Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2021

Open Access 01-12-2021 | Heart Surgery | Research article

Pulmonary infection after cardiopulmonary bypass surgery in children: a risk estimation model in China

Authors: Chunnian Ren, Chun Wu, Zhengxia Pan, Quan Wang, Yonggang Li

Published in: Journal of Cardiothoracic Surgery | Issue 1/2021

Login to get access

Abstract

Objectives

The occurrence of pulmonary infection after congenital heart disease (CHD) surgery can lead to significant increases in intensive care in cardiac intensive care unit (CICU) retention time, medical expenses, and risk of death risk. We hypothesized that patients with a high risk of pulmonary infection could be screened out as early after surgery. Hence, we developed and validated the first risk prediction model to verify our hypothesis.

Methods

Patients who underwent CHD surgery from October 2012 to December 2017 in the Children’s Hospital of Chongqing Medical University were included in the development group, while patients who underwent CHD surgery from December 2017 to October 2018 were included in the validation group. The independent risk factors associated with pulmonary infection following CHD surgery were screened using univariable and multivariable logistic regression analyses. The corresponding nomogram prediction model was constructed according to the regression coefficients. Model discrimination was evaluated by the area under the receiver operating characteristic curve (ROC) (AUC), and model calibration was conducted with the Hosmer-Lemeshow test.

Results

The univariate and multivariate logistic regression analyses identified the following six independent risk factors of pulmonary infection after cardiac surgery: age, weight, preoperative hospital stay, risk-adjusted classification for congenital heart surgery (RACHS)-1 score, cardiopulmonary bypass time and intraoperative blood transfusion. We established an individualized prediction model of pulmonary infection following cardiopulmonary bypass surgery for CHD in children. The model displayed accuracy and reliability and was evaluated by discrimination and calibration analyses. The AUCs for the development and validation groups were 0.900 and 0.908, respectively, and the P-values of the calibration tests were 0.999 and 0.452 respectively. Therefore, the predicted probability of the model was consistent with the actual probability.

Conclusions

Identified the independent risk factors of pulmonary infection after cardiopulmonary bypass surgery. An individualized prediction model was developed to evaluate the pulmonary infection of patients after surgery. For high-risk patients, after surgery, targeted interventions can reduce the risk of pulmonary infection.
Literature
3.
go back to reference Duarte-Raya F, Moreno-Ibarra LE, de Anda-Gomez M, Medina-Moran I. Incidence and clinical factors related with nosocomial infection in children with heart surgery. Rev Med Inst Mex Seguro Soc. 2010;48(6):585–90.PubMed Duarte-Raya F, Moreno-Ibarra LE, de Anda-Gomez M, Medina-Moran I. Incidence and clinical factors related with nosocomial infection in children with heart surgery. Rev Med Inst Mex Seguro Soc. 2010;48(6):585–90.PubMed
7.
go back to reference Guardia Cami MT, Jordan Garcia I, Urrea Ayala M. Nosocomial infections in pediatric patients following cardiac surgery. An Pediatr (Barc). 2008;69:34–8.CrossRef Guardia Cami MT, Jordan Garcia I, Urrea Ayala M. Nosocomial infections in pediatric patients following cardiac surgery. An Pediatr (Barc). 2008;69:34–8.CrossRef
12.
go back to reference Editorial Board, Chinese Journal of Pediatrics., Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, Chinese Medical Association., Subspecialty Group of Emergency, The Society of Pediatrics, Chinese Medical Association., Subspecialty Group of Immunology, The Society of Pediatrics, Chinese Medical Association. The management of hospital acquired pneumonia in children (2010). Zhonghua Er Ke Za Zhi. 2011;49(2):106–15. Editorial Board, Chinese Journal of Pediatrics., Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, Chinese Medical Association., Subspecialty Group of Emergency, The Society of Pediatrics, Chinese Medical Association., Subspecialty Group of Immunology, The Society of Pediatrics, Chinese Medical Association. The management of hospital acquired pneumonia in children (2010). Zhonghua Er Ke Za Zhi. 2011;49(2):106–15.
13.
go back to reference Torres A, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur Respir J. 2017;50. https://doi.org/10.1183/13993003.00582-2017. Torres A, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur Respir J. 2017;50. https://​doi.​org/​10.​1183/​13993003.​00582-2017.
Metadata
Title
Pulmonary infection after cardiopulmonary bypass surgery in children: a risk estimation model in China
Authors
Chunnian Ren
Chun Wu
Zhengxia Pan
Quan Wang
Yonggang Li
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2021
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-021-01450-w

Other articles of this Issue 1/2021

Journal of Cardiothoracic Surgery 1/2021 Go to the issue