Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Vascular Dementia | Research

Lipidomics profiling reveals distinct patterns of plasma sphingolipid alterations in Alzheimer’s disease and vascular dementia

Authors: Xin Ying Chua, Federico Torta, Joyce R. Chong, Narayanaswamy Venketasubramanian, Saima Hilal, Markus R. Wenk, Christopher P. Chen, Thiruma V. Arumugam, Deron R. Herr, Mitchell K. P. Lai

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Alzheimer’s disease (AD) and vascular dementia (VaD) are two of the commonest causes of dementia in the elderly. Of the myriad biomolecules implicated in dementia pathogenesis, sphingolipids have attracted relatively scant research attention despite their known involvement in multiple pathophysiological processes. The potential utility of peripheral sphingolipids as biomarkers in dementia cohorts with high concomitance of cerebrovascular diseases is also unclear.

Methods

Using a lipidomics platform, we performed a case–control study of plasma sphingolipids in a prospectively assessed cohort of 526 participants (non-cognitively impaired, NCI = 93, cognitively impaired = 217, AD = 166, VaD = 50) using a lipidomics platform.

Results

Distinct patterns of sphingolipid alterations were found in AD and VaD, namely an upregulation of d18:1 species in AD compared to downregulation of d16:1 species in VaD. In particular, GM3 d18:1/16:0 and GM3 d18:1/24:1 showed the strongest positive associations with AD. Furthermore, evaluation of sphingolipids panels showed specific combinations with higher sensitivity and specificity for classification of AD (Cer d16:1/24:0. Cer d18:1/16:0, GM3 d16:1/22:0, GM3 d18:1/16:0, SM d16:1/22:0, HexCer d18:1/18:0) and VAD (Cer d16:1/24:0, Cer d18:1/16:0, Hex2Cer d16:1/16:0, HexCer d18:1/18:0, SM d16:1/16:0, SM d16:1/20:0, SM d18:2/22:0) compared to NCI.

Conclusions

AD and VaD are associated with distinct changes of plasma sphingolipids, warranting further studies into underlying pathophysiological mechanisms and assessments of their potential utility as dementia biomarkers and therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Subramaniam M, Ann S, Ajit J, Abdin E. Prevalence of dementia in people aged 60 years and above: results from the WiSE study. J Alzheimers Dis. 2015;45(4):1127–38. Subramaniam M, Ann S, Ajit J, Abdin E. Prevalence of dementia in people aged 60 years and above: results from the WiSE study. J Alzheimers Dis. 2015;45(4):1127–38.
2.
go back to reference Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World alzheimer report 2015. The global impact of dementia: An analysis of prevalence, incidence, cost and trends. [Research Report] Alzheimer's Dis Int. 2015;hal-03495438. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World alzheimer report 2015. The global impact of dementia: An analysis of prevalence, incidence, cost and trends. [Research Report] Alzheimer's Dis Int. 2015;hal-03495438.
3.
go back to reference Fratiglioni L, De Ronchi D, Agüero-Torres H. Worldwide prevalence and incidence of dementia. Drugs Aging. 1999;15(5):365–75.PubMedCrossRef Fratiglioni L, De Ronchi D, Agüero-Torres H. Worldwide prevalence and incidence of dementia. Drugs Aging. 1999;15(5):365–75.PubMedCrossRef
7.
go back to reference Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;73(25):3326–44.PubMedPubMedCentralCrossRef Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;73(25):3326–44.PubMedPubMedCentralCrossRef
8.
go back to reference Wallin A, Roman GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP, Kapaki E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis. 2018;62(3):1417–41.PubMedPubMedCentralCrossRef Wallin A, Roman GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP, Kapaki E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis. 2018;62(3):1417–41.PubMedPubMedCentralCrossRef
9.
go back to reference Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131(5):659–85.PubMedPubMedCentralCrossRef Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131(5):659–85.PubMedPubMedCentralCrossRef
10.
go back to reference Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713.PubMedPubMedCentralCrossRef Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713.PubMedPubMedCentralCrossRef
11.
go back to reference Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8.PubMedPubMedCentralCrossRef Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8.PubMedPubMedCentralCrossRef
12.
go back to reference Lam SM, Wang Y, Duan X, Wenk MR, Kalaria RN, Chen CP, Lai MK, Shui G. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol Aging. 2014;35(10):2369–81.PubMedPubMedCentralCrossRef Lam SM, Wang Y, Duan X, Wenk MR, Kalaria RN, Chen CP, Lai MK, Shui G. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol Aging. 2014;35(10):2369–81.PubMedPubMedCentralCrossRef
13.
go back to reference Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement. 2017;13(7):810–27.PubMedCrossRef Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement. 2017;13(7):810–27.PubMedCrossRef
14.
go back to reference Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, et al. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev. 2020;159:214-31. Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, et al. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev. 2020;159:214-31.
15.
go back to reference Narayanaswamy P, Shinde S, Sulc R, Kraut R, Staples G, Thiam CH, Grimm R, Sellergren B, Torta F, Wenk MR. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem. 2014;86(6):3043–7.PubMedCrossRef Narayanaswamy P, Shinde S, Sulc R, Kraut R, Staples G, Thiam CH, Grimm R, Sellergren B, Torta F, Wenk MR. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem. 2014;86(6):3043–7.PubMedCrossRef
16.
go back to reference Hilal S, Chai Y, Ikram M, Elangovan S, Yeow T, Xin X, Chong J, Venketasubramanian N, Richards A, Chong J, et al. Markers of Cardiac Dysfunction in Cognitive Impairment and Dementia. Medicine. 2015;94(1):e297–e297.PubMedPubMedCentralCrossRef Hilal S, Chai Y, Ikram M, Elangovan S, Yeow T, Xin X, Chong J, Venketasubramanian N, Richards A, Chong J, et al. Markers of Cardiac Dysfunction in Cognitive Impairment and Dementia. Medicine. 2015;94(1):e297–e297.PubMedPubMedCentralCrossRef
17.
go back to reference Chong JR, Ashton NJ, Karikari TK, Tanaka T, Saridin FN, Reilhac A, Robins EG, Nai YH, Vrooman H, Hilal S, et al. Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer’s disease patients with concomitant cerebrovascular disease. Alzheimers Dementia. 2021;17(10):1649–62.CrossRef Chong JR, Ashton NJ, Karikari TK, Tanaka T, Saridin FN, Reilhac A, Robins EG, Nai YH, Vrooman H, Hilal S, et al. Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer’s disease patients with concomitant cerebrovascular disease. Alzheimers Dementia. 2021;17(10):1649–62.CrossRef
18.
go back to reference Folstein M, Folstein S, McHugh R. Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.PubMedCrossRef Folstein M, Folstein S, McHugh R. Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.PubMedCrossRef
19.
go back to reference Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings J, Chertkow H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Anim Physiol Nutr. 2005;53(4):695–9. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings J, Chertkow H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Anim Physiol Nutr. 2005;53(4):695–9.
20.
go back to reference Diagnostic and Statistical Manual of Mental Disorders 4th Edition. Washington: American Psychiatric Association; 1994. Diagnostic and Statistical Manual of Mental Disorders 4th Edition. Washington: American Psychiatric Association; 1994.
21.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer’s disease. Neurology. 1984;34(7):939–44. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer’s disease. Neurology. 1984;34(7):939–44.
22.
go back to reference Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. In. 1993;43:250–60. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. In. 1993;43:250–60.
23.
go back to reference Chai YL, Yeo HK-H, Wang J, Hilal S, Ikram MK, Venketasubramanian N, Wong B-S, Chen CL-H. Apolipoprotein ɛ4 is associated with dementia and cognitive impairment predominantly due to Alzheimer’s disease and not with vascular cognitive impairment: a Singapore-based cohort. J Alzheimers Dis. 2016;51(4):1111–8.PubMedCrossRef Chai YL, Yeo HK-H, Wang J, Hilal S, Ikram MK, Venketasubramanian N, Wong B-S, Chen CL-H. Apolipoprotein ɛ4 is associated with dementia and cognitive impairment predominantly due to Alzheimer’s disease and not with vascular cognitive impairment: a Singapore-based cohort. J Alzheimers Dis. 2016;51(4):1111–8.PubMedCrossRef
24.
go back to reference Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid analysis in clinical research. Methods Mol Biol. 2018;1730:135–62.PubMedCrossRef Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid analysis in clinical research. Methods Mol Biol. 2018;1730:135–62.PubMedCrossRef
25.
go back to reference Tibshirani R. Regression Shrinkage and Selection via the Lasso. J Roy Stat Soc. 1996;58(1):267–88. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J Roy Stat Soc. 1996;58(1):267–88.
27.
go back to reference Achim A, Christian BH, Mark ES. lassopack: Model selection and prediction with regularized regression in Stata. Stand Genomic Sci. 2020;20(1):176–235. Achim A, Christian BH, Mark ES. lassopack: Model selection and prediction with regularized regression in Stata. Stand Genomic Sci. 2020;20(1):176–235.
28.
go back to reference Chong JR, Hilal S, Ashton NJ, Karikari TK, Reilhac A, Vrooman H, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. Alzheimers Dement (Amst). 2023;15(1):e12396.PubMedCrossRef Chong JR, Hilal S, Ashton NJ, Karikari TK, Reilhac A, Vrooman H, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. Alzheimers Dement (Amst). 2023;15(1):e12396.PubMedCrossRef
29.
go back to reference O’Bryant SE, Lacritz LH, Hall J, Waring SC, Chan W, Khodr ZG, Massman PJ, Hobson V, Cullum CM. Validation of the new interpretive guidelines for the clinical dementia rating scale sum of boxes score in the national Alzheimer’s coordinating center database. Arch Neurol. 2010;67(6):746–9.PubMedPubMedCentral O’Bryant SE, Lacritz LH, Hall J, Waring SC, Chan W, Khodr ZG, Massman PJ, Hobson V, Cullum CM. Validation of the new interpretive guidelines for the clinical dementia rating scale sum of boxes score in the national Alzheimer’s coordinating center database. Arch Neurol. 2010;67(6):746–9.PubMedPubMedCentral
30.
go back to reference Chai YL, Chong JR, Raquib AR, Xu X, Hilal S, Venketasubramanian N, Tan BY, Kumar AP, Sethi G, Chen CP, Lai MKP. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci Rep. 2021;11(1):4010.PubMedPubMedCentralCrossRef Chai YL, Chong JR, Raquib AR, Xu X, Hilal S, Venketasubramanian N, Tan BY, Kumar AP, Sethi G, Chen CP, Lai MKP. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci Rep. 2021;11(1):4010.PubMedPubMedCentralCrossRef
31.
go back to reference Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.PubMedPubMedCentralCrossRef Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.PubMedPubMedCentralCrossRef
32.
go back to reference Huynh K, Martins RN, Meikle PJ. Lipidomic Profiles in Diabetes and Dementia. J Alzheimers Dis. 2017;59(2):433–44.PubMedCrossRef Huynh K, Martins RN, Meikle PJ. Lipidomic Profiles in Diabetes and Dementia. J Alzheimers Dis. 2017;59(2):433–44.PubMedCrossRef
33.
go back to reference Chew WS, Tai ES, Herr DR, Chew WS, Torta F, Ji S, Choi H, Begum H. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight. 2019;5(13):e126925. Chew WS, Tai ES, Herr DR, Chew WS, Torta F, Ji S, Choi H, Begum H. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight. 2019;5(13):e126925.
34.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction, 2nd edition. New York: Springer Science+Business Media; 2009. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction, 2nd edition. New York: Springer Science+Business Media; 2009.
35.
go back to reference Mielke MM, Bandaru VVR, Haughey NJ, Xia J, Fried LP, Yasar S, Albert M, Varma V, Harris G, Schneider EB, et al. Serum ceramides increase the risk of Alzheimer disease: The Women’s Health and Aging Study II. Neurology. 2012;79(7):633–41.PubMedPubMedCentralCrossRef Mielke MM, Bandaru VVR, Haughey NJ, Xia J, Fried LP, Yasar S, Albert M, Varma V, Harris G, Schneider EB, et al. Serum ceramides increase the risk of Alzheimer disease: The Women’s Health and Aging Study II. Neurology. 2012;79(7):633–41.PubMedPubMedCentralCrossRef
36.
go back to reference Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, Doraiswamy PM, Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6(7):e21643.PubMedPubMedCentralCrossRef Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, Doraiswamy PM, Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6(7):e21643.PubMedPubMedCentralCrossRef
37.
go back to reference Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, Ferrucci L, Resnick SM. The Association Between Plasma Ceramides and Sphingomyelins and Risk of Alzheimer’s Disease Differs by Sex and APOE in the Baltimore Longitudinal Study of Aging. J Alzheimers Dis. 2017;60(3):819–28.PubMedPubMedCentralCrossRef Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, Ferrucci L, Resnick SM. The Association Between Plasma Ceramides and Sphingomyelins and Risk of Alzheimer’s Disease Differs by Sex and APOE in the Baltimore Longitudinal Study of Aging. J Alzheimers Dis. 2017;60(3):819–28.PubMedPubMedCentralCrossRef
38.
go back to reference Fonteh AN, Ormseth C, Chiang J, Cipolla M, Arakaki X, Harrington MG. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer’s disease. PLoS ONE. 2015;10(5):e0125597.PubMedPubMedCentralCrossRef Fonteh AN, Ormseth C, Chiang J, Cipolla M, Arakaki X, Harrington MG. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer’s disease. PLoS ONE. 2015;10(5):e0125597.PubMedPubMedCentralCrossRef
39.
go back to reference Zhao L, Spassieva S, Gable K, Gupta SD, Shi LY, Wang J, Bielawski J, Hicks WL, Krebs MP, Naggert J, et al. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc Natl Acad Sci U S A. 2015;112(42):12962–7.PubMedPubMedCentralCrossRef Zhao L, Spassieva S, Gable K, Gupta SD, Shi LY, Wang J, Bielawski J, Hicks WL, Krebs MP, Naggert J, et al. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc Natl Acad Sci U S A. 2015;112(42):12962–7.PubMedPubMedCentralCrossRef
40.
go back to reference Hornemann T, Penno A, Rutti MF, Ernst D, Kivrak-Pfiffner F, Rohrer L, von Eckardstein A. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J Biol Chem. 2009;284(39):26322–30.PubMedPubMedCentralCrossRef Hornemann T, Penno A, Rutti MF, Ernst D, Kivrak-Pfiffner F, Rohrer L, von Eckardstein A. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J Biol Chem. 2009;284(39):26322–30.PubMedPubMedCentralCrossRef
41.
go back to reference Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, Smith AAT, Olshansky G, Drew BG, Chatterjee P, et al. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun. 2020;11(1):5698. Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, Smith AAT, Olshansky G, Drew BG, Chatterjee P, et al. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun. 2020;11(1):5698.
42.
43.
go back to reference Hughes TM, Craft S. The role of insulin in the vascular contributions to age-related dementia. Biochim Biophys Acta. 2016;1862(5):983–91.PubMedCrossRef Hughes TM, Craft S. The role of insulin in the vascular contributions to age-related dementia. Biochim Biophys Acta. 2016;1862(5):983–91.PubMedCrossRef
44.
go back to reference Chai JF, Raichur S, Khor IW, Torta F, Chew WS, Herr DR, Ching J, Kovalik JP, Khoo CM, Wenk MR, et al. Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer’s and Parkinson’s diseases. Hum Mol Genet. 2020;29(2):189–201.PubMed Chai JF, Raichur S, Khor IW, Torta F, Chew WS, Herr DR, Ching J, Kovalik JP, Khoo CM, Wenk MR, et al. Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer’s and Parkinson’s diseases. Hum Mol Genet. 2020;29(2):189–201.PubMed
45.
go back to reference Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal. 2021;79:109890.PubMedCrossRef Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal. 2021;79:109890.PubMedCrossRef
46.
go back to reference Geekiyanage H, Chan C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci. 2011;31(41):14820–30.PubMedPubMedCentralCrossRef Geekiyanage H, Chan C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci. 2011;31(41):14820–30.PubMedPubMedCentralCrossRef
47.
go back to reference Hicks AA, Pramstaller PP, Johansson A, Vitart V, Rudan I, Ugocsai P, Aulchenko Y, Franklin CS, Liebisch G, Erdmann J, et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009;5(10):e1000672.PubMedPubMedCentralCrossRef Hicks AA, Pramstaller PP, Johansson A, Vitart V, Rudan I, Ugocsai P, Aulchenko Y, Franklin CS, Liebisch G, Erdmann J, et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009;5(10):e1000672.PubMedPubMedCentralCrossRef
48.
go back to reference Qiu C, Winblad B, Marengoni A, Klarin I, Fastbom J, Fratiglioni L. Heart failure and risk of dementia and alzheimer's disease: a population-based cohort study. Arch Intern Med. 2006;166(9):1003–8. Qiu C, Winblad B, Marengoni A, Klarin I, Fastbom J, Fratiglioni L. Heart failure and risk of dementia and alzheimer's disease: a population-based cohort study. Arch Intern Med. 2006;166(9):1003–8.
49.
go back to reference Chua XY, Chai YL, Chew WS, Chong JR, Ang HL, Xiang P, Camara K, Howell AR, Torta F, Wenk MR, et al. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimers Res Ther. 2020;12(1):122.PubMedPubMedCentralCrossRef Chua XY, Chai YL, Chew WS, Chong JR, Ang HL, Xiang P, Camara K, Howell AR, Torta F, Wenk MR, et al. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimers Res Ther. 2020;12(1):122.PubMedPubMedCentralCrossRef
50.
go back to reference Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem. 2013;288(19):13397–409.PubMedPubMedCentralCrossRef Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem. 2013;288(19):13397–409.PubMedPubMedCentralCrossRef
52.
go back to reference Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int. 1992;20(3):433–8.PubMedCrossRef Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int. 1992;20(3):433–8.PubMedCrossRef
53.
go back to reference Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020;14:572965.PubMedPubMedCentralCrossRef Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020;14:572965.PubMedPubMedCentralCrossRef
54.
go back to reference Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. J Lipid Res. 2017;58(11):2083–101.PubMedPubMedCentralCrossRef Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. J Lipid Res. 2017;58(11):2083–101.PubMedPubMedCentralCrossRef
55.
go back to reference Oikawa N, Yamaguchi H, Ogino K, Taki T, Yuyama K, Yamamoto N, Shin RW, Furukawa K, Yanagisawa K. Gangliosides determine the amyloid pathology of Alzheimer’s disease. NeuroReport. 2009;20(12):1043–6.PubMedCrossRef Oikawa N, Yamaguchi H, Ogino K, Taki T, Yuyama K, Yamamoto N, Shin RW, Furukawa K, Yanagisawa K. Gangliosides determine the amyloid pathology of Alzheimer’s disease. NeuroReport. 2009;20(12):1043–6.PubMedCrossRef
56.
go back to reference Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, Jackson Roberts L, 2nd, Mathews PM, Matsuoka Y, Ariga T, et al. Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice. Neurobiol Aging. 2009;30(11):1777–91. Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, Jackson Roberts L, 2nd, Mathews PM, Matsuoka Y, Ariga T, et al. Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice. Neurobiol Aging. 2009;30(11):1777–91.
57.
go back to reference Dukhinova M, Veremeyko T, Yung AWY, Kuznetsova IS, Lau TYB, Kopeikina E, Chan AML, Ponomarev ED. Fresh evidence for major brain gangliosides as a target for the treatment of Alzheimer’s disease. Neurobiol Aging. 2019;77:128–43.PubMedCrossRef Dukhinova M, Veremeyko T, Yung AWY, Kuznetsova IS, Lau TYB, Kopeikina E, Chan AML, Ponomarev ED. Fresh evidence for major brain gangliosides as a target for the treatment of Alzheimer’s disease. Neurobiol Aging. 2019;77:128–43.PubMedCrossRef
Metadata
Title
Lipidomics profiling reveals distinct patterns of plasma sphingolipid alterations in Alzheimer’s disease and vascular dementia
Authors
Xin Ying Chua
Federico Torta
Joyce R. Chong
Narayanaswamy Venketasubramanian
Saima Hilal
Markus R. Wenk
Christopher P. Chen
Thiruma V. Arumugam
Deron R. Herr
Mitchell K. P. Lai
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01359-7

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue