Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2024

Open Access 01-12-2024 | Tuberculosis | Comment

Associations between type 1 diabetes and pulmonary tuberculosis: a bidirectional mendelian randomization study

Authors: Yijia Jiang, Wenhua Zhang, Maoying Wei, Dan Yin, Yiting Tang, Weiyu Jia, Churan Wang, Jingyi Guo, Aijing Li, Yanbing Gong

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

Type 1 diabetes mellitus (T1DM) has been associated with higher pulmonary tuberculosis (PTB) risk in observational studies. However, the causal relationship between them remains unclear. This study aimed to assess the causal effect between T1DM and PTB using bidirectional Mendelian randomization (MR) analysis.

Methods

Single nucleotide polymorphisms (SNPs) of T1DM and PTB were extracted from the public genetic variation summary database. In addition, GWAS data were collected to explore the causal relationship between PTB and relevant clinical traits of T1DM, including glycemic traits, lipids, and obesity. The inverse variance weighting method (IVW), weighted median method, and MR‒Egger regression were used to evaluate the causal relationship. To ensure the stability of the results, sensitivity analyses assess the robustness of the results by estimating heterogeneity and pleiotropy.

Results

IVW showed that T1DM increased the risk of PTB (OR = 1.07, 95% CI: 1.03–1.12, P < 0.001), which was similar to the results of MR‒Egger and weighted median analyses. Moreover, we found that high-density lipoprotein cholesterol (HDL-C; OR = 1.28, 95% CI: 1.03–1.59, P = 0.026) was associated with PTB. There was no evidence of an effect of glycemic traits, remaining lipid markers, or obesity on the risk of PTB. In the reverse MR analysis, no causal relationships were detected for PTB on T1DM and its relevant clinical traits.

Conclusion

This study supported that T1DM and HDL-C were risk factors for PTB. This implies the effective role of treating T1DM and managing HDL-C in reducing the risk of PTB, which provides an essential basis for the prevention and comanagement of concurrent T1DM and PTB in clinical practice.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.PubMedCrossRefADS Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.PubMedCrossRefADS
3.
go back to reference Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G, et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 2021;64:2741–50.PubMedPubMedCentralCrossRef Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G, et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 2021;64:2741–50.PubMedPubMedCentralCrossRef
4.
go back to reference Guo SJ, Shao H. Growing global burden of type 1 diabetes needs multitiered precision public health interventions. Lancet Diabetes Endocrinol. 2022;10:688–9.PubMedCrossRef Guo SJ, Shao H. Growing global burden of type 1 diabetes needs multitiered precision public health interventions. Lancet Diabetes Endocrinol. 2022;10:688–9.PubMedCrossRef
5.
go back to reference Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–60.PubMedCrossRef Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–60.PubMedCrossRef
7.
go back to reference Chakaya J, Petersen E, Nantanda R, Mungai BN, Migliori GB, Amanullah F, et al. The WHO Global Tuberculosis 2021 report– not so good news and turning the tide back to end TB. Int J Infect Dis. 2022;124:26–9.CrossRef Chakaya J, Petersen E, Nantanda R, Mungai BN, Migliori GB, Amanullah F, et al. The WHO Global Tuberculosis 2021 report– not so good news and turning the tide back to end TB. Int J Infect Dis. 2022;124:26–9.CrossRef
8.
go back to reference Vasiliu A, Martinez L, Gupta RK, Hamada Y, Ness T, Kay A et al. Tuberculosis prevention: current strategies and future directions. Clin Microbiol Infect. 2023;S1198-743X(23)00533-5. Vasiliu A, Martinez L, Gupta RK, Hamada Y, Ness T, Kay A et al. Tuberculosis prevention: current strategies and future directions. Clin Microbiol Infect. 2023;S1198-743X(23)00533-5.
9.
go back to reference Webb EA, Hesseling AC, Schaaf HS, Gie RP, Lombard CJ, Spitaels A, et al. High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. Int J Tuberc Lung Dis. 2009;13:868–74.PubMed Webb EA, Hesseling AC, Schaaf HS, Gie RP, Lombard CJ, Spitaels A, et al. High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. Int J Tuberc Lung Dis. 2009;13:868–74.PubMed
10.
go back to reference Coker R, McKee M, Atun R, Dimitrova B, Dodonova E, Kuznetsov S, et al. Risk factors for pulmonary tuberculosis in Russia: case-control study. BMJ. 2006;332:85–7.PubMedPubMedCentralCrossRef Coker R, McKee M, Atun R, Dimitrova B, Dodonova E, Kuznetsov S, et al. Risk factors for pulmonary tuberculosis in Russia: case-control study. BMJ. 2006;332:85–7.PubMedPubMedCentralCrossRef
11.
go back to reference Lee M-R, Huang Y-P, Kuo Y-T, Luo C-H, Shih Y-J, Shu C-C, et al. Diabetes Mellitus and latent tuberculosis infection: a systemic review and metaanalysis. Clin Infect Dis. 2017;64:719–27.PubMed Lee M-R, Huang Y-P, Kuo Y-T, Luo C-H, Shih Y-J, Shu C-C, et al. Diabetes Mellitus and latent tuberculosis infection: a systemic review and metaanalysis. Clin Infect Dis. 2017;64:719–27.PubMed
12.
go back to reference Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ, et al. Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev. 2018;39:629–63.PubMedCrossRef Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ, et al. Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev. 2018;39:629–63.PubMedCrossRef
14.
go back to reference Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med. 2009;68:2240–6.PubMedCrossRef Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med. 2009;68:2240–6.PubMedCrossRef
15.
16.
go back to reference Deniz O, Gumus S, Yaman H, Ciftci F, Ors F, Cakir E, et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem. 2007;40:162–6.PubMedCrossRef Deniz O, Gumus S, Yaman H, Ciftci F, Ors F, Cakir E, et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem. 2007;40:162–6.PubMedCrossRef
17.
go back to reference Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2010;39:149–55.PubMedCrossRef Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2010;39:149–55.PubMedCrossRef
18.
go back to reference Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.MathSciNetPubMedCrossRef Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.MathSciNetPubMedCrossRef
21.
go back to reference Chiou J, Geusz RJ, Okino M-L, Han JY, Miller M, Melton R, et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature. 2021;594:398–402.PubMedPubMedCentralCrossRefADS Chiou J, Geusz RJ, Okino M-L, Han JY, Miller M, Melton R, et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature. 2021;594:398–402.PubMedPubMedCentralCrossRefADS
22.
go back to reference Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.PubMedPubMedCentralCrossRef Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.PubMedPubMedCentralCrossRef
23.
go back to reference Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–39.PubMedPubMedCentralCrossRef Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–39.PubMedPubMedCentralCrossRef
24.
go back to reference Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60.PubMedPubMedCentralCrossRef Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60.PubMedPubMedCentralCrossRef
25.
go back to reference Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.CrossRef Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.CrossRef
26.
go back to reference The LifeLines Cohort Study, The ADIPOGen Consortium, The AGEN-BMI Working Group, The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, The GLGC, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. The LifeLines Cohort Study, The ADIPOGen Consortium, The AGEN-BMI Working Group, The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, The GLGC, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
27.
go back to reference The ADIPOGen Consortium, The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, Consortium TGEFOS, The GENIE Consortium, The GLGC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96.CrossRef The ADIPOGen Consortium, The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, Consortium TGEFOS, The GENIE Consortium, The GLGC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96.CrossRef
28.
go back to reference Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.PubMedPubMedCentralCrossRefADS Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.PubMedPubMedCentralCrossRefADS
29.
go back to reference Xie J, Huang H, Liu Z, Li Y, Yu C, Xu L, et al. The associations between modifiable risk factors and nonalcoholic fatty liver disease: a comprehensive mendelian randomization study. Hepatology. 2023;77:949–64.PubMedCrossRef Xie J, Huang H, Liu Z, Li Y, Yu C, Xu L, et al. The associations between modifiable risk factors and nonalcoholic fatty liver disease: a comprehensive mendelian randomization study. Hepatology. 2023;77:949–64.PubMedCrossRef
30.
go back to reference Pierce BL, Burgess S. Efficient design for mendelian randomization studies: Subsample and 2-Sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.PubMedPubMedCentralCrossRef Pierce BL, Burgess S. Efficient design for mendelian randomization studies: Subsample and 2-Sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Imtiaz S, Shield KD, Roerecke M, Samokhvalov AV, Lönnroth K, Rehm J. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur Respir J. 2017;50:1700216.PubMedPubMedCentralCrossRef Imtiaz S, Shield KD, Roerecke M, Samokhvalov AV, Lönnroth K, Rehm J. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur Respir J. 2017;50:1700216.PubMedPubMedCentralCrossRef
33.
34.
go back to reference Pradipta IS, Forsman LD, Bruchfeld J, Hak E, Alffenaar J-W. Risk factors of multidrug-resistant tuberculosis: a global systematic review and meta-analysis. J Infect. 2018;77:469–78.PubMedCrossRef Pradipta IS, Forsman LD, Bruchfeld J, Hak E, Alffenaar J-W. Risk factors of multidrug-resistant tuberculosis: a global systematic review and meta-analysis. J Infect. 2018;77:469–78.PubMedCrossRef
35.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using Summarized Data. Genet Epidemiol. 2013;37:658–65.PubMedPubMedCentralCrossRef Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using Summarized Data. Genet Epidemiol. 2013;37:658–65.PubMedPubMedCentralCrossRef
36.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.PubMedPubMedCentralCrossRef
37.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.PubMedPubMedCentralCrossRef
38.
go back to reference Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of mendelian randomization studies. Am J Clin Nutr. 2016;103:965–78.PubMedPubMedCentralCrossRef Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of mendelian randomization studies. Am J Clin Nutr. 2016;103:965–78.PubMedPubMedCentralCrossRef
40.
go back to reference Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.PubMedPubMedCentralCrossRef
41.
go back to reference Sugawara I, Mizuno S. Higher susceptibility of type 1 Diabetic rats to Mycobacterium tuberculosis infection. Tohoku J Exp Med. 2008;216:363–70.PubMedCrossRef Sugawara I, Mizuno S. Higher susceptibility of type 1 Diabetic rats to Mycobacterium tuberculosis infection. Tohoku J Exp Med. 2008;216:363–70.PubMedCrossRef
42.
go back to reference Cadena J, Rathinavelu S, Lopez-Alvarenga JC, Restrepo BI. The re-emerging association between tuberculosis and diabetes: lessons from past centuries. Tuberculosis (Edinb). 2019;116(Suppl):89–97.CrossRef Cadena J, Rathinavelu S, Lopez-Alvarenga JC, Restrepo BI. The re-emerging association between tuberculosis and diabetes: lessons from past centuries. Tuberculosis (Edinb). 2019;116(Suppl):89–97.CrossRef
43.
go back to reference Majaliwa ES, Muze K, Godfrey E, Byashalira K, Mmbaga BT, Ramaiya K, et al. Latent tuberculosis in children and youth with type 1 diabetes mellitus in Dar Es Salaam, Tanzania: a cross section survey. BMC Infect Dis. 2023;23:740.PubMedPubMedCentralCrossRef Majaliwa ES, Muze K, Godfrey E, Byashalira K, Mmbaga BT, Ramaiya K, et al. Latent tuberculosis in children and youth with type 1 diabetes mellitus in Dar Es Salaam, Tanzania: a cross section survey. BMC Infect Dis. 2023;23:740.PubMedPubMedCentralCrossRef
44.
go back to reference Shen T-C, Lin C-L, Wei C-C, Liao W-C, Chen W-C, Chen C-H, et al. Increased risk of tuberculosis in patients with type 1 diabetes mellitus: results from a population-based cohort study in Taiwan. Med (Baltim). 2014;93:e96.CrossRef Shen T-C, Lin C-L, Wei C-C, Liao W-C, Chen W-C, Chen C-H, et al. Increased risk of tuberculosis in patients with type 1 diabetes mellitus: results from a population-based cohort study in Taiwan. Med (Baltim). 2014;93:e96.CrossRef
45.
go back to reference Lachmandas E, Thiem K, van den Heuvel C, Hijmans A, de Galan BE, Tack CJ, et al. Patients with type 1 diabetes mellitus have impaired IL-1β production in response to Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2018;37:371–80.PubMedCrossRef Lachmandas E, Thiem K, van den Heuvel C, Hijmans A, de Galan BE, Tack CJ, et al. Patients with type 1 diabetes mellitus have impaired IL-1β production in response to Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2018;37:371–80.PubMedCrossRef
46.
go back to reference Ohno Y, Aoki N, Nishimura A. In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metabolism. 1993;77:1072–7. Ohno Y, Aoki N, Nishimura A. In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metabolism. 1993;77:1072–7.
48.
go back to reference Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause–effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol. 2023;13:1134036.PubMedPubMedCentralCrossRef Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause–effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol. 2023;13:1134036.PubMedPubMedCentralCrossRef
49.
go back to reference Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511:99–103.PubMedPubMedCentralCrossRefADS Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511:99–103.PubMedPubMedCentralCrossRefADS
50.
go back to reference Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS, et al. Defining a Research Agenda to address the converging epidemics of tuberculosis and diabetes: part 1: epidemiology and clinical management. Chest. 2017;152:165–73.PubMedPubMedCentralCrossRef Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS, et al. Defining a Research Agenda to address the converging epidemics of tuberculosis and diabetes: part 1: epidemiology and clinical management. Chest. 2017;152:165–73.PubMedPubMedCentralCrossRef
52.
go back to reference Boillat-Blanco N, Ramaiya KL, Mganga M, Minja LT, Bovet P, Schindler C, et al. Transient hyperglycemia in patients with tuberculosis in Tanzania: implications for diabetes screening algorithms. J Infect Dis. 2016;213:1163–72.PubMedCrossRef Boillat-Blanco N, Ramaiya KL, Mganga M, Minja LT, Bovet P, Schindler C, et al. Transient hyperglycemia in patients with tuberculosis in Tanzania: implications for diabetes screening algorithms. J Infect Dis. 2016;213:1163–72.PubMedCrossRef
53.
go back to reference Kornfeld H, Procter-Gray E, Kumpatla S, Kane K, Li W, Magee MJ, et al. Longitudinal trends in glycated hemoglobin during and after tuberculosis treatment. Diabetes Res Clin Pract. 2023;196:110242.PubMedCrossRef Kornfeld H, Procter-Gray E, Kumpatla S, Kane K, Li W, Magee MJ, et al. Longitudinal trends in glycated hemoglobin during and after tuberculosis treatment. Diabetes Res Clin Pract. 2023;196:110242.PubMedCrossRef
54.
go back to reference Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, Leung GM, et al. Diabetic Control and Risk of Tuberculosis: a Cohort Study. Am J Epidemiol. 2008;167:1486–94.PubMedCrossRef Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, Leung GM, et al. Diabetic Control and Risk of Tuberculosis: a Cohort Study. Am J Epidemiol. 2008;167:1486–94.PubMedCrossRef
55.
go back to reference Leegaard A, Riis A, Kornum JB, Prahl JB, Thomsen VØ, Sørensen HT, et al. Diabetes, Glycemic Control, and risk of tuberculosis. Diabetes Care. 2011;34:2530–5.PubMedPubMedCentralCrossRef Leegaard A, Riis A, Kornum JB, Prahl JB, Thomsen VØ, Sørensen HT, et al. Diabetes, Glycemic Control, and risk of tuberculosis. Diabetes Care. 2011;34:2530–5.PubMedPubMedCentralCrossRef
56.
go back to reference Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a Dormancy-Like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011;7:e1002093.PubMedPubMedCentralCrossRef Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a Dormancy-Like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011;7:e1002093.PubMedPubMedCentralCrossRef
57.
go back to reference Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med. 2010;2:258–74.PubMedPubMedCentralCrossRef Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med. 2010;2:258–74.PubMedPubMedCentralCrossRef
58.
go back to reference Inoue M, Niki M, Ozeki Y, Nagi S, Chadeka EA, Yamaguchi T, et al. High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep. 2018;8:6736.PubMedPubMedCentralCrossRefADS Inoue M, Niki M, Ozeki Y, Nagi S, Chadeka EA, Yamaguchi T, et al. High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep. 2018;8:6736.PubMedPubMedCentralCrossRefADS
59.
go back to reference Badawi A, Gregg B, Vasileva D. Systematic analysis for the relationship between obesity and tuberculosis. Public Health. 2020;186:246–56.PubMedCrossRef Badawi A, Gregg B, Vasileva D. Systematic analysis for the relationship between obesity and tuberculosis. Public Health. 2020;186:246–56.PubMedCrossRef
60.
go back to reference Mukherjee A, Kaeley N, Dhar M, Kumar S, Bhushan B. Prevalence, characteristics, and predictors of tuberculosis associated anemia. J Family Med Prim Care. 2019;8:2445–9.PubMedPubMedCentralCrossRef Mukherjee A, Kaeley N, Dhar M, Kumar S, Bhushan B. Prevalence, characteristics, and predictors of tuberculosis associated anemia. J Family Med Prim Care. 2019;8:2445–9.PubMedPubMedCentralCrossRef
Metadata
Title
Associations between type 1 diabetes and pulmonary tuberculosis: a bidirectional mendelian randomization study
Authors
Yijia Jiang
Wenhua Zhang
Maoying Wei
Dan Yin
Yiting Tang
Weiyu Jia
Churan Wang
Jingyi Guo
Aijing Li
Yanbing Gong
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01296-x

Other articles of this Issue 1/2024

Diabetology & Metabolic Syndrome 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.