Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Vaccination | Case report

COVID-19 related acute necrotizing encephalopathy with extremely high interleukin-6 and RANBP2 mutation in a patient with recently immunized inactivated virus vaccine and no pulmonary involvement

Authors: Thanakit Pongpitakmetha, Pasin Hemachudha, Wanakorn Rattanawong, Poosanu Thanapornsangsuth, Anand Viswanathan, Thiravat Hemachudha

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

We report the first case of COVID-19 associated acute necrotizing encephalopathy (ANE) without pulmonary disease in a patient with an extremely high interleukin-6 (IL-6) level and Ran Binding Protein 2 (RANBP2) mutation.

Case presentation

A 29-year-old woman recently immunized with inactivated viral vaccine—BBIBP32-CorV (Sinopharm) presented with alteration of consciousness. Her body temperature was 37° Celsius, blood pressure 42/31 mmHg, heart rate 130 bpm, respiratory rate 20 per minute, and oxygen saturation 98%. Respiratory examination was unremarkable. Neurological examination revealed stupor but preserved brainstem reflexes. Non-contrast computerized tomography of the brain showed symmetrical hypodense lesions involving bilateral thalami and cerebellar hemispheres characteristic of ANE. No pulmonary infiltration was found on chest radiograph. SARS-CoV-2 was detected by PCR; whole genome sequencing later confirmed the Delta variant. RANBP2 gene analysis revealed heterozygous Thr585Met mutation. Serum IL-6 was 7390 pg/mL. Urine examination showed pyelonephritis. Her clinical course was complicated by seizure, septic shock, acute kidney injury, and acute hepatic failure. She later developed coma and passed away in 6 days.

Conclusions

ANE is caused by cytokine storm leading to necrosis and hemorrhage of the brain. IL-6 was deemed as a prognostic factor and a potential treatment target of ANE in previous studies. RANBP2 missense mutation strongly predisposes this condition by affecting mitochondrial function, viral entry, cytokine signaling, immune response, and blood–brain barrier maintenance. Also, inactivated vaccine has been reported to precipitate massive production of cytokines by antibody dependent enhancement (ADE). The true incidence of COVID-19 associated ANE is not known as were the predictors of its development. We proposed these potential two factors (RANBP2 mutation and ADE) that could participate in the pathogenesis of ANE in COVID-19 apart from SARS-CoV2 infection by itself. Further study is needed to confirm this hypothesis, specifically in the post-vaccination period. Role of RANBP2 mutation and its application in COVID-19 and ANE should be further elaborated.
Literature
1.
go back to reference Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–83.CrossRef Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–83.CrossRef
2.
go back to reference Wu X, Wu W, Pan W, Wu L, Liu K, Zhang HL. Acute necrotizing encephalopathy: an underrecognized clinicoradiologic disorder. Mediat Inflamm. 2015;2015: 792578. Wu X, Wu W, Pan W, Wu L, Liu K, Zhang HL. Acute necrotizing encephalopathy: an underrecognized clinicoradiologic disorder. Mediat Inflamm. 2015;2015: 792578.
3.
go back to reference Aiba H, Mochizuki M, Kimura M, Hojo H. Predictive value of serum interleukin-6 level in influenza virus-associated encephalopathy. Neurology. 2001;57(2):295–9.CrossRef Aiba H, Mochizuki M, Kimura M, Hojo H. Predictive value of serum interleukin-6 level in influenza virus-associated encephalopathy. Neurology. 2001;57(2):295–9.CrossRef
4.
go back to reference Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI, Pacia SV, Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflamm. 2020;17(1):231.CrossRef Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI, Pacia SV, Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflamm. 2020;17(1):231.CrossRef
5.
go back to reference Wang Y, Younce JR, Perlmutter JS, Mar SS. Excellent outcome of acute necrotizing encephalopathy in an adult with bacterial infections, case report. Neurohospitalist. 2021;11(4):351–5.CrossRef Wang Y, Younce JR, Perlmutter JS, Mar SS. Excellent outcome of acute necrotizing encephalopathy in an adult with bacterial infections, case report. Neurohospitalist. 2021;11(4):351–5.CrossRef
6.
go back to reference Aydin H, Ozgul E, Agildere AM. Acute necrotizing encephalopathy secondary to diphtheria, tetanus toxoid and whole-cell pertussis vaccination: diffusion-weighted imaging and proton MR spectroscopy findings. Pediatr Radiol. 2010;40(7):1281–4.CrossRef Aydin H, Ozgul E, Agildere AM. Acute necrotizing encephalopathy secondary to diphtheria, tetanus toxoid and whole-cell pertussis vaccination: diffusion-weighted imaging and proton MR spectroscopy findings. Pediatr Radiol. 2010;40(7):1281–4.CrossRef
8.
go back to reference Levine JM, Ahsan N, Ho E, Santoro JD. Genetic acute necrotizing encephalopathy associated with RANBP2: clinical and therapeutic implications in pediatrics. Mult Scler Relat Disord. 2020;43: 102194.CrossRef Levine JM, Ahsan N, Ho E, Santoro JD. Genetic acute necrotizing encephalopathy associated with RANBP2: clinical and therapeutic implications in pediatrics. Mult Scler Relat Disord. 2020;43: 102194.CrossRef
9.
go back to reference Mullaguri N, Sivakumar S, Battineni A, Anand S, Vanderwerf J. COVID-19 related acute hemorrhagic necrotizing encephalitis: a report of two cases and literature review. Cureus. 2021;13(4): e14236.PubMedPubMedCentral Mullaguri N, Sivakumar S, Battineni A, Anand S, Vanderwerf J. COVID-19 related acute hemorrhagic necrotizing encephalitis: a report of two cases and literature review. Cureus. 2021;13(4): e14236.PubMedPubMedCentral
10.
go back to reference Mungaomklang A, Chomcheoy J, Wacharapluesadee S, Joyjinda Y, Jittmittraphap A, Rodpan A, Ghai S, Saraya A, Hemachudha T. Influenza virus-associated fatal acute necrotizing encephalopathy: role of nonpermissive viral infection? Clin Med Insights Case Rep. 2016;9:99–102.CrossRef Mungaomklang A, Chomcheoy J, Wacharapluesadee S, Joyjinda Y, Jittmittraphap A, Rodpan A, Ghai S, Saraya A, Hemachudha T. Influenza virus-associated fatal acute necrotizing encephalopathy: role of nonpermissive viral infection? Clin Med Insights Case Rep. 2016;9:99–102.CrossRef
11.
go back to reference Rodriguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramirez-Santana C, Costanzo A, Ridgway WM, Ansari AA, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114: 102506.CrossRef Rodriguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramirez-Santana C, Costanzo A, Ridgway WM, Ansari AA, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114: 102506.CrossRef
12.
go back to reference Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(6):1294–7.CrossRef Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(6):1294–7.CrossRef
13.
go back to reference Sabaka P, Koscalova A, Straka I, Hodosy J, Liptak R, Kmotorkova B, Kachlikova M, Kusnirova A. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21(1):308.CrossRef Sabaka P, Koscalova A, Straka I, Hodosy J, Liptak R, Kmotorkova B, Kachlikova M, Kusnirova A. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21(1):308.CrossRef
14.
go back to reference Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, Liu J, Guo X, Huang C, Jiao Y, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis. 2020;222(5):746–54.CrossRef Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, Liu J, Guo X, Huang C, Jiao Y, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis. 2020;222(5):746–54.CrossRef
15.
go back to reference Jones SA, Hunter CA. Is IL-6 a key cytokine target for therapy in COVID-19? Nat Rev Immunol. 2021;21(6):337–9.CrossRef Jones SA, Hunter CA. Is IL-6 a key cytokine target for therapy in COVID-19? Nat Rev Immunol. 2021;21(6):337–9.CrossRef
16.
go back to reference Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, Cai Q, Dong S, Hu S, Wang W, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med. 2020;18(1):406.CrossRef Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, Cai Q, Dong S, Hu S, Wang W, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med. 2020;18(1):406.CrossRef
17.
go back to reference Veleri S. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp Brain Res. 2022;240(1):9–25.CrossRef Veleri S. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp Brain Res. 2022;240(1):9–25.CrossRef
18.
go back to reference Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021;21(8):475–84.CrossRef Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021;21(8):475–84.CrossRef
19.
go back to reference Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5(10):1185–91.CrossRef Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5(10):1185–91.CrossRef
20.
go back to reference Wang S, Wang J, Yu X, Jiang W, Chen S, Wang R, Wang M, Jiao S, Yang Y, Wang W, et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcgammaRIIB and virus-antibody complex with bivalent interaction. Commun Biol. 2022;5(1):262.CrossRef Wang S, Wang J, Yu X, Jiang W, Chen S, Wang R, Wang M, Jiao S, Yang Y, Wang W, et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcgammaRIIB and virus-antibody complex with bivalent interaction. Commun Biol. 2022;5(1):262.CrossRef
21.
go back to reference Polack FP, Teng MN, Collins PL, Prince GA, Exner M, Regele H, Lirman DD, Rabold R, Hoffman SJ, Karp CL, et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med. 2002;196(6):859–65.CrossRef Polack FP, Teng MN, Collins PL, Prince GA, Exner M, Regele H, Lirman DD, Rabold R, Hoffman SJ, Karp CL, et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med. 2002;196(6):859–65.CrossRef
22.
go back to reference Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Murphy BR, Subbarao K, Collins PL. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363(9427):2122–7.CrossRef Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Murphy BR, Subbarao K, Collins PL. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363(9427):2122–7.CrossRef
23.
go back to reference Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, et al. Vaccine-associated enhanced disease: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2021;39(22):3053–66.CrossRef Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, et al. Vaccine-associated enhanced disease: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2021;39(22):3053–66.CrossRef
24.
go back to reference Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51.CrossRef Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51.CrossRef
25.
go back to reference Mizuguchi M, Abe J, Mikkaichi K, Noma S, Yoshida K, Yamanaka T, Kamoshita S. Acute necrotising encephalopathy of childhood: a new syndrome presenting with multifocal, symmetric brain lesions. J Neurol Neurosurg Psychiatry. 1995;58(5):555–61.CrossRef Mizuguchi M, Abe J, Mikkaichi K, Noma S, Yoshida K, Yamanaka T, Kamoshita S. Acute necrotising encephalopathy of childhood: a new syndrome presenting with multifocal, symmetric brain lesions. J Neurol Neurosurg Psychiatry. 1995;58(5):555–61.CrossRef
26.
go back to reference Neilson DE, Adams MD, Orr CM, Schelling DK, Eiben RM, Kerr DS, Anderson J, Bassuk AG, Bye AM, Childs AM, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009;84(1):44–51.CrossRef Neilson DE, Adams MD, Orr CM, Schelling DK, Eiben RM, Kerr DS, Anderson J, Bassuk AG, Bye AM, Childs AM, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009;84(1):44–51.CrossRef
Metadata
Title
COVID-19 related acute necrotizing encephalopathy with extremely high interleukin-6 and RANBP2 mutation in a patient with recently immunized inactivated virus vaccine and no pulmonary involvement
Authors
Thanakit Pongpitakmetha
Pasin Hemachudha
Wanakorn Rattanawong
Poosanu Thanapornsangsuth
Anand Viswanathan
Thiravat Hemachudha
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07610-0

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.