Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2021

Open Access 01-12-2021 | Ventricular Septal Defect | Research article

A three-dimensional printed model in preoperative consent for ventricular septal defect repair

Authors: Xicheng Deng, Siping He, Peng Huang, Jinwen Luo, Guangxian Yang, Bing Zhou, Yunbin Xiao

Published in: Journal of Cardiothoracic Surgery | Issue 1/2021

Login to get access

Abstract

Background

The 3D printing technology in congenital cardiac surgery has been widely utilized to improve patients’ understanding of their disease. However, there has been no randomized controlled study on its usefulness in surgical consent for congenital heart disease repair.

Methods

A randomized controlled study was performed during consent process in which guardians of candidates for ventricular septal defect repair were given detailed explanation of the anatomy, indication for surgery and potential complication and risks using 3D print ventricular septal defect model (n = 20) versus a conventional 2D diagram (n = 20). A questionnaire was finished by each guardian of the patients. Data collected from questionnaires as well as medical records were statistically analyzed.

Results

Statistically significant improvements in ratings of understanding of ventricular septal defect anatomy (p = 0.02), and of the surgical procedure and potential complications (p = 0.02) were noted in the group that used the 3D model, though there was no difference in overall ratings of the consent process (p = 0.09). There was no difference in questionnaire score between subjects with different education levels. The clinical outcomes, as represented by the duration of intensive care unit stay, intubation duration was comparable between the two groups.

Conclusions

The results indicated that it was an effective tool which may be used to consent for congenital heart surgery. Different education levels do not affect guardians’ understanding in consent. The impact of 3D printing used in this scenario on long term outcomes remains to be defined.
Literature
2.
go back to reference Stewart MA. Effective physician-patient communication and health outcomes: a review. CMAJ: Can Med Assoc J. 1995;152(9):1423–33. Stewart MA. Effective physician-patient communication and health outcomes: a review. CMAJ: Can Med Assoc J. 1995;152(9):1423–33.
3.
go back to reference Pratt M, Searles GE. Using visual aids to enhance physician-patient discussions and increase health literacy. J Cutan Med Surg. 2017;21(6):497–501.CrossRef Pratt M, Searles GE. Using visual aids to enhance physician-patient discussions and increase health literacy. J Cutan Med Surg. 2017;21(6):497–501.CrossRef
4.
go back to reference Coles-Black J, Chao I, Chuen J. Three-dimensional printing in medicine. Med J Aust. 2017;207(3):102–3.CrossRef Coles-Black J, Chao I, Chuen J. Three-dimensional printing in medicine. Med J Aust. 2017;207(3):102–3.CrossRef
5.
go back to reference Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569–76.CrossRef Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569–76.CrossRef
6.
go back to reference Li C, Cheung TF, Fan VC, Sin KM, Wong CW, Leung GK. Applications of three-dimensional printing in surgery. Surg Innov . 2017;24(1):82–8.CrossRef Li C, Cheung TF, Fan VC, Sin KM, Wong CW, Leung GK. Applications of three-dimensional printing in surgery. Surg Innov . 2017;24(1):82–8.CrossRef
7.
go back to reference Alkhouri N, Zein NN. Three-dimensional printing and pediatric liver disease. Curr Opin Pediatr. 2016;28(5):626–30.CrossRef Alkhouri N, Zein NN. Three-dimensional printing and pediatric liver disease. Curr Opin Pediatr. 2016;28(5):626–30.CrossRef
8.
go back to reference Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi AV. Three-dimensional printing and its applications in otorhinolaryngology-head and neck surgery. Otolaryngol-Head Neck Surg. 2017;156(6):999–1010.CrossRef Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi AV. Three-dimensional printing and its applications in otorhinolaryngology-head and neck surgery. Otolaryngol-Head Neck Surg. 2017;156(6):999–1010.CrossRef
9.
go back to reference Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171–84.CrossRef Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171–84.CrossRef
10.
go back to reference Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging. 2017;33(1):137–44.CrossRef Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging. 2017;33(1):137–44.CrossRef
11.
go back to reference Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol. 2017;70(4):282–91.CrossRef Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol. 2017;70(4):282–91.CrossRef
12.
go back to reference Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Schievano S, Taylor AM, Wray J. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit Heart Dis. 2017;12(1):113–8.CrossRef Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Schievano S, Taylor AM, Wray J. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit Heart Dis. 2017;12(1):113–8.CrossRef
13.
go back to reference Su W, Xiao Y, He S, Huang P, Deng X. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Med Educ. 2018;18(1):178.CrossRef Su W, Xiao Y, He S, Huang P, Deng X. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Med Educ. 2018;18(1):178.CrossRef
14.
go back to reference Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, Ordonez A, Gonzalez-Calle A, Anderson D, Hazekamp MG, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardio-Thoracic Surg. 2017;52(6):1139–48.CrossRef Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, Ordonez A, Gonzalez-Calle A, Anderson D, Hazekamp MG, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardio-Thoracic Surg. 2017;52(6):1139–48.CrossRef
15.
go back to reference Biglino G, Koniordou D, Gasparini M, Capelli C, Leaver LK, Khambadkone S, Schievano S, Taylor AM, Wray J. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr Cardiol. 2017;38(4):813–8.CrossRef Biglino G, Koniordou D, Gasparini M, Capelli C, Leaver LK, Khambadkone S, Schievano S, Taylor AM, Wray J. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr Cardiol. 2017;38(4):813–8.CrossRef
16.
go back to reference Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213–21.CrossRef Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213–21.CrossRef
17.
go back to reference Loke YH, Harahsheh AS, Krieger A, Olivieri LJ. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. BMC Med Educ. 2017;17(1):54.CrossRef Loke YH, Harahsheh AS, Krieger A, Olivieri LJ. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. BMC Med Educ. 2017;17(1):54.CrossRef
18.
go back to reference Rademakers J, Delnoij D, Nijman J, de Boer D. Educational inequalities in patient-centred care: patients’ preferences and experiences. BMC Health Serv Res. 2012;12:261.CrossRef Rademakers J, Delnoij D, Nijman J, de Boer D. Educational inequalities in patient-centred care: patients’ preferences and experiences. BMC Health Serv Res. 2012;12:261.CrossRef
19.
go back to reference Aelbrecht K, Rimondini M, Bensing J, Moretti F, Willems S, Mazzi M, Fletcher I, Deveugele M. Quality of doctor-patient communication through the eyes of the patient: variation according to the patient’s educational level. Adv Health Sci Educ Theory Pract. 2015;20(4):873–84.CrossRef Aelbrecht K, Rimondini M, Bensing J, Moretti F, Willems S, Mazzi M, Fletcher I, Deveugele M. Quality of doctor-patient communication through the eyes of the patient: variation according to the patient’s educational level. Adv Health Sci Educ Theory Pract. 2015;20(4):873–84.CrossRef
20.
go back to reference Ip EJ, Tang TT, Cheng V, Yu J, Cheongsiatmoy DS. Impact of educational levels and health literacy on community acetaminophen knowledge. J Pharm Pract. 2015;28(6):499–503.CrossRef Ip EJ, Tang TT, Cheng V, Yu J, Cheongsiatmoy DS. Impact of educational levels and health literacy on community acetaminophen knowledge. J Pharm Pract. 2015;28(6):499–503.CrossRef
21.
go back to reference Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, Giardini A, Derrick G, Jones A, Taylor AM. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 2015, 5(4):e007165. Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, Giardini A, Derrick G, Jones A, Taylor AM. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 2015, 5(4):e007165.
22.
go back to reference Ryan J, Plasencia J, Richardson R, Velez D, Nigro JJ, Pophal S, Frakes D: 3D printing for congenital heart disease: a single site's initial three-yearexperience. 3D Printing in Medicine 2018, 4(1):10. Ryan J, Plasencia J, Richardson R, Velez D, Nigro JJ, Pophal S, Frakes D: 3D printing for congenital heart disease: a single site's initial three-yearexperience. 3D Printing in Medicine 2018, 4(1):10.
23.
go back to reference Augustin CM, Crozier A, Neic A, Prassl AJ, Karabelas E, Ferreira da Silva T, Fernandes JF, Campos F, Kuehne T, Plank G: Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis. Europace 2016, 18(suppl 4):iv121–9. Augustin CM, Crozier A, Neic A, Prassl AJ, Karabelas E, Ferreira da Silva T, Fernandes JF, Campos F, Kuehne T, Plank G: Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis. Europace 2016, 18(suppl 4):iv121–9.
24.
go back to reference Batteux C, Haidar MA, Bonnet D. 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review. Front Pediatr. 2019;7:23.CrossRef Batteux C, Haidar MA, Bonnet D. 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review. Front Pediatr. 2019;7:23.CrossRef
25.
go back to reference Moore RA, Riggs KW, Kourtidou S, Schneider K, Szugye N, Troja W, D’Souza G, Rattan M, Bryant R 3rd, Taylor MD, et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Birth Defects Res. 2018;110(13):1082–90.CrossRef Moore RA, Riggs KW, Kourtidou S, Schneider K, Szugye N, Troja W, D’Souza G, Rattan M, Bryant R 3rd, Taylor MD, et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Birth Defects Res. 2018;110(13):1082–90.CrossRef
Metadata
Title
A three-dimensional printed model in preoperative consent for ventricular septal defect repair
Authors
Xicheng Deng
Siping He
Peng Huang
Jinwen Luo
Guangxian Yang
Bing Zhou
Yunbin Xiao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2021
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-021-01604-w

Other articles of this Issue 1/2021

Journal of Cardiothoracic Surgery 1/2021 Go to the issue