Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Research article

A partial Drp1 knockout improves autophagy flux independent of mitochondrial function

Authors: Rebecca Z. Fan, Carolina Sportelli, Yanhao Lai, Said S. Salehe, Jennifer R. Pinnell, Harry J. Brown, Jason R. Richardson, Shouqing Luo, Kim Tieu

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Background

Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson’s disease and Alzheimer’s disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed.

Methods

We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/− mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used.

Results in vitro

data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/− mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology.

Conclusions

This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736–41.PubMedCrossRef Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736–41.PubMedCrossRef
2.
go back to reference Blackstone C, Chang CR. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci. 2010;1201:34–9. 34–9.PubMedPubMedCentralCrossRef Blackstone C, Chang CR. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci. 2010;1201:34–9. 34–9.PubMedPubMedCentralCrossRef
3.
go back to reference Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA, Shaw JM, et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature. 2018;558(7710):401–5.PubMedPubMedCentralCrossRef Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA, Shaw JM, et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature. 2018;558(7710):401–5.PubMedPubMedCentralCrossRef
4.
go back to reference Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, et al. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc Natl Acad Sci U S A. 2021;118:29.CrossRef Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, et al. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc Natl Acad Sci U S A. 2021;118:29.CrossRef
5.
go back to reference Pinnell JT. Mitochondrial dynamics in neurodegenerative diseases. In: Aschner ML, G.C., editor. Environmental factors in neurodegenerative diseases. Volume 1. London, United Kingdom: Elsevier; 2017. pp. 211–46.CrossRef Pinnell JT. Mitochondrial dynamics in neurodegenerative diseases. In: Aschner ML, G.C., editor. Environmental factors in neurodegenerative diseases. Volume 1. London, United Kingdom: Elsevier; 2017. pp. 211–46.CrossRef
6.
go back to reference Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells. 2019;8(9). Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells. 2019;8(9).
7.
go back to reference Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.PubMedPubMedCentralCrossRef Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.PubMedPubMedCentralCrossRef
8.
go back to reference Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife. 2015;4:e11553.PubMedPubMedCentralCrossRef Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife. 2015;4:e11553.PubMedPubMedCentralCrossRef
9.
go back to reference Itoh K, Adachi Y, Yamada T, Suzuki TL, Otomo T, McBride HM, et al. A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J Biol Chem. 2018;293(30):11809–22.PubMedPubMedCentralCrossRef Itoh K, Adachi Y, Yamada T, Suzuki TL, Otomo T, McBride HM, et al. A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J Biol Chem. 2018;293(30):11809–22.PubMedPubMedCentralCrossRef
10.
go back to reference Yoon Y, Pitts KR, Dahan S, McNiven MA. A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol. 1998;140(4):779–93.PubMedPubMedCentralCrossRef Yoon Y, Pitts KR, Dahan S, McNiven MA. A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol. 1998;140(4):779–93.PubMedPubMedCentralCrossRef
11.
go back to reference Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M. Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem. 2003;278(10):8597–605.PubMedCrossRef Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M. Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem. 2003;278(10):8597–605.PubMedCrossRef
12.
go back to reference Bido S, Soria FN, Fan RZ, Bezard E, Tieu K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson’s disease. Sci Rep. 2017;7(1):7495.PubMedPubMedCentralCrossRef Bido S, Soria FN, Fan RZ, Bezard E, Tieu K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson’s disease. Sci Rep. 2017;7(1):7495.PubMedPubMedCentralCrossRef
13.
go back to reference Fan RZ, Guo M, Luo S, Cui M, Tieu K. Exosome release and neuropathology induced by alpha-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta Neuropathol Commun. 2019;7(1):184.PubMedPubMedCentralCrossRef Fan RZ, Guo M, Luo S, Cui M, Tieu K. Exosome release and neuropathology induced by alpha-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta Neuropathol Commun. 2019;7(1):184.PubMedPubMedCentralCrossRef
14.
go back to reference Baek SH, Park SJ, Jeong JI, Kim SH, Han J, Kyung JW, et al. Inhibition of Drp1 ameliorates synaptic Depression, Abeta Deposition, and cognitive impairment in an Alzheimer’s Disease Model. J Neurosci. 2017;37(20):5099–110.PubMedPubMedCentralCrossRef Baek SH, Park SJ, Jeong JI, Kim SH, Han J, Kyung JW, et al. Inhibition of Drp1 ameliorates synaptic Depression, Abeta Deposition, and cognitive impairment in an Alzheimer’s Disease Model. J Neurosci. 2017;37(20):5099–110.PubMedPubMedCentralCrossRef
15.
go back to reference Reddy PH, Manczak M, Yin X. Mitochondria-Division inhibitor 1 protects against amyloid-beta induced mitochondrial fragmentation and synaptic damage in Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):147–62.PubMedPubMedCentralCrossRef Reddy PH, Manczak M, Yin X. Mitochondria-Division inhibitor 1 protects against amyloid-beta induced mitochondrial fragmentation and synaptic damage in Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):147–62.PubMedPubMedCentralCrossRef
16.
go back to reference Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest. 2013;123(12):5371–88.PubMedPubMedCentralCrossRef Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest. 2013;123(12):5371–88.PubMedPubMedCentralCrossRef
17.
go back to reference Wedler FC, Denman RB, Roby WG. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry; 19821982. p. 6389-96. Wedler FC, Denman RB, Roby WG. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry; 19821982. p. 6389-96.
18.
go back to reference Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992;71(1):107–18.PubMedCrossRef Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992;71(1):107–18.PubMedCrossRef
19.
go back to reference Kanyo ZF, Scolnick LR, Ash DE, Christianson DW. Structure of a unique binuclear manganese cluster in arginase. Nature. 1996;383(6600):554–7.PubMedCrossRef Kanyo ZF, Scolnick LR, Ash DE, Christianson DW. Structure of a unique binuclear manganese cluster in arginase. Nature. 1996;383(6600):554–7.PubMedCrossRef
20.
go back to reference Calne DB, Chu NS, Huang CC, Lu CS, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology; 1994. p. 1583-6. Calne DB, Chu NS, Huang CC, Lu CS, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology; 1994. p. 1583-6.
21.
go back to reference Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-Induced parkinsonism and Parkinson’s Disease: Shared and Distinguishable features. Int J Environ Res Public Health. 2015;12(7):7519–40.PubMedPubMedCentralCrossRef Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-Induced parkinsonism and Parkinson’s Disease: Shared and Distinguishable features. Int J Environ Res Public Health. 2015;12(7):7519–40.PubMedPubMedCentralCrossRef
22.
go back to reference Guilarte TR, Gonzales KK. Manganese-Induced Parkinsonism Is Not Idiopathic Parkinsons Disease: Environmental and Genetic Evidence. Toxicological Sciences; 2015. p. 204–12. Guilarte TR, Gonzales KK. Manganese-Induced Parkinsonism Is Not Idiopathic Parkinsons Disease: Environmental and Genetic Evidence. Toxicological Sciences; 2015. p. 204–12.
23.
go back to reference Roth JA. Correlation between the biochemical pathways altered by mutated parkinson-related genes and chronic exposure to manganese. Neurotoxicology. 2014;44(Electronic):1872–9711. Roth JA. Correlation between the biochemical pathways altered by mutated parkinson-related genes and chronic exposure to manganese. Neurotoxicology. 2014;44(Electronic):1872–9711.
24.
go back to reference Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol. 2021;20(11):956–68.PubMedCrossRef Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol. 2021;20(11):956–68.PubMedCrossRef
25.
go back to reference Lucchini RG, Albini EFAU, - Benedetti L, Benedetti LF, Borghesi SFAU, - Coccaglio R, Coccaglio RF, Malara ECFAU, - Parrinello G, et al. High prevalence of parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med. 2007;50(11):788–800.PubMedCrossRef Lucchini RG, Albini EFAU, - Benedetti L, Benedetti LF, Borghesi SFAU, - Coccaglio R, Coccaglio RF, Malara ECFAU, - Parrinello G, et al. High prevalence of parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med. 2007;50(11):788–800.PubMedCrossRef
26.
go back to reference Lucchini R, Tieu K. Manganese-Induced parkinsonism: evidence from Epidemiological and Experimental studies. Biomolecules. 2023;13(8). Lucchini R, Tieu K. Manganese-Induced parkinsonism: evidence from Epidemiological and Experimental studies. Biomolecules. 2023;13(8).
27.
go back to reference Fukushima T, Tan X, Luo Y, Kanda H. Relationship between blood levels of heavy metals and Parkinson’s disease in China. Neuroepidemiology. 2010;34(1):18–24.PubMedCrossRef Fukushima T, Tan X, Luo Y, Kanda H. Relationship between blood levels of heavy metals and Parkinson’s disease in China. Neuroepidemiology. 2010;34(1):18–24.PubMedCrossRef
28.
go back to reference Robison G, Sullivan B, Cannon JR, Pushkar Y. Identification of dopaminergic neurons of the substantia Nigra pars compacta as a target of manganese accumulation. Metallomics; 2015. p. 748–55. Robison G, Sullivan B, Cannon JR, Pushkar Y. Identification of dopaminergic neurons of the substantia Nigra pars compacta as a target of manganese accumulation. Metallomics; 2015. p. 748–55.
29.
go back to reference Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology; 1999. p. 445–53. Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology; 1999. p. 445–53.
30.
go back to reference Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, et al. An analysis of the effects of Mn2 + on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol. 2010;249(1):65–75.PubMedPubMedCentralCrossRef Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, et al. An analysis of the effects of Mn2 + on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol. 2010;249(1):65–75.PubMedPubMedCentralCrossRef
31.
go back to reference Warren EB, Bryan MR, Morcillo P, Hardeman KN, Aschner M, Bowman AB. Manganese-induced mitochondrial dysfunction is not detectable at exposures below the Acute cytotoxic threshold in neuronal cell types. Toxicol Sci. 2020;176(2):446–59.PubMedPubMedCentralCrossRef Warren EB, Bryan MR, Morcillo P, Hardeman KN, Aschner M, Bowman AB. Manganese-induced mitochondrial dysfunction is not detectable at exposures below the Acute cytotoxic threshold in neuronal cell types. Toxicol Sci. 2020;176(2):446–59.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy. 2020;16(8):1506–23.PubMedCrossRef Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy. 2020;16(8):1506–23.PubMedCrossRef
34.
go back to reference Suzuki H, Wada O, Inoue K, Tosaka H, Ono T. Role of brain lysosomes in the development of manganese toxicity in mice. Toxicol Appl Pharmacol. 1983;71(3):422–9.PubMedCrossRef Suzuki H, Wada O, Inoue K, Tosaka H, Ono T. Role of brain lysosomes in the development of manganese toxicity in mice. Toxicol Appl Pharmacol. 1983;71(3):422–9.PubMedCrossRef
35.
go back to reference Gautier MK, Ginsberg SD. A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons. J Neurosci Methods. 2021;350:109038.PubMedCrossRef Gautier MK, Ginsberg SD. A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons. J Neurosci Methods. 2021;350:109038.PubMedCrossRef
36.
go back to reference Roberge CL, Wang L, Barroso M, Corr DT. Non-destructive evaluation of Regional Cell Density within Tumor aggregates following Drug Treatment. J Vis Exp. 2022(184). Roberge CL, Wang L, Barroso M, Corr DT. Non-destructive evaluation of Regional Cell Density within Tumor aggregates following Drug Treatment. J Vis Exp. 2022(184).
37.
go back to reference Thomas HE, Zhang Y, Stefely JA, Veiga SR, Thomas G, Kozma SC, et al. Mitochondrial complex I activity is required for maximal autophagy. Cell Rep. 2018;24(9):2404–17e8.PubMedPubMedCentralCrossRef Thomas HE, Zhang Y, Stefely JA, Veiga SR, Thomas G, Kozma SC, et al. Mitochondrial complex I activity is required for maximal autophagy. Cell Rep. 2018;24(9):2404–17e8.PubMedPubMedCentralCrossRef
38.
go back to reference Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem. 2017;119(3):315–26.PubMedCrossRef Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem. 2017;119(3):315–26.PubMedCrossRef
39.
go back to reference Cui M, Tang X, Christian WV, Yoon Y, Tieu K. Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem. 2010;285(15):11740–52.PubMedPubMedCentralCrossRef Cui M, Tang X, Christian WV, Yoon Y, Tieu K. Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem. 2010;285(15):11740–52.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–42.PubMedPubMedCentralCrossRef Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–42.PubMedPubMedCentralCrossRef
42.
go back to reference Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, et al. Agouti C57BL/6 N embryonic stem cells for mouse genetic resources. Nat Methods. 2009;6(7):493–5.PubMedPubMedCentralCrossRef Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, et al. Agouti C57BL/6 N embryonic stem cells for mouse genetic resources. Nat Methods. 2009;6(7):493–5.PubMedPubMedCentralCrossRef
43.
go back to reference Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S et al. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of alpha-synuclein. Sci Signal. 2019;12(572). Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S et al. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of alpha-synuclein. Sci Signal. 2019;12(572).
44.
go back to reference Bordi M, De Cegli R, Testa B, Nixon RA, Ballabio A, Cecconi F. A gene toolbox for monitoring autophagy transcription. Cell Death Dis. 2021;12(11):1044.PubMedPubMedCentralCrossRef Bordi M, De Cegli R, Testa B, Nixon RA, Ballabio A, Cecconi F. A gene toolbox for monitoring autophagy transcription. Cell Death Dis. 2021;12(11):1044.PubMedPubMedCentralCrossRef
46.
go back to reference Blake JA, Baldarelli R, Kadin JA, Richardson JE, Smith CL, Bult CJ, et al. Mouse Genome Database (MGD): knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 2021;49(D1):D981–D7.PubMedCrossRef Blake JA, Baldarelli R, Kadin JA, Richardson JE, Smith CL, Bult CJ, et al. Mouse Genome Database (MGD): knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 2021;49(D1):D981–D7.PubMedCrossRef
47.
go back to reference Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–D7.PubMedCrossRef Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–D7.PubMedCrossRef
49.
go back to reference Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3(5):452–60.PubMedCrossRef Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3(5):452–60.PubMedCrossRef
50.
go back to reference Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–55.PubMedPubMedCentralCrossRef Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–55.PubMedPubMedCentralCrossRef
51.
go back to reference Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolanos JP, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542–72.PubMedCrossRef Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolanos JP, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542–72.PubMedCrossRef
52.
go back to reference Li L, Wang Z, Hill JA, Lin F. New Autophagy Reporter mice reveal Dynamics of Proximal Tubular Autophagy. J Am Soc Nephrol. 2014;25:305–15.PubMedCrossRef Li L, Wang Z, Hill JA, Lin F. New Autophagy Reporter mice reveal Dynamics of Proximal Tubular Autophagy. J Am Soc Nephrol. 2014;25:305–15.PubMedCrossRef
53.
go back to reference Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009;11(8):958–66.PubMedCrossRef Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009;11(8):958–66.PubMedCrossRef
54.
go back to reference Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol. 2009;186(6):805–16.PubMedPubMedCentralCrossRef Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol. 2009;186(6):805–16.PubMedPubMedCentralCrossRef
55.
go back to reference Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304–17.PubMedPubMedCentralCrossRef Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304–17.PubMedPubMedCentralCrossRef
58.
go back to reference Plomp PJ, Gordon PB, Meijer AJ, Høyvik H, Seglen PO. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem. 1989;264(12):6699–704.PubMedCrossRef Plomp PJ, Gordon PB, Meijer AJ, Høyvik H, Seglen PO. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem. 1989;264(12):6699–704.PubMedCrossRef
59.
go back to reference Yu WH, Dorado B, Figueroa HY, Wang L, Planel E, Cookson MR, et al. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. Am J Pathol. 2009;2009/07/23(2):736–47.CrossRef Yu WH, Dorado B, Figueroa HY, Wang L, Planel E, Cookson MR, et al. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. Am J Pathol. 2009;2009/07/23(2):736–47.CrossRef
60.
go back to reference Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21(10):1300–9.PubMedPubMedCentralCrossRef Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21(10):1300–9.PubMedPubMedCentralCrossRef
61.
go back to reference Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology; 2018. p. 204–18. Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology; 2018. p. 204–18.
62.
go back to reference Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, et al. Manganese-Induced Neurotoxicity: New insights into the Triad of protein misfolding, mitochondrial impairment, and Neuroinflammation. Front NeuroSci. 2019;13:654.PubMedPubMedCentralCrossRef Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, et al. Manganese-Induced Neurotoxicity: New insights into the Triad of protein misfolding, mitochondrial impairment, and Neuroinflammation. Front NeuroSci. 2019;13:654.PubMedPubMedCentralCrossRef
63.
go back to reference Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson’s disease. Prog Brain Res. 2020;252:61–89.PubMedCrossRef Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson’s disease. Prog Brain Res. 2020;252:61–89.PubMedCrossRef
64.
go back to reference Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25(18):2349–60.PubMedCrossRef Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25(18):2349–60.PubMedCrossRef
65.
go back to reference Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–6.PubMedCrossRef Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–6.PubMedCrossRef
66.
go back to reference Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218–29.PubMedPubMedCentralCrossRef Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218–29.PubMedPubMedCentralCrossRef
67.
go back to reference Perl DP, Olanow CW. The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol. 2007;66(8):675–82.PubMedCrossRef Perl DP, Olanow CW. The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol. 2007;66(8):675–82.PubMedCrossRef
68.
go back to reference Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.PubMedCrossRef Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.PubMedCrossRef
69.
go back to reference Lee HJ, Khoshaghideh F, Patel S, Lee SJ. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neuroscience: Official J Soc Neurosci. 2004;24(8):1888–96.CrossRef Lee HJ, Khoshaghideh F, Patel S, Lee SJ. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neuroscience: Official J Soc Neurosci. 2004;24(8):1888–96.CrossRef
70.
go back to reference Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 2022;8(6):eabm6393.PubMedCrossRef Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 2022;8(6):eabm6393.PubMedCrossRef
71.
go back to reference Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Mov Disord 2016;2016/01/27(2):178–92. Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Mov Disord 2016;2016/01/27(2):178–92.
72.
go back to reference Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–37.PubMedPubMedCentralCrossRef Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–37.PubMedPubMedCentralCrossRef
73.
go back to reference Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360–7.PubMedPubMedCentralCrossRef Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360–7.PubMedPubMedCentralCrossRef
74.
go back to reference Lee HJ, Cho ED, Lee KW, Kim JH, Cho SG, Lee SJ. Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp Mol Med. 2013;45(5):e22.PubMedPubMedCentralCrossRef Lee HJ, Cho ED, Lee KW, Kim JH, Cho SG, Lee SJ. Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp Mol Med. 2013;45(5):e22.PubMedPubMedCentralCrossRef
75.
go back to reference Pinnell JR, Cui M, Tieu K. Exosomes in Parkinson disease. J Neurochem. 2020. Pinnell JR, Cui M, Tieu K. Exosomes in Parkinson disease. J Neurochem. 2020.
76.
go back to reference Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology. 2001;56(1):8–13.PubMedCrossRef Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology. 2001;56(1):8–13.PubMedCrossRef
77.
go back to reference Racette BA, Criswell SRFAU, - Lundin J, Lundin JIFAU, - Hobson A, Hobson AF, Seixas NF et al. Kotzbauer PT FAU - Evanoff B,. Increased risk of parkinsonism associated with welding exposure. Neurotoxicology. 2012;33(1872–9711 (Electronic)):1356-61. Racette BA, Criswell SRFAU, - Lundin J, Lundin JIFAU, - Hobson A, Hobson AF, Seixas NF et al. Kotzbauer PT FAU - Evanoff B,. Increased risk of parkinsonism associated with welding exposure. Neurotoxicology. 2012;33(1872–9711 (Electronic)):1356-61.
79.
go back to reference Lucchini RG, Guazzetti S, Renzetti S, Broberg K, Caci M, Covolo L, et al. Metal exposure and SNCA rs356219 polymorphism Associated with Parkinson Disease and parkinsonism. Front Neurol. 2020;11:556337.PubMedPubMedCentralCrossRef Lucchini RG, Guazzetti S, Renzetti S, Broberg K, Caci M, Covolo L, et al. Metal exposure and SNCA rs356219 polymorphism Associated with Parkinson Disease and parkinsonism. Front Neurol. 2020;11:556337.PubMedPubMedCentralCrossRef
80.
go back to reference Lucchini RG, Guazzetti S, Zoni S, Benedetti C, Fedrighi C, Peli M, et al. Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology. 2014;45:309–17.PubMedCrossRef Lucchini RG, Guazzetti S, Zoni S, Benedetti C, Fedrighi C, Peli M, et al. Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology. 2014;45:309–17.PubMedCrossRef
82.
go back to reference Manczak M, Sesaki H, Kageyama Y, Reddy PH. Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochim Biophys Acta. 2012;1822(6):862–74.PubMedPubMedCentralCrossRef Manczak M, Sesaki H, Kageyama Y, Reddy PH. Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochim Biophys Acta. 2012;1822(6):862–74.PubMedPubMedCentralCrossRef
Metadata
Title
A partial Drp1 knockout improves autophagy flux independent of mitochondrial function
Authors
Rebecca Z. Fan
Carolina Sportelli
Yanhao Lai
Said S. Salehe
Jennifer R. Pinnell
Harry J. Brown
Jason R. Richardson
Shouqing Luo
Kim Tieu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-024-00708-w

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue