Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Ventricular Tachycardia | Research article

Mechanical chest compressions for cardiac arrest in the cath-lab: when is it enough and who should go to extracorporeal cardio pulmonary resuscitation?

Authors: Bjarne Madsen Hardig, Karl B. Kern, Henrik Wagner

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Treating patients in cardiac arrest (CA) with mechanical chest compressions (MCC) during percutaneous coronary intervention (PCI) is now routine in many coronary catheterization laboratories (cath-lab) and more aggressive treatment modalities, including extracorporeal CPR are becoming more common. The cath-lab setting enables monitoring of vital physiological parameters and other clinical factors that can potentially guide the resuscitation effort. This retrospective analysis attempts to identify such factors associated with ROSC and survival.

Methods

In thirty-five patients of which background data, drugs used during the resuscitation and the intervention, PCI result, post ROSC-treatment and physiologic data collected during CPR were compared for prediction of ROSC and survival.

Results

Eighteen (51%) patients obtained ROSC and 9 (26%) patients survived with good neurological outcome. There was no difference between groups in regards of background data. Patients arriving in the cath-lab with ongoing resuscitation efforts had lower ROSC rate (22% vs 53%; p = 0.086) and no survivors (0% vs 50%, p = 0.001). CPR time also differentiated resuscitation outcomes (ROSC: 18 min vs No ROSC: 50 min; p = 0.007 and Survivors: 10 min vs No Survivors: 45 min; p = 0.001). Higher arterial diastolic blood pressure was associated with ROSC: 30 mmHg vs No ROSC: 19 mmHg; p = 0.012).

Conclusion

Aortic diastolic pressure during CPR is the most predictive physiological parameter of resuscitation success. Ongoing CPR upon arrival at the cath-lab and continued MCC beyond 10–20 min in the cath-lab were both predictive of poor outcomes. These factors can potentially guide decisions regarding escalation and termination of resuscitation efforts.
Literature
2.
go back to reference Larsen AI, Hjørnevik AS, Ellingsen CL, Nilsen DW. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation. 2007;75:454–9.CrossRef Larsen AI, Hjørnevik AS, Ellingsen CL, Nilsen DW. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation. 2007;75:454–9.CrossRef
4.
go back to reference Wagner H, Madsen-Hardig B, Rundgren M, Harnek J, Gotberg M, Olivecrona GK. Cerebral oximetry during prolonged cardiac arrest and percutaneous coronary intervention : a report on five cases. ICU Dir. 2013;4:22.CrossRef Wagner H, Madsen-Hardig B, Rundgren M, Harnek J, Gotberg M, Olivecrona GK. Cerebral oximetry during prolonged cardiac arrest and percutaneous coronary intervention : a report on five cases. ICU Dir. 2013;4:22.CrossRef
7.
go back to reference Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002;55:285–99.CrossRef Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002;55:285–99.CrossRef
8.
go back to reference Redding JS. Abdominal compression in cardiopulmonary resuscitation. Anesth Analg. 1971;50:668–75.CrossRef Redding JS. Abdominal compression in cardiopulmonary resuscitation. Anesth Analg. 1971;50:668–75.CrossRef
9.
go back to reference Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106–13.CrossRef Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106–13.CrossRef
10.
go back to reference Jin X1, Weil MH, Tang W, Povoas H, Pernat A, Xie J, Bisera J. End-tidal carbon dioxide as a noninvasive indicator of cardiac index during circulatory shock. Crit Care Med. 2000;28:2415–9.CrossRef Jin X1, Weil MH, Tang W, Povoas H, Pernat A, Xie J, Bisera J. End-tidal carbon dioxide as a noninvasive indicator of cardiac index during circulatory shock. Crit Care Med. 2000;28:2415–9.CrossRef
11.
go back to reference Grmec S, Klemen P. Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg Med. 2001;8(4):263–9.CrossRef Grmec S, Klemen P. Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg Med. 2001;8(4):263–9.CrossRef
12.
go back to reference Moon SW, Lee SW, Choi SH, Hong YS, Kim SJ, Kim NH. Arterial minus end-tidal CO2 as a prognostic factor of hospital survival in patients resuscitated from cardiac arrest. Resuscitation. 2007;72:219–25.CrossRef Moon SW, Lee SW, Choi SH, Hong YS, Kim SJ, Kim NH. Arterial minus end-tidal CO2 as a prognostic factor of hospital survival in patients resuscitated from cardiac arrest. Resuscitation. 2007;72:219–25.CrossRef
13.
go back to reference Griffin M, Cooney C. Pulse oximetry during cardiopulmonary resuscitation. Anaesthesia. 1995;50:1008.CrossRef Griffin M, Cooney C. Pulse oximetry during cardiopulmonary resuscitation. Anaesthesia. 1995;50:1008.CrossRef
20.
go back to reference Warren SA, Huszti E, Bradley SM, Chan PS, Bryson CL, Fitzpatrick AL, Nichol G. American Heart Association's get with the guidelines-resuscitation (National Registry of CPR) investigators. Adrenaline (epinephrine) dosing period and survival after in-hospital cardiac arrest: a retrospective review of prospectively collected data. Resuscitation. 2014;85:350–8. https://doi.org/10.1016/j.resuscitation.2013.10.004.CrossRefPubMed Warren SA, Huszti E, Bradley SM, Chan PS, Bryson CL, Fitzpatrick AL, Nichol G. American Heart Association's get with the guidelines-resuscitation (National Registry of CPR) investigators. Adrenaline (epinephrine) dosing period and survival after in-hospital cardiac arrest: a retrospective review of prospectively collected data. Resuscitation. 2014;85:350–8. https://​doi.​org/​10.​1016/​j.​resuscitation.​2013.​10.​004.CrossRefPubMed
21.
go back to reference Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, JJM B, Moore F, Fothergill RT, Rees N, O'Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R. PARAMEDIC2 collaborators. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379:711–21. https://doi.org/10.1056/NEJMoa1806842. CrossRefPubMed Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, JJM B, Moore F, Fothergill RT, Rees N, O'Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R. PARAMEDIC2 collaborators. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379:711–21. https://​doi.​org/​10.​1056/​NEJMoa1806842.​ CrossRefPubMed
22.
go back to reference Lindner KH, Ahnefeld FW. Comparison of epinephrine and norepinephrine in the treatment of asphyxial or fibrillatory cardiac arrest in a porcine model. Crit Care Med. 1989;17:437–41.CrossRef Lindner KH, Ahnefeld FW. Comparison of epinephrine and norepinephrine in the treatment of asphyxial or fibrillatory cardiac arrest in a porcine model. Crit Care Med. 1989;17:437–41.CrossRef
23.
go back to reference Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRef Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRef
24.
go back to reference Lamhaut L, Hutin A, Puymirat E, Jouan J, Raphalen JH, Jouffroy R, Jaffry M, Dagron C, An K, Dumas F, Marijon E, Bougouin W, Tourtier JP, Baud F, Jouven X, Danchin N, Spaulding C, Carli P. A pre-hospital extracorporeal cardio pulmonary resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: An observational study and propensity analysis. Resuscitation. 2017;117:109–17. https://doi.org/10.1016/j.resuscitation.2017.04.014.CrossRefPubMed Lamhaut L, Hutin A, Puymirat E, Jouan J, Raphalen JH, Jouffroy R, Jaffry M, Dagron C, An K, Dumas F, Marijon E, Bougouin W, Tourtier JP, Baud F, Jouven X, Danchin N, Spaulding C, Carli P. A pre-hospital extracorporeal cardio pulmonary resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: An observational study and propensity analysis. Resuscitation. 2017;117:109–17. https://​doi.​org/​10.​1016/​j.​resuscitation.​2017.​04.​014.CrossRefPubMed
Metadata
Title
Mechanical chest compressions for cardiac arrest in the cath-lab: when is it enough and who should go to extracorporeal cardio pulmonary resuscitation?
Authors
Bjarne Madsen Hardig
Karl B. Kern
Henrik Wagner
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1108-1

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue