Skip to main content
Top
Published in: Current Treatment Options in Oncology 12/2023

14-11-2023 | Vaccination

Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities

Authors: Ping Li, M.Med, Linan Jia, M.Med, Xiaobo Bian, M.Med, Shutao Tan, M.D

Published in: Current Treatment Options in Oncology | Issue 12/2023

Login to get access

Opinion statement

The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs’ function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Literature
1.
go back to reference Mehralizadeh H, et al. Cytokine sustained delivery for cancer therapy; special focus on stem cell-and biomaterial-based delivery methods. Pathol-Res Pract. 2023;247:154528. Mehralizadeh H, et al. Cytokine sustained delivery for cancer therapy; special focus on stem cell-and biomaterial-based delivery methods. Pathol-Res Pract. 2023;247:154528.
2.
go back to reference Shabani S, Moghadam MF, Gargari SL. Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol. 2021;38(9):115.PubMedCrossRef Shabani S, Moghadam MF, Gargari SL. Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol. 2021;38(9):115.PubMedCrossRef
4.
go back to reference Kaboli PJ, et al. Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J Cancer Res. 2022;12(4):1671. Kaboli PJ, et al. Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J Cancer Res. 2022;12(4):1671.
6.
go back to reference • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. This review discussed how current approaches apply DC vaccines to improve anti-tumor immunity in clinic.PubMedCrossRef • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. This review discussed how current approaches apply DC vaccines to improve anti-tumor immunity in clinic.PubMedCrossRef
8.
9.
go back to reference Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.PubMedCrossRef Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.PubMedCrossRef
10.
go back to reference • Plumas J. Harnessing dendritic cells for innovative therapeutic cancer vaccines. Curr Opin Oncol. 2022;34(2):161–8. This article reviewed recent research using allogeneic DCs as alternatives to autologous DCs to develop innovative therapeutic cancer vaccines.PubMedCrossRef • Plumas J. Harnessing dendritic cells for innovative therapeutic cancer vaccines. Curr Opin Oncol. 2022;34(2):161–8. This article reviewed recent research using allogeneic DCs as alternatives to autologous DCs to develop innovative therapeutic cancer vaccines.PubMedCrossRef
11.
go back to reference Abbasi S, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies. Cancer Med. 2023;12(7):7844–58.PubMedCrossRef Abbasi S, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies. Cancer Med. 2023;12(7):7844–58.PubMedCrossRef
12.
go back to reference Kozani PS, Shabani S. Adverse events and side effects of chimeric antigen receptor (CAR) t cell therapy in patients with hematologic malignancies. Trends Med Sci. 2021;1(1):620374. Kozani PS, Shabani S. Adverse events and side effects of chimeric antigen receptor (CAR) t cell therapy in patients with hematologic malignancies. Trends Med Sci. 2021;1(1):620374.
14.
go back to reference Andtbacka RH, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.PubMedCrossRef Andtbacka RH, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.PubMedCrossRef
15.
go back to reference Ribas A, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):1031–2.PubMedCrossRef Ribas A, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):1031–2.PubMedCrossRef
16.
go back to reference Harari A, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–52.PubMedCrossRef Harari A, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–52.PubMedCrossRef
17.
go back to reference Tolouei AE, et al. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep. 2023:1–9. Tolouei AE, et al. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep. 2023:1–9.
18.
go back to reference Fu C, et al. DC-based vaccines for cancer immunotherapy Vaccines. 2020;8(4):706.PubMed Fu C, et al. DC-based vaccines for cancer immunotherapy Vaccines. 2020;8(4):706.PubMed
20.
go back to reference Guermonprez P, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20(1):621–67.PubMedCrossRef Guermonprez P, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20(1):621–67.PubMedCrossRef
21.
22.
go back to reference Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17(6):587–99.PubMedPubMedCentralCrossRef Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17(6):587–99.PubMedPubMedCentralCrossRef
23.
go back to reference Wculek SK, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. This article reviewed different DC subsets immunity and tolerance in cancer settings and immunotherapy strategies.PubMedCrossRef Wculek SK, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. This article reviewed different DC subsets immunity and tolerance in cancer settings and immunotherapy strategies.PubMedCrossRef
24.
go back to reference Anderson DA III, et al. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol. 2021;21(2):101–15.PubMedCrossRef Anderson DA III, et al. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol. 2021;21(2):101–15.PubMedCrossRef
25.
27.
go back to reference Haniffa M, Collin M, Ginhoux F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv Immunol. 2013;120:1–49.PubMedCrossRef Haniffa M, Collin M, Ginhoux F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv Immunol. 2013;120:1–49.PubMedCrossRef
28.
go back to reference Haniffa M, Collin M, Ginhoux F. Identification of human tissue cross-presenting dendritic cells: a new target for cancer vaccines. Oncoimmunol. 2013;2(3): e23140.CrossRef Haniffa M, Collin M, Ginhoux F. Identification of human tissue cross-presenting dendritic cells: a new target for cancer vaccines. Oncoimmunol. 2013;2(3): e23140.CrossRef
29.
go back to reference Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ DCs represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.PubMedPubMedCentralCrossRef Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ DCs represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.PubMedPubMedCentralCrossRef
31.
go back to reference Yamazaki C, et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 2013;190(12):6071–82.PubMedCrossRef Yamazaki C, et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 2013;190(12):6071–82.PubMedCrossRef
32.
go back to reference Dhodapkar MV, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233–8.PubMedPubMedCentralCrossRef Dhodapkar MV, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233–8.PubMedPubMedCentralCrossRef
34.
go back to reference Bonaccorsi I, et al. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett. 2013;155(1–2):6–10.PubMedCrossRef Bonaccorsi I, et al. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett. 2013;155(1–2):6–10.PubMedCrossRef
36.
go back to reference Banchereau J, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61(17):6451–8.PubMed Banchereau J, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61(17):6451–8.PubMed
37.
go back to reference Mody N, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32.PubMedCrossRef Mody N, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32.PubMedCrossRef
38.
go back to reference Trefzer U, et al. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int J Cancer. 2000;85(5):618–26.PubMedCrossRef Trefzer U, et al. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int J Cancer. 2000;85(5):618–26.PubMedCrossRef
39.
go back to reference Trefzer U, et al. Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: immunological effects and clinical results. Vaccine. 2005;23(17–18):2367–73.PubMedCrossRef Trefzer U, et al. Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: immunological effects and clinical results. Vaccine. 2005;23(17–18):2367–73.PubMedCrossRef
40.
go back to reference Krause SW, et al. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother. 2002;25(5):421–8.PubMedCrossRef Krause SW, et al. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother. 2002;25(5):421–8.PubMedCrossRef
41.
go back to reference Maeng HM, et al. Phase I clinical trial of an autologous dendritic cell vaccine against HER2 shows safety and preliminary clinical efficacy. Front Oncol. 2021;11: 789078.PubMedPubMedCentralCrossRef Maeng HM, et al. Phase I clinical trial of an autologous dendritic cell vaccine against HER2 shows safety and preliminary clinical efficacy. Front Oncol. 2021;11: 789078.PubMedPubMedCentralCrossRef
42.
go back to reference Aspord C, et al. HLA-A* 0201+ plasmacytoid dendritic cells provide a cell-based immunotherapy for melanoma patients. J Invest Dermatol. 2012;132(10):2395–406.PubMedCrossRef Aspord C, et al. HLA-A* 0201+ plasmacytoid dendritic cells provide a cell-based immunotherapy for melanoma patients. J Invest Dermatol. 2012;132(10):2395–406.PubMedCrossRef
44.
go back to reference Bol KF, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019;7(1):1–3. This article discussed recent clinical developments and future prospects of natural DC-based immunotherapy.CrossRef Bol KF, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019;7(1):1–3. This article discussed recent clinical developments and future prospects of natural DC-based immunotherapy.CrossRef
45.
go back to reference Kikuchi T, et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother. 2004;27(6):452–9.PubMedCrossRef Kikuchi T, et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother. 2004;27(6):452–9.PubMedCrossRef
46.
go back to reference Homma S, et al. Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin Exp Immunol. 2006;144(1):41–7.PubMedPubMedCentralCrossRef Homma S, et al. Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin Exp Immunol. 2006;144(1):41–7.PubMedPubMedCentralCrossRef
47.
go back to reference Akasaki Y, et al. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother. 2001;24(2):106–13.PubMedCrossRef Akasaki Y, et al. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother. 2001;24(2):106–13.PubMedCrossRef
48.
go back to reference Haenssle HA, et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase I/II study. J Immunother. 2004;27(2):147–55.PubMedCrossRef Haenssle HA, et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase I/II study. J Immunother. 2004;27(2):147–55.PubMedCrossRef
49.
go back to reference Avigan DE, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother. 2007;30(7):749–61.PubMedCrossRef Avigan DE, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother. 2007;30(7):749–61.PubMedCrossRef
50.
go back to reference Vo MC, et al. Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol. 2017;46:48–55.PubMedCrossRef Vo MC, et al. Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol. 2017;46:48–55.PubMedCrossRef
51.
go back to reference Sakamaki I, et al. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28(2):329–37.PubMedCrossRef Sakamaki I, et al. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28(2):329–37.PubMedCrossRef
52.
go back to reference Nahas MR, et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br J Haematol. 2019;185(4):679–90.PubMedPubMedCentralCrossRef Nahas MR, et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br J Haematol. 2019;185(4):679–90.PubMedPubMedCentralCrossRef
53.
go back to reference Rosenblatt J, et al. PD-1 blockade by CT-011, anti PD-1 antibody, enhances ex-vivo T cell responses to autologous dendritic/myeloma fusion vaccine. J Immunother. 2011;34(5):409.PubMedPubMedCentralCrossRef Rosenblatt J, et al. PD-1 blockade by CT-011, anti PD-1 antibody, enhances ex-vivo T cell responses to autologous dendritic/myeloma fusion vaccine. J Immunother. 2011;34(5):409.PubMedPubMedCentralCrossRef
54.
go back to reference Isazadeh A, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: focus on myeloma. J Cell Physiol. 2021;236(2):791–805. Isazadeh A, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: focus on myeloma. J Cell Physiol. 2021;236(2):791–805.
55.
go back to reference Ghahremani Dehbokri S, et al. CTLA-4: as an immunosuppressive immune checkpoint in breast cancer. Cur Mol Med. 2023;23(6):521–6. Ghahremani Dehbokri S, et al. CTLA-4: as an immunosuppressive immune checkpoint in breast cancer. Cur Mol Med. 2023;23(6):521–6.
56.
go back to reference Nagle SJ, Garfall AL, Stadtmauer EA. The promise of chimeric antigen receptor engineered T cells in the treatment of hematologic malignancies. Cancer J. 2016;22(1):27.PubMedPubMedCentralCrossRef Nagle SJ, Garfall AL, Stadtmauer EA. The promise of chimeric antigen receptor engineered T cells in the treatment of hematologic malignancies. Cancer J. 2016;22(1):27.PubMedPubMedCentralCrossRef
58.
go back to reference Anguille S, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731–53.PubMedCrossRef Anguille S, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731–53.PubMedCrossRef
59.
go back to reference Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy. 2014;6(4):485–96.PubMedCrossRef Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy. 2014;6(4):485–96.PubMedCrossRef
60.
go back to reference Rodríguez-Ruiz ME, et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol. 2018;29(5):1312–9.PubMedCrossRef Rodríguez-Ruiz ME, et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol. 2018;29(5):1312–9.PubMedCrossRef
61.
go back to reference Amberger DC, Schmetzer HM. Dendritic cells of leukemic origin: specialized antigen-presenting cells as potential treatment tools for patients with myeloid leukemia. Transfus Med Hemother. 2020;47(6):432–43.PubMedPubMedCentralCrossRef Amberger DC, Schmetzer HM. Dendritic cells of leukemic origin: specialized antigen-presenting cells as potential treatment tools for patients with myeloid leukemia. Transfus Med Hemother. 2020;47(6):432–43.PubMedPubMedCentralCrossRef
62.
go back to reference Fong L, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166(6):4254–9.PubMedCrossRef Fong L, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166(6):4254–9.PubMedCrossRef
63.
go back to reference Morse MA, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 1999;5(6):1331–8.PubMed Morse MA, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 1999;5(6):1331–8.PubMed
64.
go back to reference Barratt-Boyes SM, Watkins SC, Finn OJ. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv Exp Med Biol. 1997;417:71–5.PubMedCrossRef Barratt-Boyes SM, Watkins SC, Finn OJ. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv Exp Med Biol. 1997;417:71–5.PubMedCrossRef
65.
go back to reference Ando K, et al. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. J Radiat Res. 2017;58(4):446–55.PubMedPubMedCentralCrossRef Ando K, et al. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. J Radiat Res. 2017;58(4):446–55.PubMedPubMedCentralCrossRef
66.
go back to reference Gargett T, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother. 2018;67(9):1461–72.PubMedCrossRef Gargett T, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother. 2018;67(9):1461–72.PubMedCrossRef
67.
go back to reference Schmitt A, Hus I, Schmitt M. Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther. 2007;7(3):275–83.PubMedCrossRef Schmitt A, Hus I, Schmitt M. Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther. 2007;7(3):275–83.PubMedCrossRef
68.
go back to reference Gilliet M, et al. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses to protein neoantigen. Blood. 2003;102(1):36–42.PubMedCrossRef Gilliet M, et al. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses to protein neoantigen. Blood. 2003;102(1):36–42.PubMedCrossRef
69.
go back to reference Willekens B, et al. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open. 2019;9(9): e030309.PubMedPubMedCentralCrossRef Willekens B, et al. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open. 2019;9(9): e030309.PubMedPubMedCentralCrossRef
70.
go back to reference Morisaki T, et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest. 2021;50(5):562–79.PubMedCrossRef Morisaki T, et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest. 2021;50(5):562–79.PubMedCrossRef
71.
go back to reference Castro JE, et al. Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res. 2012;72(12):2937–48.PubMedPubMedCentralCrossRef Castro JE, et al. Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res. 2012;72(12):2937–48.PubMedPubMedCentralCrossRef
72.
go back to reference Karthaus N, Torensma R, Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 2012;181(3):733–42.PubMedCrossRef Karthaus N, Torensma R, Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 2012;181(3):733–42.PubMedCrossRef
73.
go back to reference Isazadeh H, et al. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep. 2023:1–5. Isazadeh H, et al. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep. 2023:1–5.
74.
go back to reference Zhang Y, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021;14(1):1–26.CrossRef Zhang Y, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021;14(1):1–26.CrossRef
75.
76.
go back to reference Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother. 2004;53:275–306.PubMedCrossRef Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother. 2004;53:275–306.PubMedCrossRef
77.
go back to reference Cui Y, et al. Immune response, clinical outcome and safety of dendritic cell vaccine in combination with cytokine-induced killer cell therapy in cancer patients. Oncol Lett. 2013;6(2):537–41.PubMedPubMedCentralCrossRef Cui Y, et al. Immune response, clinical outcome and safety of dendritic cell vaccine in combination with cytokine-induced killer cell therapy in cancer patients. Oncol Lett. 2013;6(2):537–41.PubMedPubMedCentralCrossRef
78.
go back to reference Amos SM, et al. Autoimmunity associated with immunotherapy of cancer. Blood, The Journal of the American Society of Hematology. 2011;118(3):499–509. Amos SM, et al. Autoimmunity associated with immunotherapy of cancer. Blood, The Journal of the American Society of Hematology. 2011;118(3):499–509.
79.
go back to reference Leonhartsberger N, et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012;61:1407–13.PubMedCrossRef Leonhartsberger N, et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012;61:1407–13.PubMedCrossRef
80.
go back to reference Madan RA, et al. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist. 2010;15(9):969–75.PubMedPubMedCentralCrossRef Madan RA, et al. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist. 2010;15(9):969–75.PubMedPubMedCentralCrossRef
81.
go back to reference Aarntzen EH, et al. Targeting CD4+ T-helper cells improves the induction of antitumor responses in dendritic cell–based vaccination. Cancer Res. 2013;73(1):19–29.PubMedCrossRef Aarntzen EH, et al. Targeting CD4+ T-helper cells improves the induction of antitumor responses in dendritic cell–based vaccination. Cancer Res. 2013;73(1):19–29.PubMedCrossRef
82.
go back to reference Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063–75.PubMedCrossRef Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063–75.PubMedCrossRef
83.
go back to reference Roddie H, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006;133(2):152–7.PubMedCrossRef Roddie H, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006;133(2):152–7.PubMedCrossRef
84.
go back to reference Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020;38(22):3811–20.PubMedCrossRef Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020;38(22):3811–20.PubMedCrossRef
85.
go back to reference Zhao W, Zhao G, Wang B. Revisiting GM-CSF as an adjuvant for therapeutic vaccines. Cell Mol Immunol. 2018;15(2):187–9.PubMedCrossRef Zhao W, Zhao G, Wang B. Revisiting GM-CSF as an adjuvant for therapeutic vaccines. Cell Mol Immunol. 2018;15(2):187–9.PubMedCrossRef
86.
go back to reference Bondanza A, et al. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med. 2004;200(9):1157–65.PubMedPubMedCentralCrossRef Bondanza A, et al. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med. 2004;200(9):1157–65.PubMedPubMedCentralCrossRef
88.
go back to reference Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.PubMedCrossRef Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.PubMedCrossRef
89.
go back to reference van Beek JJ, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016;5(10): e1227902.PubMedPubMedCentralCrossRef van Beek JJ, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016;5(10): e1227902.PubMedPubMedCentralCrossRef
92.
go back to reference Curti A, et al. Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95(12):2022.PubMedPubMedCentralCrossRef Curti A, et al. Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95(12):2022.PubMedPubMedCentralCrossRef
93.
go back to reference Draube A, et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE. 2011;6(4): e18801.PubMedPubMedCentralCrossRef Draube A, et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE. 2011;6(4): e18801.PubMedPubMedCentralCrossRef
96.
go back to reference Bennaceur K, et al. Dendritic cells dysfunction in tumour environment. Cancer Lett. 2008;272(2):186–96.PubMedCrossRef Bennaceur K, et al. Dendritic cells dysfunction in tumour environment. Cancer Lett. 2008;272(2):186–96.PubMedCrossRef
97.
go back to reference Bronte V, Mocellin S. Suppressive influences in the immune response to cancer. J Immunother. 2009;32(1):1–1.PubMedCrossRef Bronte V, Mocellin S. Suppressive influences in the immune response to cancer. J Immunother. 2009;32(1):1–1.PubMedCrossRef
Metadata
Title
Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities
Authors
Ping Li, M.Med
Linan Jia, M.Med
Xiaobo Bian, M.Med
Shutao Tan, M.D
Publication date
14-11-2023
Publisher
Springer US
Keyword
Vaccination
Published in
Current Treatment Options in Oncology / Issue 12/2023
Print ISSN: 1527-2729
Electronic ISSN: 1534-6277
DOI
https://doi.org/10.1007/s11864-023-01143-7

Other articles of this Issue 12/2023

Current Treatment Options in Oncology 12/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine