Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Tuberculosis | Research article

Pharmacokinetic study of two different rifabutin doses co-administered with lopinavir/ritonavir in African HIV and tuberculosis co-infected adult patients

Authors: Seni Kouanda, Henri Gautier Ouedraogo, Kadari Cisse, Tegwinde Rebeca Compaoré, Giorgia Sulis, Serge Diagbouga, Alberto Roggi, Grissoum Tarnagda, Paola Villani, Lassana Sangare, Jacques Simporé, Mario Regazzi, Alberto Matteelli

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

This study aimed to assess the pharmacokinetic profile of 150 mg rifabutin (RBT) taken every other day (every 48 h) versus 300 mg RBT taken every other day (E.O.D), both in combination with lopinavir/ritonavir (LPV/r), in adult patients with human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection.

Methods

This is a two-arm, open-label, pharmacokinetic, randomised study conducted in Burkina Faso between May 2013 and December 2015. Enrolled patients were randomised to receive either 150 mg RBT EOD (arm A, 9 subjects) or 300 mg RBT EOD (arm B, 7 subjects), both associated with LPV/r taken twice daily. RBT plasma concentrations were evaluated after 2 weeks of combined HIV and TB treatment. Samples were collected just before drug ingestion and at 1, 2, 3, 4, 6, 8, and 12 h after drug ingestion to measure plasma drug concentration using an HPLC-MS/MS assay.

Results

The Cmax and AUC0–12h medians in arm A (Cmax = 296 ng/mL, IQR: 205–45; AUC0–12h = 2528 ng.h/mL, IQR: 1684–2735) were lower than those in arm B (Cmax = 600 ng/mL, IQR: 403–717; AUC0–12h = 4042.5 ng.h/mL, IQR: 3469–5761), with a statistically significant difference in AUC0–12h (p = 0.044) but not in Cmax (p = 0.313). No significant differences were observed in Tmax (3 h versus 4 h). Five patients had a Cmax below the plasma therapeutic limit (< 300 ng/mL) in the 150 mg RBT arm, while the Cmax was above this threshold for all patients in the 300 mg RBT arm. Additionally, at 48 h after drug ingestion, all patients had a mycobacterial minimum inhibitory concentration (MIC) above the limit (> 64 ng/mL) in the 300 mg RBT arm, while 4/9 patients had such values in the 150 mg RBT arm.

Conclusion

This study confirmed that the 150 mg dose of rifabutin ingested EOD in combination with LPV/r is inadequate and could lead to selection of rifamycin-resistant mycobacteria.

Trial registration

PACTR20131000062​9390, 28th October 2013.
Literature
3.
go back to reference Lawn SD, Kranzer K, Wood R. Antiretroviral therapy for control of the HIV-associated tuberculosis epidemic in resource-limited settings. Clin Chest Med. 2009;30. Lawn SD, Kranzer K, Wood R. Antiretroviral therapy for control of the HIV-associated tuberculosis epidemic in resource-limited settings. Clin Chest Med. 2009;30.
8.
go back to reference Khachi H, O’Connell R, Ladenheim D, Orkin C. Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J Antimicrob Chemother. 2009;64:871–3.CrossRef Khachi H, O’Connell R, Ladenheim D, Orkin C. Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J Antimicrob Chemother. 2009;64:871–3.CrossRef
9.
go back to reference Matteelli A, Villani P, Carvalho ACC, El-Hamad I, Cusato M, Apostoli A, et al. Lopinavir pharmacokinetic profiles in HIV-infected patients during rifabutin-based anti-mycobacterial therapy. J Antimicrob Chemother. 2012;67:2470–3.CrossRef Matteelli A, Villani P, Carvalho ACC, El-Hamad I, Cusato M, Apostoli A, et al. Lopinavir pharmacokinetic profiles in HIV-infected patients during rifabutin-based anti-mycobacterial therapy. J Antimicrob Chemother. 2012;67:2470–3.CrossRef
10.
go back to reference Boulanger C, Hollender E, Farrell K, Stambaugh JJ, Maasen D, Ashkin D, et al. Pharmacokinetic evaluation of Rifabutin in combination with Lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis. 2009;49:1305–11. https://doi.org/10.1086/606056.CrossRefPubMed Boulanger C, Hollender E, Farrell K, Stambaugh JJ, Maasen D, Ashkin D, et al. Pharmacokinetic evaluation of Rifabutin in combination with Lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis. 2009;49:1305–11. https://​doi.​org/​10.​1086/​606056.CrossRefPubMed
14.
go back to reference Regazzi M, Carvalho AC, Villani P, Matteelli A. Treatment optimization in patients co-infected with HIV and mycobacterium tuberculosis infections: focus on drug-drug interactions with rifamycins. Clin Pharmacokinet. 2014;53:489–507.CrossRef Regazzi M, Carvalho AC, Villani P, Matteelli A. Treatment optimization in patients co-infected with HIV and mycobacterium tuberculosis infections: focus on drug-drug interactions with rifamycins. Clin Pharmacokinet. 2014;53:489–507.CrossRef
15.
go back to reference Brogden RN, Fitton A. Rifabutin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1994;47:983–1009.CrossRef Brogden RN, Fitton A. Rifabutin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1994;47:983–1009.CrossRef
16.
go back to reference Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S15–21 discussion S21–22.CrossRef Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S15–21 discussion S21–22.CrossRef
17.
go back to reference Struble KA, Piscitelli SC, Rodvold KA. Drug interections with antiretrovirals for HIV infection. In: Drug interactions in infectious diseases. 2nd ed. Totowa: Humana Press; 2006. p. 101–36. Struble KA, Piscitelli SC, Rodvold KA. Drug interections with antiretrovirals for HIV infection. In: Drug interactions in infectious diseases. 2nd ed. Totowa: Humana Press; 2006. p. 101–36.
21.
go back to reference Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA. 1996;276:1229–35.CrossRef Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA. 1996;276:1229–35.CrossRef
22.
go back to reference Boffito M, Acosta E, Burger D, Fletcher CV, Flexner C, Garaffo R, et al. Therapeutic drug monitoring and drug-drug interactions involving antiretroviral drugs. Antivir Ther (Lond). 2005;10:469–77. Boffito M, Acosta E, Burger D, Fletcher CV, Flexner C, Garaffo R, et al. Therapeutic drug monitoring and drug-drug interactions involving antiretroviral drugs. Antivir Ther (Lond). 2005;10:469–77.
23.
go back to reference Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRef Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRef
25.
go back to reference Babalik A, Babalik A, Mannix S, Francis D, Menzies D. Therapeutic drug monitoring in the treatment of active tuberculosis. Can Respir J. 2011;18:225–9.CrossRef Babalik A, Babalik A, Mannix S, Francis D, Menzies D. Therapeutic drug monitoring in the treatment of active tuberculosis. Can Respir J. 2011;18:225–9.CrossRef
26.
go back to reference Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1984;9:511–44.CrossRef Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1984;9:511–44.CrossRef
27.
go back to reference Holland DP, Hamilton CD, Weintrob AC, Engemann JJ, Fortenberry ER, Peloquin CA, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29:503–10.CrossRef Holland DP, Hamilton CD, Weintrob AC, Engemann JJ, Fortenberry ER, Peloquin CA, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29:503–10.CrossRef
31.
go back to reference Aarons L, Balant LP, Mentre F, Morselli PL, Rowland M, Steimer JL, et al. Practical experience and issues in designing and performing population pharmacokinetic/pharmacodynamic studies. Eur J Clin Pharmacol. 1996;49:251–4.CrossRef Aarons L, Balant LP, Mentre F, Morselli PL, Rowland M, Steimer JL, et al. Practical experience and issues in designing and performing population pharmacokinetic/pharmacodynamic studies. Eur J Clin Pharmacol. 1996;49:251–4.CrossRef
32.
go back to reference Mahmood I, Duan J. Population pharmacokinetics with a very small sample size. Drug Metabol Drug Interact. 2009;24:259–74.PubMed Mahmood I, Duan J. Population pharmacokinetics with a very small sample size. Drug Metabol Drug Interact. 2009;24:259–74.PubMed
34.
go back to reference EMEA. Guideline on bioanalytical method validation (2011) (EMEA/CHMP/EWP/192217/2009 Rev.1 Corr. 2**). 2011. EMEA. Guideline on bioanalytical method validation (2011) (EMEA/CHMP/EWP/192217/2009 Rev.1 Corr. 2**). 2011.
38.
go back to reference Lan NTN, Thu NTN, Barrail-Tran A, Duc NH, Lan NN, Laureillard D, et al. Randomised pharmacokinetic trial of rifabutin with lopinavir/ritonavir-antiretroviral therapy in patients with HIV-associated tuberculosis in Vietnam. PLoS One. 2014;9:e84866.CrossRef Lan NTN, Thu NTN, Barrail-Tran A, Duc NH, Lan NN, Laureillard D, et al. Randomised pharmacokinetic trial of rifabutin with lopinavir/ritonavir-antiretroviral therapy in patients with HIV-associated tuberculosis in Vietnam. PLoS One. 2014;9:e84866.CrossRef
40.
go back to reference Kunin CM. Antimicrobial activity of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S3–13 discussion S13–14.CrossRef Kunin CM. Antimicrobial activity of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S3–13 discussion S13–14.CrossRef
43.
go back to reference Apseloff G. Severe neutropenia among healthy volunteers given rifabutin in clinical trials. Clin Pharmacol Ther. 2003;74:591–2 discussion 592-593.CrossRef Apseloff G. Severe neutropenia among healthy volunteers given rifabutin in clinical trials. Clin Pharmacol Ther. 2003;74:591–2 discussion 592-593.CrossRef
44.
go back to reference Griffith DE, Brown BA, Girard WM, Wallace RJ. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 1995;21:594–8.CrossRef Griffith DE, Brown BA, Girard WM, Wallace RJ. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 1995;21:594–8.CrossRef
45.
go back to reference Lowe SH, Kroon FP, Bollemeyer JG, Stricker BH, Van’T Wout JW. Uveitis during treatment of disseminated Mycobacterium avium-intracellulare complex infection with the combination of rifabutin, clarithromycin and ethambutol. Neth J Med. 1996;48:211–5.CrossRef Lowe SH, Kroon FP, Bollemeyer JG, Stricker BH, Van’T Wout JW. Uveitis during treatment of disseminated Mycobacterium avium-intracellulare complex infection with the combination of rifabutin, clarithromycin and ethambutol. Neth J Med. 1996;48:211–5.CrossRef
46.
go back to reference Lin H-C, Lu P-L, Chang C-H. Uveitis associated with concurrent administration of rifabutin and lopinavir/ritonavir (Kaletra). Eye (Lond). 2007;21:1540–1.CrossRef Lin H-C, Lu P-L, Chang C-H. Uveitis associated with concurrent administration of rifabutin and lopinavir/ritonavir (Kaletra). Eye (Lond). 2007;21:1540–1.CrossRef
Metadata
Title
Pharmacokinetic study of two different rifabutin doses co-administered with lopinavir/ritonavir in African HIV and tuberculosis co-infected adult patients
Authors
Seni Kouanda
Henri Gautier Ouedraogo
Kadari Cisse
Tegwinde Rebeca Compaoré
Giorgia Sulis
Serge Diagbouga
Alberto Roggi
Grissoum Tarnagda
Paola Villani
Lassana Sangare
Jacques Simporé
Mario Regazzi
Alberto Matteelli
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05169-2

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine