Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2021

Open Access 01-12-2021 | Aortic Valve Replacement | Research article

Surgical techniques for aortic valve xenotransplantation

Authors: Jennie H. Kwon, Morgan Hill, Brielle Gerry, Steven W. Kubalak, Muhammad Mohiuddin, Minoo N. Kavarana, T. Konrad Rajab

Published in: Journal of Cardiothoracic Surgery | Issue 1/2021

Login to get access

Abstract

Background

Heart valve replacement in neonates and infants is one of the remaining unsolved problems in cardiac surgery because conventional valve prostheses do not grow with the children. Similarly, heart valve replacement in children and young adults with contraindications to anticoagulation remains an unsolved problem because mechanical valves are thrombogenic and bioprosthetic valves are prone to early degeneration. Therefore, there is an urgent clinical need for growing heart valve replacements that are durable without the need for anticoagulation.

Methods

A human cadaver model was used to develop surgical techniques for aortic valve xenotransplantation.

Results

Aortic valve xenotransplantation is technically feasible. Subcoronary implantation of the valve avoids the need for a root replacement.

Conclusion

Aortic valve xenotransplantation is promising because the development of GTKO.hCD46.hTBM transgenic pigs has brought xenotransplantation within clinical reach.
Literature
1.
go back to reference Otto CM, Bonow RO. Valvular heart disease: a companion to Braunwald’s heart disease. 4th ed. Philadelphia: Elsevier Saunders; 2014. Otto CM, Bonow RO. Valvular heart disease: a companion to Braunwald’s heart disease. 4th ed. Philadelphia: Elsevier Saunders; 2014.
2.
go back to reference Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2017 on CDC WONDER Online Database, released December, 2018. Data are from the Multiple Cause of Death Files, 1999–2017, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/ucd-icd10.html on Oct 24, 2019 Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2017 on CDC WONDER Online Database, released December, 2018. Data are from the Multiple Cause of Death Files, 1999–2017, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://​wonder.​cdc.​gov/​ucd-icd10.​html on Oct 24, 2019
5.
go back to reference Sachweh JS, et al. Mechanical aortic and mitral valve replacement in infants and children. Thorac Cardiovasc Surg. 2007;55(3):156–62.CrossRef Sachweh JS, et al. Mechanical aortic and mitral valve replacement in infants and children. Thorac Cardiovasc Surg. 2007;55(3):156–62.CrossRef
6.
go back to reference Alsoufi B, et al. Mechanical valves versus the Ross procedure for aortic valve replacement in children: propensity-adjusted comparison of long-term outcomes. J Thorac Cardiovasc Surg. 2009;137(2):362-370.e9.CrossRef Alsoufi B, et al. Mechanical valves versus the Ross procedure for aortic valve replacement in children: propensity-adjusted comparison of long-term outcomes. J Thorac Cardiovasc Surg. 2009;137(2):362-370.e9.CrossRef
7.
go back to reference Brown JW, et al. Ross versus non-Ross aortic valve replacement in children: a 22-year single institution comparison of outcomes. Ann Thorac Surg. 2016;101(5):1804–10.CrossRef Brown JW, et al. Ross versus non-Ross aortic valve replacement in children: a 22-year single institution comparison of outcomes. Ann Thorac Surg. 2016;101(5):1804–10.CrossRef
8.
go back to reference Heuvelman HJ, et al. Pregnancy outcomes in women with aortic valve substitutes. Am J Cardiol. 2013;111(3):382–7.CrossRef Heuvelman HJ, et al. Pregnancy outcomes in women with aortic valve substitutes. Am J Cardiol. 2013;111(3):382–7.CrossRef
9.
go back to reference Born D, et al. Pregnancy in patients with prosthetic heart valves: the effects of anticoagulation on mother, fetus, and neonate. Am Heart J. 1992;124(2):413–7.CrossRef Born D, et al. Pregnancy in patients with prosthetic heart valves: the effects of anticoagulation on mother, fetus, and neonate. Am Heart J. 1992;124(2):413–7.CrossRef
10.
go back to reference Vitale N, et al. Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol. 1999;33(6):1637–41.CrossRef Vitale N, et al. Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol. 1999;33(6):1637–41.CrossRef
11.
go back to reference Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–132.CrossRef Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–132.CrossRef
13.
go back to reference Jacobs JP, Mavroudis C, Quintessenza JA, Chai PJ, Pasquali SK, Hill KD, Vricella LA, Jacobs ML, Dearani JA, Cameron D. Reoperations for pediatric and congenital heart disease: an analysis of the Society of Thoracic Surgeons (STS) congenital heart surgery database. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2014;17:2–8.CrossRef Jacobs JP, Mavroudis C, Quintessenza JA, Chai PJ, Pasquali SK, Hill KD, Vricella LA, Jacobs ML, Dearani JA, Cameron D. Reoperations for pediatric and congenital heart disease: an analysis of the Society of Thoracic Surgeons (STS) congenital heart surgery database. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2014;17:2–8.CrossRef
14.
go back to reference Boyd R, Parisi F, Kalfa D. State of the art: tissue engineering in congenital heart surgery. Semin Thorac Cardiovasc Surg. 2019;31(4):807–17.CrossRef Boyd R, Parisi F, Kalfa D. State of the art: tissue engineering in congenital heart surgery. Semin Thorac Cardiovasc Surg. 2019;31(4):807–17.CrossRef
15.
go back to reference Feins EN, Emani SM. Expandable valves, annuloplasty rings, shunts, and bands for growing children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2020;23:17–23.CrossRef Feins EN, Emani SM. Expandable valves, annuloplasty rings, shunts, and bands for growing children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2020;23:17–23.CrossRef
16.
go back to reference Fioretta ES, et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol. 2020;18:92–116.CrossRef Fioretta ES, et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol. 2020;18:92–116.CrossRef
17.
go back to reference Poulis N, et al. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther. 2020;18:681–96.CrossRef Poulis N, et al. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther. 2020;18:681–96.CrossRef
18.
go back to reference Blum KM, Drews JD, Breuer CK. Tissue-engineered heart valves: a call for mechanistic studies. Tissue Eng Part B Rev. 2018;24(3):240–53.CrossRef Blum KM, Drews JD, Breuer CK. Tissue-engineered heart valves: a call for mechanistic studies. Tissue Eng Part B Rev. 2018;24(3):240–53.CrossRef
19.
go back to reference Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138.CrossRef Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138.CrossRef
20.
go back to reference Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018;564:430–3.CrossRef Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018;564:430–3.CrossRef
22.
go back to reference Jones EL. Freehand homograft aortic valve replacement the learning curve: a technical analysis of the first 31 patients. Ann Thorac Surg. 1989;48:26–32.CrossRef Jones EL. Freehand homograft aortic valve replacement the learning curve: a technical analysis of the first 31 patients. Ann Thorac Surg. 1989;48:26–32.CrossRef
26.
go back to reference Daicoff GR, Botero LM, Quintessenza JA. Allograft replacement of the aortic valve versus the miniroot and valve. Ann Thorac Surg. 1993;55:855–9.CrossRef Daicoff GR, Botero LM, Quintessenza JA. Allograft replacement of the aortic valve versus the miniroot and valve. Ann Thorac Surg. 1993;55:855–9.CrossRef
30.
go back to reference Sands MP, Rittenhouse EA, Mohri H, Merendino KA. An anatomical comparison of human, pig, calf, and sheep aortic valves. Ann Thorac Surg. 1969;8:407–14.CrossRef Sands MP, Rittenhouse EA, Mohri H, Merendino KA. An anatomical comparison of human, pig, calf, and sheep aortic valves. Ann Thorac Surg. 1969;8:407–14.CrossRef
31.
go back to reference Doty DB. Cardiac surgery: operative technique. St Louis: Mosby Inc.; 1997. Doty DB. Cardiac surgery: operative technique. St Louis: Mosby Inc.; 1997.
32.
go back to reference Berra IG, Hammer PE, Berra S, et al. An intraoperative test device for aortic valve repair. J Thorac Cardiovasc Surg. 2019;157(1):126–32.CrossRef Berra IG, Hammer PE, Berra S, et al. An intraoperative test device for aortic valve repair. J Thorac Cardiovasc Surg. 2019;157(1):126–32.CrossRef
33.
go back to reference Valente M, Faggian G, Billingham ME, Talenti E, Calabrese F, Casula R, Shumway NE, Thiene G. The aortic valve after heart transplantation. Ann Thorac Surg. 1995;60:S135–40.CrossRef Valente M, Faggian G, Billingham ME, Talenti E, Calabrese F, Casula R, Shumway NE, Thiene G. The aortic valve after heart transplantation. Ann Thorac Surg. 1995;60:S135–40.CrossRef
34.
go back to reference Goerler H, Simon A, Warnecke G, Meyer AL, Kuehn C, Haverich A, Strueber M. Cardiac surgery late after heart transplantation: a safe and effective treatment option. J Thorac Cardiovasc Surg. 2010;140:433–9.CrossRef Goerler H, Simon A, Warnecke G, Meyer AL, Kuehn C, Haverich A, Strueber M. Cardiac surgery late after heart transplantation: a safe and effective treatment option. J Thorac Cardiovasc Surg. 2010;140:433–9.CrossRef
35.
go back to reference Goekler J, Zuckermann A, Osorio E, Brkic FF, Uyanik-Uenal K, Laufer G, Aliabadi-Zuckermann A. Cardiac surgery after heart transplantation: elective operation or last exit strategy? Transplant Direct. 2017;3:e209.CrossRef Goekler J, Zuckermann A, Osorio E, Brkic FF, Uyanik-Uenal K, Laufer G, Aliabadi-Zuckermann A. Cardiac surgery after heart transplantation: elective operation or last exit strategy? Transplant Direct. 2017;3:e209.CrossRef
36.
go back to reference Kwon JH, Hill MA, Gerry B, Morningstar J, Kavarana MN, Nadig SN, Rajab TK. Cellular viability of partial heart transplant grafts in cold storage. Front Surg. 2021;8:676739.CrossRef Kwon JH, Hill MA, Gerry B, Morningstar J, Kavarana MN, Nadig SN, Rajab TK. Cellular viability of partial heart transplant grafts in cold storage. Front Surg. 2021;8:676739.CrossRef
37.
go back to reference Etnel JR, Elmont LC, Ertekin E, et al. Outcome after aortic valve replacement in children: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):143–52.CrossRef Etnel JR, Elmont LC, Ertekin E, et al. Outcome after aortic valve replacement in children: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):143–52.CrossRef
38.
go back to reference Rajab TK, Zorrilla-Vaca A, Kavarana MN, Mokashi S, Sainathan S. Ross operation in neonates: a meta-analysis. Ann Thorac Surg. 2020;113:192–8.CrossRef Rajab TK, Zorrilla-Vaca A, Kavarana MN, Mokashi S, Sainathan S. Ross operation in neonates: a meta-analysis. Ann Thorac Surg. 2020;113:192–8.CrossRef
39.
go back to reference Woods RK, Pasquali SK, Jacobs ML, Austin EH, Jacobs JP, Krolikowski M, Mitchell ME, Pizarro C, Tweddell JS. Aortic valve replacement in neonates and infants: an analysis of the society of thoracic surgeons congenital heart surgery database. J Thorac Cardiovasc Surg. 2012;144:1084–9.CrossRef Woods RK, Pasquali SK, Jacobs ML, Austin EH, Jacobs JP, Krolikowski M, Mitchell ME, Pizarro C, Tweddell JS. Aortic valve replacement in neonates and infants: an analysis of the society of thoracic surgeons congenital heart surgery database. J Thorac Cardiovasc Surg. 2012;144:1084–9.CrossRef
40.
go back to reference Bernstein D, Kolla S, Miner M, et al. Cardiac growth after pediatric heart transplantation. Circulation. 1992;85(4):1433–9.CrossRef Bernstein D, Kolla S, Miner M, et al. Cardiac growth after pediatric heart transplantation. Circulation. 1992;85(4):1433–9.CrossRef
41.
go back to reference Simon P, Aschauer C, Moidl R, et al. Growth of the pulmonary autograft after the Ross operation in childhood. Eur J Cardiothorac Surg. 2001;19(2):118–21.CrossRef Simon P, Aschauer C, Moidl R, et al. Growth of the pulmonary autograft after the Ross operation in childhood. Eur J Cardiothorac Surg. 2001;19(2):118–21.CrossRef
42.
go back to reference Cote N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol. 2017;32:123–9.CrossRef Cote N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol. 2017;32:123–9.CrossRef
43.
go back to reference Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA. Allograft heart valves: current aspects and future applications. Biopreserv Biobank. 2017;15:148–57.CrossRef Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA. Allograft heart valves: current aspects and future applications. Biopreserv Biobank. 2017;15:148–57.CrossRef
44.
go back to reference Kim KM, Herrera GA, Battarbee HD. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol. 1999;154:843–52.CrossRef Kim KM, Herrera GA, Battarbee HD. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol. 1999;154:843–52.CrossRef
Metadata
Title
Surgical techniques for aortic valve xenotransplantation
Authors
Jennie H. Kwon
Morgan Hill
Brielle Gerry
Steven W. Kubalak
Muhammad Mohiuddin
Minoo N. Kavarana
T. Konrad Rajab
Publication date
01-12-2021

Other articles of this Issue 1/2021

Journal of Cardiothoracic Surgery 1/2021 Go to the issue