagenaars SP, Radaković R, Crockford C, Fawns-Ritchie C, Harris SE, Gale CR, Deary IJ. Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function. PLoS One. 2018;13:e0198187.PubMedPubMedCentralCrossRef Hagenaars SP, Radaković R, Crockford C, Fawns-Ritchie C, Harris SE, Gale CR, Deary IJ. Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function. PLoS One. 2018;13:e0198187.PubMedPubMedCentralCrossRef
Metadata
Title
Fluid biomarkers for amyotrophic lateral sclerosis: a review
Authors
Katherine E. Irwin
Udit Sheth
Philip C. Wong
Tania F. Gendron
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-023-00685-6

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue