Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Type 1 Diabetes | Research

Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial

Authors: Eliane F. E. Wenstedt, Jetta J. Oppelaar, Stijn Besseling, Nienke M. G. Rorije, Rik H. G. Olde Engberink, Arie Oosterhof, Toin H. van Kuppevelt, Bert-Jan H. van den Born, Jan Aten, Liffert Vogt

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis.

Methods

We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses.

Results

Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed.

Conclusion

DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis.
Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://​www.​trialregister.​nl/​trial/​3933 at 2013-07-29) and NTR4788 (https://​www.​trialregister.​nl/​trial/​4645 at 2014-09-12).
Appendix
Available only for authorised users
Literature
1.
go back to reference Sterns RH. Disorders of plasma sodium–causes, consequences, and correction. N Engl J Med. 2015;372:55–65.PubMedCrossRef Sterns RH. Disorders of plasma sodium–causes, consequences, and correction. N Engl J Med. 2015;372:55–65.PubMedCrossRef
2.
go back to reference Darmon M, Diconne E, Souweine B, Ruckly S, Adrie C, Azoulay E, Clec’h C, Garrouste-Orgeas M, Schwebel C, Goldgran-Toledano D, et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care. 2013;17:R12.PubMedPubMedCentralCrossRef Darmon M, Diconne E, Souweine B, Ruckly S, Adrie C, Azoulay E, Clec’h C, Garrouste-Orgeas M, Schwebel C, Goldgran-Toledano D, et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care. 2013;17:R12.PubMedPubMedCentralCrossRef
3.
go back to reference Frenkel WN, van den Born BJ, van Munster BC, Korevaar JC, Levi M, de Rooij SE. The association between serum sodium levels at time of admission and mortality and morbidity in acutely admitted elderly patients: a prospective cohort study. J Am Geriatr Soc. 2010;58:2227–8.PubMedCrossRef Frenkel WN, van den Born BJ, van Munster BC, Korevaar JC, Levi M, de Rooij SE. The association between serum sodium levels at time of admission and mortality and morbidity in acutely admitted elderly patients: a prospective cohort study. J Am Geriatr Soc. 2010;58:2227–8.PubMedCrossRef
4.
go back to reference Sun L, Hou Y, Xiao Q, Du Y. Association of serum sodium and risk of all-cause mortality in patients with chronic kidney disease: a meta-analysis and sysematic review. Sci Rep. 2017;7:15949.PubMedPubMedCentralCrossRef Sun L, Hou Y, Xiao Q, Du Y. Association of serum sodium and risk of all-cause mortality in patients with chronic kidney disease: a meta-analysis and sysematic review. Sci Rep. 2017;7:15949.PubMedPubMedCentralCrossRef
5.
go back to reference Waite MD, Fuhrman SA, Badawi O, Zuckerman IH, Franey CS. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405–12.PubMedCrossRef Waite MD, Fuhrman SA, Badawi O, Zuckerman IH, Franey CS. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405–12.PubMedCrossRef
6.
go back to reference Hu J, Wang Y, Geng X, Chen R, Zhang P, Lin J, Teng J, Zhang X, Ding X. Dysnatremia is an independent indicator of mortality in hospitalized patients. Med Sci Monit. 2017;23:2408–25.PubMedPubMedCentralCrossRef Hu J, Wang Y, Geng X, Chen R, Zhang P, Lin J, Teng J, Zhang X, Ding X. Dysnatremia is an independent indicator of mortality in hospitalized patients. Med Sci Monit. 2017;23:2408–25.PubMedPubMedCentralCrossRef
7.
go back to reference Hoorn EJ, Zietse R. Hyponatremia revisited: translating physiology to practice. Nephron Physiol. 2008;108:p46-59.PubMedCrossRef Hoorn EJ, Zietse R. Hyponatremia revisited: translating physiology to practice. Nephron Physiol. 2008;108:p46-59.PubMedCrossRef
8.
go back to reference Engberink ORH, Rorije NM, van der Heide HJJ, van den Born BJ, Vogt L. Role of the vascular wall in sodium homeostasis and salt sensitivity. J Am Soc Nephrol. 2015;26:777–83.CrossRef Engberink ORH, Rorije NM, van der Heide HJJ, van den Born BJ, Vogt L. Role of the vascular wall in sodium homeostasis and salt sensitivity. J Am Soc Nephrol. 2015;26:777–83.CrossRef
9.
go back to reference Wenstedt EFE, Olde Engberink RHG, Vogt L. Sodium handling by the blood vessel wall: critical for hypertension development. Hypertension. 2018;71:990–6.PubMedCrossRef Wenstedt EFE, Olde Engberink RHG, Vogt L. Sodium handling by the blood vessel wall: critical for hypertension development. Hypertension. 2018;71:990–6.PubMedCrossRef
10.
go back to reference Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, Luft FC, Hilgers KF. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003;285:F1108-1117.PubMedCrossRef Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, Luft FC, Hilgers KF. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003;285:F1108-1117.PubMedCrossRef
11.
go back to reference Olde Engberink RH, Rorije NM, van den Born BH, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017;91:738–45.PubMedCrossRef Olde Engberink RH, Rorije NM, van den Born BH, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017;91:738–45.PubMedCrossRef
13.
go back to reference Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E. Anionic biopolymers as blood flow sensors. Biosens Bioelectron. 1996;11:281–94.PubMedCrossRef Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E. Anionic biopolymers as blood flow sensors. Biosens Bioelectron. 1996;11:281–94.PubMedCrossRef
14.
go back to reference Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203-208.PubMedCrossRef Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203-208.PubMedCrossRef
15.
go back to reference Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.PubMedCrossRef Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.PubMedCrossRef
16.
go back to reference Fischereder M, Michalke B, Schmoeckel E, Habicht A, Kunisch R, Pavelic I, Szabados B, Schonermarck U, Nelson P, Stangl M: Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am J Physiol Renal Physiol 2017: ajprenal 00703 02016. Fischereder M, Michalke B, Schmoeckel E, Habicht A, Kunisch R, Pavelic I, Szabados B, Schonermarck U, Nelson P, Stangl M: Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am J Physiol Renal Physiol 2017: ajprenal 00703 02016.
17.
go back to reference Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, Kirsch KA, Hilgers KF. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283:F134-141.PubMedCrossRef Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, Kirsch KA, Hilgers KF. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283:F134-141.PubMedCrossRef
18.
go back to reference Selvarajah V, Maki-Petaja KM, Pedro L, Bruggraber SFA, Burling K, Goodhart AK, Brown MJ, McEniery CM, Wilkinson IB. Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor c, and blood pressure. Hypertension. 2017;70:930–7.PubMedCrossRef Selvarajah V, Maki-Petaja KM, Pedro L, Bruggraber SFA, Burling K, Goodhart AK, Brown MJ, McEniery CM, Wilkinson IB. Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor c, and blood pressure. Hypertension. 2017;70:930–7.PubMedCrossRef
20.
go back to reference Gowd V, Gurukar A, Chilkunda ND. Glycosaminoglycan remodeling during diabetes and the role of dietary factors in their modulation. World J Diabetes. 2016;7:67–73.PubMedPubMedCentralCrossRef Gowd V, Gurukar A, Chilkunda ND. Glycosaminoglycan remodeling during diabetes and the role of dietary factors in their modulation. World J Diabetes. 2016;7:67–73.PubMedPubMedCentralCrossRef
21.
go back to reference Cechowska-Pasko M, Palka J, Bankowski E. Decrease in the glycosaminoglycan content in the skin of diabetic rats. The role of IGF-I, IGF-binding proteins and proteolytic activity. Mol Cell Biochem. 1996;154:1–8.PubMedCrossRef Cechowska-Pasko M, Palka J, Bankowski E. Decrease in the glycosaminoglycan content in the skin of diabetic rats. The role of IGF-I, IGF-binding proteins and proteolytic activity. Mol Cell Biochem. 1996;154:1–8.PubMedCrossRef
22.
go back to reference De Muro P, Fresu P, Formato M, Tonolo G, Mameli M, Maioli M, Sanna GM, Cherchi GM. Urinary glycosaminoglycan and proteoglycan excretion in normoalbuminuric patients with type 1 diabetes mellitus. J Nephrol. 2002;15:290–6.PubMed De Muro P, Fresu P, Formato M, Tonolo G, Mameli M, Maioli M, Sanna GM, Cherchi GM. Urinary glycosaminoglycan and proteoglycan excretion in normoalbuminuric patients with type 1 diabetes mellitus. J Nephrol. 2002;15:290–6.PubMed
23.
go back to reference Zak BM, Crawford BE, Esko JD. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta. 2002;1573:346–55.PubMedCrossRef Zak BM, Crawford BE, Esko JD. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta. 2002;1573:346–55.PubMedCrossRef
24.
go back to reference Mooij HL, Cabrales P, Bernelot Moens SJ, Xu D, Udayappan SD, Tsai AG, van der Sande MA, de Groot E, Intaglietta M, Kastelein JJ, et al. Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. J Am Heart Assoc. 2014;3:e001274.PubMedPubMedCentralCrossRef Mooij HL, Cabrales P, Bernelot Moens SJ, Xu D, Udayappan SD, Tsai AG, van der Sande MA, de Groot E, Intaglietta M, Kastelein JJ, et al. Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. J Am Heart Assoc. 2014;3:e001274.PubMedPubMedCentralCrossRef
25.
go back to reference Olde Engberink RHG, de Vos J, van Weert A, Zhang Y, van Vlies N, van den Born BH, Titze JM, van Bavel E, Vogt L. Abnormal sodium and water homeostasis in mice with defective heparan sulfate polymerization. PLoS ONE. 2019;14:e0220333.PubMedPubMedCentralCrossRef Olde Engberink RHG, de Vos J, van Weert A, Zhang Y, van Vlies N, van den Born BH, Titze JM, van Bavel E, Vogt L. Abnormal sodium and water homeostasis in mice with defective heparan sulfate polymerization. PLoS ONE. 2019;14:e0220333.PubMedPubMedCentralCrossRef
26.
go back to reference Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, van Straalen JP, van den Born BH, Verberne HJ, Vogt L: Microvascular Permeability after an Acute and Chronic Salt Load in Healthy Subjects: A Randomized Open-label Crossover Intervention Study. Anesthesiology. 2017:352–360. Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, van Straalen JP, van den Born BH, Verberne HJ, Vogt L: Microvascular Permeability after an Acute and Chronic Salt Load in Healthy Subjects: A Randomized Open-label Crossover Intervention Study. Anesthesiology. 2017:352–360.
27.
go back to reference Wouda RD, Dekker SEI, Reijm J, Engberink ORHG, Vogt L. Effects of water loading on observed and predicted plasma sodium, and fluid and urine cation excretion in healthy individuals. Am J Kidney Dis. 2019;74(3):320–7.PubMedCrossRef Wouda RD, Dekker SEI, Reijm J, Engberink ORHG, Vogt L. Effects of water loading on observed and predicted plasma sodium, and fluid and urine cation excretion in healthy individuals. Am J Kidney Dis. 2019;74(3):320–7.PubMedCrossRef
28.
go back to reference Nguyen MK, Kurtz I. A new quantitative approach to the treatment of the dysnatremias. Clin Exp Nephrol. 2003;7:125–37.PubMedCrossRef Nguyen MK, Kurtz I. A new quantitative approach to the treatment of the dysnatremias. Clin Exp Nephrol. 2003;7:125–37.PubMedCrossRef
29.
go back to reference Adrogue HJ, Madias NE. Aiding fluid prescription for the dysnatremias. Intensive Care Med. 1997;23:309–16.PubMedCrossRef Adrogue HJ, Madias NE. Aiding fluid prescription for the dysnatremias. Intensive Care Med. 1997;23:309–16.PubMedCrossRef
30.
go back to reference Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med. 1999;106:399–403.PubMedCrossRef Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med. 1999;106:399–403.PubMedCrossRef
31.
go back to reference Langereis EJ, van Vlies N, Church HJ, Geskus RB, Hollak CE, Jones SA, Kulik W, van Lenthe H, Mercer J, Schreider L, et al. Biomarker responses correlate with antibody status in mucopolysaccharidosis type I patients on long-term enzyme replacement therapy. Mol Genet Metab. 2015;114:129–37.PubMedCrossRef Langereis EJ, van Vlies N, Church HJ, Geskus RB, Hollak CE, Jones SA, Kulik W, van Lenthe H, Mercer J, Schreider L, et al. Biomarker responses correlate with antibody status in mucopolysaccharidosis type I patients on long-term enzyme replacement therapy. Mol Genet Metab. 2015;114:129–37.PubMedCrossRef
32.
go back to reference Lawrence R, Lu H, Rosenberg RD, Esko JD, Zhang L. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat Methods. 2008;5:291–2.PubMedCrossRef Lawrence R, Lu H, Rosenberg RD, Esko JD, Zhang L. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat Methods. 2008;5:291–2.PubMedCrossRef
33.
go back to reference Lensen JF, Wijnhoven TJ, Kuik LH, Versteeg EM, Hafmans T, Rops AL, Pavao MS, van der Vlag J, van den Heuvel LP, Berden JH, van Kuppevelt TH. Selection and characterization of a unique phage display-derived antibody against dermatan sulfate. Matrix Biol. 2006;25:457–61.PubMedCrossRef Lensen JF, Wijnhoven TJ, Kuik LH, Versteeg EM, Hafmans T, Rops AL, Pavao MS, van der Vlag J, van den Heuvel LP, Berden JH, van Kuppevelt TH. Selection and characterization of a unique phage display-derived antibody against dermatan sulfate. Matrix Biol. 2006;25:457–61.PubMedCrossRef
34.
go back to reference Ten Dam GB, Yamada S, Kobayashi F, Purushothaman A, van de Westerlo EM, Bulten J, Malmstrom A, Sugahara K, Massuger LF, van Kuppevelt TH. Dermatan sulfate domains defined by the novel antibody GD3A12, in normal tissues and ovarian adenocarcinomas. Histochem Cell Biol. 2009;132:117–27.PubMedCrossRef Ten Dam GB, Yamada S, Kobayashi F, Purushothaman A, van de Westerlo EM, Bulten J, Malmstrom A, Sugahara K, Massuger LF, van Kuppevelt TH. Dermatan sulfate domains defined by the novel antibody GD3A12, in normal tissues and ovarian adenocarcinomas. Histochem Cell Biol. 2009;132:117–27.PubMedCrossRef
35.
go back to reference Ten Dam GB, Kurup S, van de Westerlo EM, Versteeg EM, Lindahl U, Spillmann D, van Kuppevelt TH. 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3. J Biol Chem. 2006;281:4654–62.PubMedCrossRef Ten Dam GB, Kurup S, van de Westerlo EM, Versteeg EM, Lindahl U, Spillmann D, van Kuppevelt TH. 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3. J Biol Chem. 2006;281:4654–62.PubMedCrossRef
36.
go back to reference Kurup S, Wijnhoven TJ, Jenniskens GJ, Kimata K, Habuchi H, Li JP, Lindahl U, van Kuppevelt TH, Spillmann D. Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4. J Biol Chem. 2007;282:21032–42.PubMedCrossRef Kurup S, Wijnhoven TJ, Jenniskens GJ, Kimata K, Habuchi H, Li JP, Lindahl U, van Kuppevelt TH, Spillmann D. Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4. J Biol Chem. 2007;282:21032–42.PubMedCrossRef
38.
go back to reference Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23:291–9.PubMed Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23:291–9.PubMed
39.
go back to reference Wenstedt EFE, Engberink R, Rorije NMG, van den Born BH, Claessen N, Aten J, Vogt L. Salt-sensitive blood pressure rise in type 1 diabetes patients is accompanied by disturbed skin macrophage influx and lymphatic dilation-a proof-of-concept study. Transl Res. 2019;217:23–32.PubMedCrossRef Wenstedt EFE, Engberink R, Rorije NMG, van den Born BH, Claessen N, Aten J, Vogt L. Salt-sensitive blood pressure rise in type 1 diabetes patients is accompanied by disturbed skin macrophage influx and lymphatic dilation-a proof-of-concept study. Transl Res. 2019;217:23–32.PubMedCrossRef
40.
go back to reference Schafflhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, Wagner H, Luft FC, Eckardt KU, Titze J. Mobilization of osmotically inactive Na(+) by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol. 2007;292:F1490–500.PubMedCrossRef Schafflhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, Wagner H, Luft FC, Eckardt KU, Titze J. Mobilization of osmotically inactive Na(+) by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol. 2007;292:F1490–500.PubMedCrossRef
41.
go back to reference Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, van Rooijen N, Eckardt KU, Muller DN, Park JK, Luft FC, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–61.PubMedCrossRef Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, van Rooijen N, Eckardt KU, Muller DN, Park JK, Luft FC, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–61.PubMedCrossRef
42.
go back to reference Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59:167–72.PubMedCrossRef Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59:167–72.PubMedCrossRef
43.
go back to reference Kopp C, Linz P, Maier C, Wabel P, Hammon M, Nagel AM, Rosenhauer D, Horn S, Uder M, Luft FC, et al. Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by (23)Na magnetic resonance imaging. Kidney Int. 2018;93:1191–7.PubMedCrossRef Kopp C, Linz P, Maier C, Wabel P, Hammon M, Nagel AM, Rosenhauer D, Horn S, Uder M, Luft FC, et al. Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by (23)Na magnetic resonance imaging. Kidney Int. 2018;93:1191–7.PubMedCrossRef
44.
go back to reference Kannenkeril D, Karg MV, Bosch A, Ott C, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content in patients with type 2 diabetes mellitus. J Diabetes Complications. 2019;33:485–9.PubMedCrossRef Kannenkeril D, Karg MV, Bosch A, Ott C, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content in patients with type 2 diabetes mellitus. J Diabetes Complications. 2019;33:485–9.PubMedCrossRef
45.
go back to reference Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37:1236–56.PubMedPubMedCentralCrossRef Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37:1236–56.PubMedPubMedCentralCrossRef
46.
go back to reference Nguyen MK, Kurtz I. Determinants of plasma water sodium concentration as reflected in the Edelman equation: role of osmotic and Gibbs-Donnan equilibrium. Am J Physiol Renal Physiol. 2004;286:F828-837.PubMedCrossRef Nguyen MK, Kurtz I. Determinants of plasma water sodium concentration as reflected in the Edelman equation: role of osmotic and Gibbs-Donnan equilibrium. Am J Physiol Renal Physiol. 2004;286:F828-837.PubMedCrossRef
47.
go back to reference Wenstedt EFE, Rorije NMG, Olde Engberink RHG, van der Molen KM, Chahid Y, Danser AHJ, van den Born BH, Vogt L. Effect of high-salt diet on blood pressure and body fluid composition in patients with type 1 diabetes: randomized controlled intervention trial. BMJ Open Diabetes Res Care. 2020;8:e001039.PubMedPubMedCentralCrossRef Wenstedt EFE, Rorije NMG, Olde Engberink RHG, van der Molen KM, Chahid Y, Danser AHJ, van den Born BH, Vogt L. Effect of high-salt diet on blood pressure and body fluid composition in patients with type 1 diabetes: randomized controlled intervention trial. BMJ Open Diabetes Res Care. 2020;8:e001039.PubMedPubMedCentralCrossRef
48.
go back to reference Wei G, Bai X, Gabb MM, Bame KJ, Koshy TI, Spear PG, Esko JD. Location of the glucuronosyltransferase domain in the heparan sulfate copolymerase EXT1 by analysis of Chinese hamster ovary cell mutants. J Biol Chem. 2000;275:27733–40.PubMedCrossRef Wei G, Bai X, Gabb MM, Bame KJ, Koshy TI, Spear PG, Esko JD. Location of the glucuronosyltransferase domain in the heparan sulfate copolymerase EXT1 by analysis of Chinese hamster ovary cell mutants. J Biol Chem. 2000;275:27733–40.PubMedCrossRef
49.
go back to reference de Ru MH, van der Tol L, van Vlies N, Bigger BW, Hollak CE, Ijlst L, Kulik W, van Lenthe H, Saif MA, Wagemans T, et al. Plasma and urinary levels of dermatan sulfate and heparan sulfate derived disaccharides after long-term enzyme replacement therapy (ERT) in MPS I: correlation with the timing of ERT and with total urinary excretion of glycosaminoglycans. J Inherit Metab Dis. 2013;36:247–55.PubMedCrossRef de Ru MH, van der Tol L, van Vlies N, Bigger BW, Hollak CE, Ijlst L, Kulik W, van Lenthe H, Saif MA, Wagemans T, et al. Plasma and urinary levels of dermatan sulfate and heparan sulfate derived disaccharides after long-term enzyme replacement therapy (ERT) in MPS I: correlation with the timing of ERT and with total urinary excretion of glycosaminoglycans. J Inherit Metab Dis. 2013;36:247–55.PubMedCrossRef
50.
go back to reference van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, Goldschmeding R, Zcharia E, Vlodavsky I, van der Vlag J, Berden JH. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006;70:2100–8.PubMedCrossRef van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, Goldschmeding R, Zcharia E, Vlodavsky I, van der Vlag J, Berden JH. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006;70:2100–8.PubMedCrossRef
51.
go back to reference Garsen M, Rops AL, Rabelink TJ, Berden JH, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant. 2014;29:49–55.PubMedCrossRef Garsen M, Rops AL, Rabelink TJ, Berden JH, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant. 2014;29:49–55.PubMedCrossRef
52.
go back to reference Boger CA, Gorski M, McMahon GM, Xu H, Chang YC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, et al. NFAT5 and SLC4A10 loci associate with plasma osmolality. J Am Soc Nephrol. 2017;28:2311–21.PubMedPubMedCentralCrossRef Boger CA, Gorski M, McMahon GM, Xu H, Chang YC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, et al. NFAT5 and SLC4A10 loci associate with plasma osmolality. J Am Soc Nephrol. 2017;28:2311–21.PubMedPubMedCentralCrossRef
53.
go back to reference Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55.PubMedPubMedCentralCrossRef Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55.PubMedPubMedCentralCrossRef
54.
go back to reference Olde Engberink RH, Rorije NM, Lambers Heerspink HJ, De Zeeuw D, van den Born BJ, Vogt L. The blood pressure lowering potential of sulodexide–a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;80:1245–53.PubMedPubMedCentralCrossRef Olde Engberink RH, Rorije NM, Lambers Heerspink HJ, De Zeeuw D, van den Born BJ, Vogt L. The blood pressure lowering potential of sulodexide–a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;80:1245–53.PubMedPubMedCentralCrossRef
55.
go back to reference Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.PubMedPubMedCentralCrossRef Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.PubMedPubMedCentralCrossRef
Metadata
Title
Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial
Authors
Eliane F. E. Wenstedt
Jetta J. Oppelaar
Stijn Besseling
Nienke M. G. Rorije
Rik H. G. Olde Engberink
Arie Oosterhof
Toin H. van Kuppevelt
Bert-Jan H. van den Born
Jan Aten
Liffert Vogt
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Type 1 Diabetes
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02700-0

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.