Skip to main content
Top
Published in: Breast Cancer Research 3/2000

01-06-2000 | Commentary

Tyrosine kinase signalling in breast cancer

Author: Nancy E Hynes

Published in: Breast Cancer Research | Issue 3/2000

Login to get access

Abstract

Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors to signalling molecules on neighbouring cells. Receptors of the tyrosine kinase family play an important role in the integration and interpretation of these external stimuli, allowing a cell to respond appropriately to its environment. The activation of receptor tyrosine kinases (RTKs) is tightly controlled, allowing a normal cell to correctly integrate its external environment with internal signal transduction pathways. In contrast, due to numerous molecular alterations arising during the course of malignancy, a tumour is characterized by an abnormal response to its environment, which allows cancer cells to evade the normal mechanisms controlling cellular proliferation. Alterations in the expression of various RTKs, in their activation, and in the signalling molecules lying downstream of the receptors play important roles in the development of cancer. This topic is the major focus of the thematic review section of this issue of Breast Cancer Research.
Literature
1.
go back to reference Weiss A, Schlessinger J: Switching signals on or off by receptor dimerization. Cell. 1998, 94: 277-280. 10.1016/S0092-8674(00)81469-5.CrossRefPubMed Weiss A, Schlessinger J: Switching signals on or off by receptor dimerization. Cell. 1998, 94: 277-280. 10.1016/S0092-8674(00)81469-5.CrossRefPubMed
2.
go back to reference Stern DF: Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases in breast cancer. Breast Cancer Res. 2000, 2: 176-183. 10.1186/bcr51.CrossRefPubMedPubMedCentral Stern DF: Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases in breast cancer. Breast Cancer Res. 2000, 2: 176-183. 10.1186/bcr51.CrossRefPubMedPubMedCentral
3.
go back to reference Andrechek ER, Muller WJ: Tyrosine kinase signalling in breast cancer: tyrosine kinase mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Res. 2000, 2: 211-216. 10.1186/bcr56.CrossRefPubMedPubMedCentral Andrechek ER, Muller WJ: Tyrosine kinase signalling in breast cancer: tyrosine kinase mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Res. 2000, 2: 211-216. 10.1186/bcr56.CrossRefPubMedPubMedCentral
4.
go back to reference Prenzel N, Zwick E, Leserer M, Ullrich A: Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor: convergence point for signal transduction and diversification. Breast Cancer Res. 2000, 2: 184-190. 10.1186/bcr52.CrossRefPubMedPubMedCentral Prenzel N, Zwick E, Leserer M, Ullrich A: Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor: convergence point for signal transduction and diversification. Breast Cancer Res. 2000, 2: 184-190. 10.1186/bcr52.CrossRefPubMedPubMedCentral
5.
go back to reference Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ: Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2: 203-210. 10.1186/bcr55.CrossRefPubMedPubMedCentral Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ: Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2: 203-210. 10.1186/bcr55.CrossRefPubMedPubMedCentral
6.
go back to reference Zhang X, Yee D: Tyrosine kinase signalling in breast cancer: insulin-like growth factors and their receptors in breast cancer. Breast Cancer Res. 2000, 2: 170-175. 10.1186/bcr50.CrossRefPubMedPubMedCentral Zhang X, Yee D: Tyrosine kinase signalling in breast cancer: insulin-like growth factors and their receptors in breast cancer. Breast Cancer Res. 2000, 2: 170-175. 10.1186/bcr50.CrossRefPubMedPubMedCentral
7.
go back to reference Dickson C, Spencer-Dene B, Dillon C, Fantl V: Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res. 2000, 2: 191-196. 10.1186/bcr53.CrossRefPubMedPubMedCentral Dickson C, Spencer-Dene B, Dillon C, Fantl V: Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res. 2000, 2: 191-196. 10.1186/bcr53.CrossRefPubMedPubMedCentral
8.
go back to reference Kairouz R, Daly RJ: Tyrosine kinase signalling in breast cancer: modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates. Breast Cancer Res. 2000, 2: 197-202. 10.1186/bcr54.CrossRefPubMedPubMedCentral Kairouz R, Daly RJ: Tyrosine kinase signalling in breast cancer: modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates. Breast Cancer Res. 2000, 2: 197-202. 10.1186/bcr54.CrossRefPubMedPubMedCentral
9.
go back to reference Slamon DJ, Clark GM, Wong SG, et al: Human breast cancer: correlation of relapse and survival with the amplification of the HER2/neu oncogene. Science. 1987, 235: 177-182.CrossRefPubMed Slamon DJ, Clark GM, Wong SG, et al: Human breast cancer: correlation of relapse and survival with the amplification of the HER2/neu oncogene. Science. 1987, 235: 177-182.CrossRefPubMed
10.
go back to reference Biscardi JS, Maa MC, Tice DA, et al: c-Src mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 1999, 274: 8335-8343. 10.1074/jbc.274.12.8335.CrossRefPubMed Biscardi JS, Maa MC, Tice DA, et al: c-Src mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 1999, 274: 8335-8343. 10.1074/jbc.274.12.8335.CrossRefPubMed
11.
go back to reference Muthuswamy SK, Muller WJ: Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene. 1995, 11: 1801-1810.PubMed Muthuswamy SK, Muller WJ: Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene. 1995, 11: 1801-1810.PubMed
12.
go back to reference Prenzel N, Zwick E, Daub H, et al: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999, 402: 884-888. 10.1038/47260.PubMed Prenzel N, Zwick E, Daub H, et al: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999, 402: 884-888. 10.1038/47260.PubMed
13.
go back to reference Schuuring E, Vernoeven E, Litvinov S, Michalides RJAM: The product of the EMS1 gene, amplified and overexpressed in human carcinoma, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol. 1993, 13: 2891-2898.CrossRefPubMedPubMedCentral Schuuring E, Vernoeven E, Litvinov S, Michalides RJAM: The product of the EMS1 gene, amplified and overexpressed in human carcinoma, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol. 1993, 13: 2891-2898.CrossRefPubMedPubMedCentral
14.
go back to reference Baserga R: The insulin-like growth factor I receptor: a key to tumor growth?. Cancer Res. 1995, 55: 249-259.PubMed Baserga R: The insulin-like growth factor I receptor: a key to tumor growth?. Cancer Res. 1995, 55: 249-259.PubMed
15.
16.
go back to reference Lee AV, Jackson JG, Gooch JL, et al: Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999, 13: 787-796. 10.1210/me.13.5.787.CrossRefPubMed Lee AV, Jackson JG, Gooch JL, et al: Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999, 13: 787-796. 10.1210/me.13.5.787.CrossRefPubMed
17.
go back to reference Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.CrossRefPubMed Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.CrossRefPubMed
18.
go back to reference Graus-Porta D, Beerli RR, Daly JM, Hynes NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997, 16: 1647-1655. 10.1093/emboj/16.7.1647.CrossRefPubMedPubMedCentral Graus-Porta D, Beerli RR, Daly JM, Hynes NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997, 16: 1647-1655. 10.1093/emboj/16.7.1647.CrossRefPubMedPubMedCentral
19.
go back to reference Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol. 1995, 19: 183-232. 10.1016/1040-8428(94)00144-I.CrossRef Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol. 1995, 19: 183-232. 10.1016/1040-8428(94)00144-I.CrossRef
20.
go back to reference DiGiovanna MP, Lerman MA, Coffey RJ, et al: Active signaling by Neu in transgenic mice. Oncogene. 1998, 17: 1877-1884. 10.1038/sj/onc/1202091.CrossRefPubMed DiGiovanna MP, Lerman MA, Coffey RJ, et al: Active signaling by Neu in transgenic mice. Oncogene. 1998, 17: 1877-1884. 10.1038/sj/onc/1202091.CrossRefPubMed
21.
go back to reference Pinkas-Kramarski R, Soussan L, Waterman H, et al: Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996, 15: 2452-2467.PubMedPubMedCentral Pinkas-Kramarski R, Soussan L, Waterman H, et al: Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996, 15: 2452-2467.PubMedPubMedCentral
22.
go back to reference Siegel PM, Ryan ED, Cardiff RD, Muller W: Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 1999, 18: 2149-2164. 10.1093/emboj/18.8.2149.CrossRefPubMedPubMedCentral Siegel PM, Ryan ED, Cardiff RD, Muller W: Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 1999, 18: 2149-2164. 10.1093/emboj/18.8.2149.CrossRefPubMedPubMedCentral
23.
go back to reference Neve RM, Sutterlüty H, Pullen N, et al: Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene. 2000, Neve RM, Sutterlüty H, Pullen N, et al: Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene. 2000,
24.
go back to reference Lane HA, Beuvink I, Motoyama AB, et al: ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol. Lane HA, Beuvink I, Motoyama AB, et al: ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol.
25.
go back to reference Lewis GD, Figari I, Fendly B, et al: Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993, 37: 255-263.CrossRefPubMed Lewis GD, Figari I, Fendly B, et al: Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993, 37: 255-263.CrossRefPubMed
26.
go back to reference Cobleigh MA, Vogel CL, Tripathy D, et al: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999, 27: 2639-2648. Cobleigh MA, Vogel CL, Tripathy D, et al: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999, 27: 2639-2648.
Metadata
Title
Tyrosine kinase signalling in breast cancer
Author
Nancy E Hynes
Publication date
01-06-2000
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2000
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr48

Other articles of this Issue 3/2000

Breast Cancer Research 3/2000 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine