Skip to main content
Top
Published in: Breast Cancer Research 3/2000

01-06-2000 | Review

Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors

Authors: Clive Dickson, Bradley Spencer-Dene, Christian Dillon, Vera Fantl

Published in: Breast Cancer Research | Issue 3/2000

Login to get access

Abstract

The fibroblast growth factors [Fgfs (murine), FGFs (human)] constitute a large family of ligands that signal through a class of cell-surface tyrosine kinase receptors. Fgf signalling has been associated in vitro with cellular differentiation as well as mitogenic and motogenic responses. In vivo, Fgfs are critical for animal development, and some have potent angiogenic properties. Several Fgfs have been identified as oncogenes in murine mammary cancer, where their deregulation is associated with proviral insertions of the mouse mammary tumour virus (MMTV). Thus, in some mammary tumours of MMTV-infected mouse strains, integration of viral genomic DNA into the somatic DNA of mammary epithelial cells was found to have caused the inappropriate expression of members of this family of growth factors. Although examination of human breast cancers has shown an altered expression of FGFs or of their receptors in some tumours, their role in the causation of breast disease is unclear and remains controversial.
Literature
1.
go back to reference Basilico C, Moscatelli D: The FGF family of growth-factors and oncogenes. Adv Cancer Res. 1992, 59: 115-165.CrossRefPubMed Basilico C, Moscatelli D: The FGF family of growth-factors and oncogenes. Adv Cancer Res. 1992, 59: 115-165.CrossRefPubMed
2.
go back to reference Johnson D, Williams L: Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993, 60: 1-41.CrossRefPubMed Johnson D, Williams L: Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993, 60: 1-41.CrossRefPubMed
3.
go back to reference McKeehan WL, Wang F, Kan M: The heparan-sulfate fibroblast growth-factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol. 1998, 59: 135-176.CrossRefPubMed McKeehan WL, Wang F, Kan M: The heparan-sulfate fibroblast growth-factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol. 1998, 59: 135-176.CrossRefPubMed
4.
go back to reference Klint P, Claesson-Welsh L: Signal transduction by fibroblast growth factor receptors. Frontiers Biosci. 1999, 4: 165-177.CrossRef Klint P, Claesson-Welsh L: Signal transduction by fibroblast growth factor receptors. Frontiers Biosci. 1999, 4: 165-177.CrossRef
5.
go back to reference Bugler B, Amalric F, Prats H: Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991, 11: 573-577.CrossRefPubMedPubMedCentral Bugler B, Amalric F, Prats H: Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991, 11: 573-577.CrossRefPubMedPubMedCentral
6.
go back to reference Renko M, Quarto N, Morimoto T, Rifkin D: Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990, 144: 108-114.CrossRefPubMed Renko M, Quarto N, Morimoto T, Rifkin D: Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990, 144: 108-114.CrossRefPubMed
7.
go back to reference LaVallee TM, Tarantini F, Gamble S, et al: Synaptotagmin-1 is required for fibroblast growth-factor-1 release. J Biol Chem. 1998, 273: 22217-22223. 10.1074/jbc.273.35.22217.CrossRefPubMed LaVallee TM, Tarantini F, Gamble S, et al: Synaptotagmin-1 is required for fibroblast growth-factor-1 release. J Biol Chem. 1998, 273: 22217-22223. 10.1074/jbc.273.35.22217.CrossRefPubMed
8.
go back to reference Florkiewicz R, Anchin J, Baird A: The inhibition of fibroblast growth factor-2 export by carenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem. 1998, 273: 544-551. 10.1074/jbc.273.1.544.CrossRefPubMed Florkiewicz R, Anchin J, Baird A: The inhibition of fibroblast growth factor-2 export by carenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem. 1998, 273: 544-551. 10.1074/jbc.273.1.544.CrossRefPubMed
9.
go back to reference Tarantini F, LaVallee T, Jackson A, et al: The extravesicular domain of synaptotagmin-1 is released with the latent fibroblast growth factor-1 homodimer in response to heat shock. J Biol Chem. 1998, 273: 22209-22216. 10.1074/jbc.273.35.22209.CrossRefPubMed Tarantini F, LaVallee T, Jackson A, et al: The extravesicular domain of synaptotagmin-1 is released with the latent fibroblast growth factor-1 homodimer in response to heat shock. J Biol Chem. 1998, 273: 22209-22216. 10.1074/jbc.273.35.22209.CrossRefPubMed
10.
go back to reference Zhan X, Hu XG, Friedman S, Maclag T: Analysis of endogenous and exogenous nuclear translocation of fibroblast growth factor-1 in NIH3T3 cells. Biochem Biophys Res Commun. 1992, 188: 982-991.CrossRefPubMed Zhan X, Hu XG, Friedman S, Maclag T: Analysis of endogenous and exogenous nuclear translocation of fibroblast growth factor-1 in NIH3T3 cells. Biochem Biophys Res Commun. 1992, 188: 982-991.CrossRefPubMed
11.
go back to reference Klagsbrun M, Baird A: A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991, 67: 229-231.CrossRefPubMed Klagsbrun M, Baird A: A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991, 67: 229-231.CrossRefPubMed
12.
go back to reference Ornitz DM, Xu JS, Colvin JS, et al: Receptor specificity of the fibroblast growth-factor family. J Biol Chem. 1996, 271: 15292-15297. 10.1074/jbc.271.25.15292.CrossRefPubMed Ornitz DM, Xu JS, Colvin JS, et al: Receptor specificity of the fibroblast growth-factor family. J Biol Chem. 1996, 271: 15292-15297. 10.1074/jbc.271.25.15292.CrossRefPubMed
13.
go back to reference Peters K, Werner S, Chen G, Williams L: Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992, 114: 233-243.PubMed Peters K, Werner S, Chen G, Williams L: Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992, 114: 233-243.PubMed
14.
go back to reference Orr-Urtreger A, Bedford M, Burakova T, et al: Developmental localization of the splicing alternatives of fibroblast growth-factor receptor-2 (FGFR2). Dev Biol. 1993, 158: 475-486. 10.1006/dbio.1993.1205.CrossRefPubMed Orr-Urtreger A, Bedford M, Burakova T, et al: Developmental localization of the splicing alternatives of fibroblast growth-factor receptor-2 (FGFR2). Dev Biol. 1993, 158: 475-486. 10.1006/dbio.1993.1205.CrossRefPubMed
15.
go back to reference Peters K, Ornitz D, Werner S, Williams L: Unique expression pattern of the fgf receptor-3 gene during mouse organogenesis. Dev Biol. 1993, 155: 423-430. 10.1006/dbio.1993.1040.CrossRefPubMed Peters K, Ornitz D, Werner S, Williams L: Unique expression pattern of the fgf receptor-3 gene during mouse organogenesis. Dev Biol. 1993, 155: 423-430. 10.1006/dbio.1993.1040.CrossRefPubMed
16.
go back to reference Partanen J, Armstrong E, Makela TP, et al: A novel endothelial-cell surface-receptor tyrosine kinase with extracellular epidermal growth-factor homology domains. Mol Cell Biol. 1992, 12: 1698-1707.CrossRefPubMedPubMedCentral Partanen J, Armstrong E, Makela TP, et al: A novel endothelial-cell surface-receptor tyrosine kinase with extracellular epidermal growth-factor homology domains. Mol Cell Biol. 1992, 12: 1698-1707.CrossRefPubMedPubMedCentral
17.
go back to reference Stark K, McMahon J, McMahon A: FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development. 1991, 113: 641-651.PubMed Stark K, McMahon J, McMahon A: FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development. 1991, 113: 641-651.PubMed
18.
go back to reference Plontnikov A, Schlessinger J, Hubbard S, Mohammadi M: Structural basis of fgf receptor dimerization and activation. Cell. 1999, 98: 641-650.CrossRef Plontnikov A, Schlessinger J, Hubbard S, Mohammadi M: Structural basis of fgf receptor dimerization and activation. Cell. 1999, 98: 641-650.CrossRef
19.
go back to reference Werner S, Smola H, Liao X, et al: The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994, 266: 819-822.CrossRefPubMed Werner S, Smola H, Liao X, et al: The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994, 266: 819-822.CrossRefPubMed
20.
go back to reference Yamaguchi TP, Rossant J: Fibroblast growth-factors in mammalian development. Curr Opin Genet Dev. 1995, 5: 485-491.CrossRefPubMed Yamaguchi TP, Rossant J: Fibroblast growth-factors in mammalian development. Curr Opin Genet Dev. 1995, 5: 485-491.CrossRefPubMed
21.
go back to reference Martin G: The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998, 12: 1571-1586.CrossRefPubMed Martin G: The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998, 12: 1571-1586.CrossRefPubMed
22.
go back to reference DeVore DL, Horvitz HR, Stern MJ: An FGF receptor signaling pathway is required for the normal-cell migrations of these sex myoblasts in C-elegans hermaphrodites. Cell. 1995, 83: 611-620. 10.1016/0092-8674(95)90101-9.CrossRefPubMed DeVore DL, Horvitz HR, Stern MJ: An FGF receptor signaling pathway is required for the normal-cell migrations of these sex myoblasts in C-elegans hermaphrodites. Cell. 1995, 83: 611-620. 10.1016/0092-8674(95)90101-9.CrossRefPubMed
23.
go back to reference Glazer L, Shilo B-Z: The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 1991, 5: 697-705.CrossRefPubMed Glazer L, Shilo B-Z: The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 1991, 5: 697-705.CrossRefPubMed
24.
go back to reference DeMoerlooze L, Dickson C: Skeletal disorders associated with fibroblast growth-factor receptor mutations. Curr Opin Genet Dev. 1997, 7: 378-385. 10.1016/S0959-437X(97)80152-9.CrossRef DeMoerlooze L, Dickson C: Skeletal disorders associated with fibroblast growth-factor receptor mutations. Curr Opin Genet Dev. 1997, 7: 378-385. 10.1016/S0959-437X(97)80152-9.CrossRef
25.
go back to reference Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.CrossRefPubMed Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.CrossRefPubMed
26.
go back to reference Nusse R, Brown A, Papkoff J, et al: A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991, 64: 231-232.CrossRefPubMed Nusse R, Brown A, Papkoff J, et al: A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991, 64: 231-232.CrossRefPubMed
27.
go back to reference Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell. 1983, 33: 369-377.CrossRefPubMed Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell. 1983, 33: 369-377.CrossRefPubMed
28.
go back to reference Peters G, Lee A, Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumour virus. Nature. 1986, 320: 628-631.CrossRefPubMed Peters G, Lee A, Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumour virus. Nature. 1986, 320: 628-631.CrossRefPubMed
29.
go back to reference Stamp G, Fantl V, Poulsom R, et al: Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Differ. 1992, 3: 929-938.PubMed Stamp G, Fantl V, Poulsom R, et al: Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Differ. 1992, 3: 929-938.PubMed
30.
go back to reference Ornitz D, Cardiff R, Kuo A, Leder P: Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J Natl Cancer Inst. 1992, 84: 887-892.CrossRefPubMed Ornitz D, Cardiff R, Kuo A, Leder P: Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J Natl Cancer Inst. 1992, 84: 887-892.CrossRefPubMed
31.
go back to reference Muller W, Lee F, Dickson C, et al: The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 1990, 9: 907-913.PubMedPubMedCentral Muller W, Lee F, Dickson C, et al: The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 1990, 9: 907-913.PubMedPubMedCentral
32.
go back to reference Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE: Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988, 55: 619-625.CrossRefPubMed Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE: Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988, 55: 619-625.CrossRefPubMed
33.
go back to reference Kwan H, Pecenka V, Tsukamoto A, et al: Transgenes expressing the wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol. 1992, 12: 147-154.CrossRefPubMedPubMedCentral Kwan H, Pecenka V, Tsukamoto A, et al: Transgenes expressing the wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol. 1992, 12: 147-154.CrossRefPubMedPubMedCentral
34.
go back to reference Shackleford GM, MacArthur CA, Kwan HC, Varmus HE: Mouse mammary-tumor virus-infection accelerates mammary carcinogenesis in wnt-1 transgenic mice by insertional activation of int-2/fgf-3 and hst/fgf-4. Proc Natl Acad Sci USA. 1993, 90: 740-744.CrossRefPubMedPubMedCentral Shackleford GM, MacArthur CA, Kwan HC, Varmus HE: Mouse mammary-tumor virus-infection accelerates mammary carcinogenesis in wnt-1 transgenic mice by insertional activation of int-2/fgf-3 and hst/fgf-4. Proc Natl Acad Sci USA. 1993, 90: 740-744.CrossRefPubMedPubMedCentral
35.
go back to reference MacArthur CA, Shankar DB, Shackleford GM: FGF-8, activated by proviral insertion, cooperates with the wnt-1 transgene in murine mammary tumorigenesis. J Virol. 1995, 69: 2501-2507.PubMedPubMedCentral MacArthur CA, Shankar DB, Shackleford GM: FGF-8, activated by proviral insertion, cooperates with the wnt-1 transgene in murine mammary tumorigenesis. J Virol. 1995, 69: 2501-2507.PubMedPubMedCentral
36.
go back to reference Lammie GA, Peters G: Chromosome 11q13 abnormalities in human cancer. Cancer Cells. 1991, 3: 413-420.PubMed Lammie GA, Peters G: Chromosome 11q13 abnormalities in human cancer. Cancer Cells. 1991, 3: 413-420.PubMed
37.
go back to reference Penault-Llorca F, Bertucci F, Adelaide J, et al: Expression of FGF and FGF receptor genes in human breast-cancer. Int J Cancer. 1995, 61: 170-176.CrossRefPubMed Penault-Llorca F, Bertucci F, Adelaide J, et al: Expression of FGF and FGF receptor genes in human breast-cancer. Int J Cancer. 1995, 61: 170-176.CrossRefPubMed
38.
go back to reference Relf M, LeJeune S, Scott P, et al: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997, 57: 963-969.PubMed Relf M, LeJeune S, Scott P, et al: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997, 57: 963-969.PubMed
39.
go back to reference Smith K, Fox SB, Whitehouse R, et al: Upregulation of basic fibrob last growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol. 1999, 10: 707-713. 10.1023/A:1008303614441.CrossRefPubMed Smith K, Fox SB, Whitehouse R, et al: Upregulation of basic fibrob last growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol. 1999, 10: 707-713. 10.1023/A:1008303614441.CrossRefPubMed
40.
go back to reference Colomer R, Aparicio J, Monero S, et al: Low levels of basic fibroblast growth factor (bFGF) are associated with a poor pronosis in human breast carcinoma. Br J Cancer. 1997, 76: 1215-1220.CrossRefPubMedPubMedCentral Colomer R, Aparicio J, Monero S, et al: Low levels of basic fibroblast growth factor (bFGF) are associated with a poor pronosis in human breast carcinoma. Br J Cancer. 1997, 76: 1215-1220.CrossRefPubMedPubMedCentral
41.
go back to reference Anandappa SY, Winstanley JHR, Leinster S, et al: Comparative expression of fibroblast growth-factor messenger-RNAs in benign and malignant breast disease. Br J Cancer. 1994, 69: 772-776.CrossRefPubMedPubMedCentral Anandappa SY, Winstanley JHR, Leinster S, et al: Comparative expression of fibroblast growth-factor messenger-RNAs in benign and malignant breast disease. Br J Cancer. 1994, 69: 772-776.CrossRefPubMedPubMedCentral
42.
go back to reference Luqmani Y, Graham M, Coombes R: Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer. 1992, 66: 271-280.CrossRef Luqmani Y, Graham M, Coombes R: Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer. 1992, 66: 271-280.CrossRef
43.
44.
go back to reference Linder C, Bystom P, Engel G, et al: Correlation between basic fibroblast growth factor immunostaining of stromal cells and stromelysin-3 mRNA expression in human breast carcinoma. Br J Cancer. 1998, 77: 941-945.CrossRefPubMedPubMedCentral Linder C, Bystom P, Engel G, et al: Correlation between basic fibroblast growth factor immunostaining of stromal cells and stromelysin-3 mRNA expression in human breast carcinoma. Br J Cancer. 1998, 77: 941-945.CrossRefPubMedPubMedCentral
45.
go back to reference Smith J, Yelland A, Baillie R, Coombes RC: Acidic and basic fibroblast growth-factors in human breast-tissue. Eur J Cancer. 1994, 30A: 496-503.CrossRefPubMed Smith J, Yelland A, Baillie R, Coombes RC: Acidic and basic fibroblast growth-factors in human breast-tissue. Eur J Cancer. 1994, 30A: 496-503.CrossRefPubMed
46.
go back to reference Bansal GS, Yiangou C, Coope RC, et al: Expression of fibroblast growth-factor-1 is lower in breast-cancer than in the normal human breast. Br J Cancer. 1995, 72: 1420-1426.CrossRefPubMedPubMedCentral Bansal GS, Yiangou C, Coope RC, et al: Expression of fibroblast growth-factor-1 is lower in breast-cancer than in the normal human breast. Br J Cancer. 1995, 72: 1420-1426.CrossRefPubMedPubMedCentral
47.
go back to reference Coope RC, Browne PJ, Yiangou C, et al: The location of acidic fibroblast growth-factor in the breast is dependent on the activity of proteases present in breast-cancer tissue. Br J Cancer. 1997, 75: 1621-1630.CrossRefPubMedPubMedCentral Coope RC, Browne PJ, Yiangou C, et al: The location of acidic fibroblast growth-factor in the breast is dependent on the activity of proteases present in breast-cancer tissue. Br J Cancer. 1997, 75: 1621-1630.CrossRefPubMedPubMedCentral
48.
go back to reference Marsh SK, Bansal GS, Zammit C, et al: Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene. 1999, 18: 1053-1060. 10.1038/sj/onc/1202392.CrossRefPubMed Marsh SK, Bansal GS, Zammit C, et al: Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene. 1999, 18: 1053-1060. 10.1038/sj/onc/1202392.CrossRefPubMed
49.
go back to reference Tanaka A, Furuya A, Yamasaki M, et al: High-frequency of fibroblast-growth-factor (FGF)-8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal-antibody against FGF-8. Cancer Res. 1998, 58: 2053-2056.PubMed Tanaka A, Furuya A, Yamasaki M, et al: High-frequency of fibroblast-growth-factor (FGF)-8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal-antibody against FGF-8. Cancer Res. 1998, 58: 2053-2056.PubMed
50.
go back to reference Theillet C, Adelaide J, Louason G, et al: FGFR1 and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer. 1993, 7: 219-226.CrossRefPubMed Theillet C, Adelaide J, Louason G, et al: FGFR1 and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer. 1993, 7: 219-226.CrossRefPubMed
51.
go back to reference Adnane J, Gaudray P, Dionne C, et al: BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene. 1991, 6: 659-663.PubMed Adnane J, Gaudray P, Dionne C, et al: BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene. 1991, 6: 659-663.PubMed
52.
go back to reference Blanckaert VD, Hebbar M, Louchez MM, et al: Basic fibroblast-growth-factor receptors and their prognostic value in human breast-cancer. Clin Cancer Res. 1998, 4: 2939-2947.PubMed Blanckaert VD, Hebbar M, Louchez MM, et al: Basic fibroblast-growth-factor receptors and their prognostic value in human breast-cancer. Clin Cancer Res. 1998, 4: 2939-2947.PubMed
53.
go back to reference Cappellen D, Oliveira C, Ricol D, et al: Frequent activating mutations of FGFR3 in human bladder and cervix carcinoma. Nature Genet. 1999, 23: 18-20.PubMed Cappellen D, Oliveira C, Ricol D, et al: Frequent activating mutations of FGFR3 in human bladder and cervix carcinoma. Nature Genet. 1999, 23: 18-20.PubMed
54.
go back to reference Neilson KM, Friesel R: Ligand-independent activation of fibroblast growth-factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J Biol Chem. 1996, 271: 25049-25057. 10.1074/jbc.271.40.25049.CrossRefPubMed Neilson KM, Friesel R: Ligand-independent activation of fibroblast growth-factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J Biol Chem. 1996, 271: 25049-25057. 10.1074/jbc.271.40.25049.CrossRefPubMed
55.
go back to reference Naski MC, Wang Q, Xu JS, Ornitz DM: Graded activation of fibroblast growth-factor receptor3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genet. 1996, 13: 233-237.CrossRefPubMed Naski MC, Wang Q, Xu JS, Ornitz DM: Graded activation of fibroblast growth-factor receptor3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genet. 1996, 13: 233-237.CrossRefPubMed
56.
go back to reference Webster MK, Donoghue DJ: Constitutive activation of fibroblast growth-factor receptor-3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 1996, 15: 520-527.PubMedPubMedCentral Webster MK, Donoghue DJ: Constitutive activation of fibroblast growth-factor receptor-3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 1996, 15: 520-527.PubMedPubMedCentral
57.
go back to reference Jackson D, Bresnick J, Rosewell I, et al: Fibroblast growth-factor receptor signaling has a role in lobuloalveolar development of the mammary-gland. J Cell Sci. 1997, 110: 1261-1268.PubMed Jackson D, Bresnick J, Rosewell I, et al: Fibroblast growth-factor receptor signaling has a role in lobuloalveolar development of the mammary-gland. J Cell Sci. 1997, 110: 1261-1268.PubMed
58.
go back to reference Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P: Insertional mutagenesis identifies a member of the wnt gene family as a candidate oncogene in the mammary epithelium of int-2/FGF-3 transgenic mice. Proc Natl Acad Sci USA. 1995, 92: 2268-2272.CrossRefPubMedPubMedCentral Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P: Insertional mutagenesis identifies a member of the wnt gene family as a candidate oncogene in the mammary epithelium of int-2/FGF-3 transgenic mice. Proc Natl Acad Sci USA. 1995, 92: 2268-2272.CrossRefPubMedPubMedCentral
59.
go back to reference Gallahan D, Kozak C, Callahan R: A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol. 1987, 61: 218-220.PubMedPubMedCentral Gallahan D, Kozak C, Callahan R: A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol. 1987, 61: 218-220.PubMedPubMedCentral
60.
go back to reference Peters G, Brookes S, Smith R, Placzek M, Dickson C: The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA. 1989, 86: 5678-5682.CrossRefPubMedPubMedCentral Peters G, Brookes S, Smith R, Placzek M, Dickson C: The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA. 1989, 86: 5678-5682.CrossRefPubMedPubMedCentral
61.
go back to reference Roelink H, Wagenaar E, Lopes de Silva S, Nusse R: Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/wnt-1 and is normally expressed in mouse embryos and adult brain. Proc Natl Acad Sci USA. 1990, 87: 4519-4523.CrossRefPubMedPubMedCentral Roelink H, Wagenaar E, Lopes de Silva S, Nusse R: Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/wnt-1 and is normally expressed in mouse embryos and adult brain. Proc Natl Acad Sci USA. 1990, 87: 4519-4523.CrossRefPubMedPubMedCentral
Metadata
Title
Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors
Authors
Clive Dickson
Bradley Spencer-Dene
Christian Dillon
Vera Fantl
Publication date
01-06-2000
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2000
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr53

Other articles of this Issue 3/2000

Breast Cancer Research 3/2000 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine