Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Tuberculosis | Research article

The recent trend in mycobacterial strain diversity among extra pulmonary lymph node tuberculosis and their association with drug resistance and the host immunological response in South India

Authors: Shanmugam Sivakumar, Yuvaraj Chandramohan, Gokul Raj Kathamuthu, Gomathi Sekar, Devika Kandhasamy, Venkatesan Padmanaban, Syed Hissar, Srikanth P. Tripathy, Ramalingam Bethunaickan, Baskaran Dhanaraj, Subash Babu, Uma Devi Ranganathan

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Tuberculosis (TB) though primarily affects the lungs it may also affect the other parts of the body and referred as extra pulmonary (EPTB). This study is focused on understanding the genetic diversity and molecular epidemiology of Mycobacterium tuberculosis (M.tb) among tuberculous lymphadenitis (TBL), a form of EPTB patients identified in Chennai, Tamil Nadu.

Methods

The genetic diversity was identified by performing spoligotyping on the M.tb clinical isolates that were recovered from lymph node samples. A total of 71 M.tb isolates were recovered from extra pulmonary lymph node samples and subjected to Drug susceptibility testing and spoligotyping was carried out. In addition, immunological characterization from blood of same individuals from whom M.tb was isolated was carried out between the two major lineages groups East African Indian 3 (EAI3) and non-EAI3 strains by ELISA. The results of spoligotyping patterns were compared with the world Spoligotyping Database of Institute Pasteur de Guadeloupe (SpolDB4).

Results

We found 41 spoligotype patterns and their associated lineages. Out of 41 spoligotype pattern, only 22 patterns are available in the spoldB4 database with Spoligotype international Type (SIT) number and remaining patterns were orphan strains without SIT number. The most predominant spoligotype lineage that was found in lymph node sample in this region of India was EAI (36), followed by central Asian strain (CAS) (6), T1 (5), Beijing (3), Latin American & Mediterranean (LAM) (2), U (1), X2 (1) and orphan (22). In addition to EAI, CAS and Beijing, our study identified the presence of orphan and unique spoligotyping patterns in Chennai region. We observed six drug resistant isolates. Out of six drug resistant isolates, four were resistant to isoniazid drug and associated with EAI family. Moreover, we observed increased levels of type 2 and type 17 cytokine profiles between EAI3 and non-EAI family, infected individuals.

Conclusions

The study confirms that EAI lineage to be the most predominant lineages in EPTB patients with lymphadenitis and were found to have increased type 1 and type 17 proinflammatory cytokine profiles.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Sharma SK, Ryan H, Khaparde S, Sachdeva KS, Singh AD, et al. Index- TB guidelines: guidelines on extrapulmonary tuberculosis for India. Indian J Med Res. 2017;145(4):448–63.PubMedPubMedCentral Sharma SK, Ryan H, Khaparde S, Sachdeva KS, Singh AD, et al. Index- TB guidelines: guidelines on extrapulmonary tuberculosis for India. Indian J Med Res. 2017;145(4):448–63.PubMedPubMedCentral
3.
go back to reference Sankar MM, Singh J, Diana SC, Singh S. Molecular characterization of mycobacterium tuberculosis isolates from north Indian patients with extrapulmonary tuberculosis. Tuberculosis (Edinb). 2013;93:75–83.CrossRef Sankar MM, Singh J, Diana SC, Singh S. Molecular characterization of mycobacterium tuberculosis isolates from north Indian patients with extrapulmonary tuberculosis. Tuberculosis (Edinb). 2013;93:75–83.CrossRef
4.
go back to reference Pang Y, Zhou Y, Zhao B, Liu G, Jiang G, Xie H, et al. Spoligotyping and drug resistance analysis of mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976.CrossRef Pang Y, Zhou Y, Zhao B, Liu G, Jiang G, Xie H, et al. Spoligotyping and drug resistance analysis of mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976.CrossRef
5.
go back to reference Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol. 2011;6(2):203–16.CrossRef Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol. 2011;6(2):203–16.CrossRef
6.
go back to reference Gori A, Bandera A, Marchetti G, Esposti A, Catozzi L, Nardi GP, et al. Spoligotyping and mycobacterium tuberculosis. Emerg Infect Dis. 2005;11(8):1242–8.CrossRef Gori A, Bandera A, Marchetti G, Esposti A, Catozzi L, Nardi GP, et al. Spoligotyping and mycobacterium tuberculosis. Emerg Infect Dis. 2005;11(8):1242–8.CrossRef
7.
go back to reference Aminian M, Shabbeer A, Bennett KP. Determination of major lineages of mycobacterium tuberculosis complex using mycobacterial interspersed repetitive units. Proceedings IEEE Int Conf Bioinformatics Biomed. 2009;2009:338–43.PubMedPubMedCentral Aminian M, Shabbeer A, Bennett KP. Determination of major lineages of mycobacterium tuberculosis complex using mycobacterial interspersed repetitive units. Proceedings IEEE Int Conf Bioinformatics Biomed. 2009;2009:338–43.PubMedPubMedCentral
8.
go back to reference Mitchison DA, Selkon JB, Lloyd J. Virulence in the Guinea pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazide sensitive tubercle bacillifrom south Indian and British patients. J Pathol Bacteriol. 1963;86:377–86.CrossRef Mitchison DA, Selkon JB, Lloyd J. Virulence in the Guinea pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazide sensitive tubercle bacillifrom south Indian and British patients. J Pathol Bacteriol. 1963;86:377–86.CrossRef
9.
go back to reference Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011;7:e1001307.CrossRef Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011;7:e1001307.CrossRef
10.
go back to reference Aguilar D, Hanekom M, Mata D, Gey van Pittius NC, van Helden PD, et al. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb). 2010;90:319–25.CrossRef Aguilar D, Hanekom M, Mata D, Gey van Pittius NC, van Helden PD, et al. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb). 2010;90:319–25.CrossRef
11.
go back to reference Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137:460–8.CrossRef Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137:460–8.CrossRef
12.
go back to reference Nebenzahl-Guimaraes H, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, et al. Genetic determinants of drug resistance in mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med. 2016;194(5):621–30.CrossRef Nebenzahl-Guimaraes H, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, et al. Genetic determinants of drug resistance in mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med. 2016;194(5):621–30.CrossRef
13.
go back to reference Orikiriza P, Nyehangane D, Atwine D, Kisakye JJ, Kassaza K, Amumpaire JM, et al. Evaluation of the SD bioline TB Ag MPT64 test for identification of mycobacterium tuberculosis complex from liquid cultures in southwestern Uganda. Afr J Lab Med. 2017;6(2):1–4.CrossRef Orikiriza P, Nyehangane D, Atwine D, Kisakye JJ, Kassaza K, Amumpaire JM, et al. Evaluation of the SD bioline TB Ag MPT64 test for identification of mycobacterium tuberculosis complex from liquid cultures in southwestern Uganda. Afr J Lab Med. 2017;6(2):1–4.CrossRef
15.
go back to reference Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. Simultaneous detection and strain differentiation of mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.CrossRef Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. Simultaneous detection and strain differentiation of mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.CrossRef
16.
go back to reference Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6(1):23.CrossRef Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6(1):23.CrossRef
17.
go back to reference Lazzarini LC, Rosenfeld J, Huard RC, Hill V, Lapae Silva JR, De Salle R, et al. Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach. Infect Genet Evol. 2012;12(4):798–806.CrossRef Lazzarini LC, Rosenfeld J, Huard RC, Hill V, Lapae Silva JR, De Salle R, et al. Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach. Infect Genet Evol. 2012;12(4):798–806.CrossRef
18.
go back to reference Mallard K, McNerney R, Crampin AC, Houben R, Ndlovu R, Munthali L, et al. Molecular detection of mixed infections of mycobacterium tuberculosis strains in sputum samples from patients in Karonga District, Malawi. J Clin Microbiol. 2010;48(12):4512–8.CrossRef Mallard K, McNerney R, Crampin AC, Houben R, Ndlovu R, Munthali L, et al. Molecular detection of mixed infections of mycobacterium tuberculosis strains in sputum samples from patients in Karonga District, Malawi. J Clin Microbiol. 2010;48(12):4512–8.CrossRef
19.
go back to reference Shanmugam S, Selvakumar N, Narayanan S. Drug resistance among different genotypes of mycobacterium tuberculosis isolated from patients from Tiruvallur, South India. Infect Genet Evol. 2011;11:980–6.CrossRef Shanmugam S, Selvakumar N, Narayanan S. Drug resistance among different genotypes of mycobacterium tuberculosis isolated from patients from Tiruvallur, South India. Infect Genet Evol. 2011;11:980–6.CrossRef
20.
go back to reference Singh UB, Arora J, Suresh N, Pant H, Rana T, Sola C, et al. Genetic biodiversity of mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in India. Infect Genet Evol. 2007;7:441–8.CrossRef Singh UB, Arora J, Suresh N, Pant H, Rana T, Sola C, et al. Genetic biodiversity of mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in India. Infect Genet Evol. 2007;7:441–8.CrossRef
21.
go back to reference Joseph BV, Soman S, Radhakrishnan I, Hill V, Dhanasooraj D, Kumar RA, et al. Molecular epidemiology of mycobacterium tuberculosis isolates from Kerala, India using IS6110-RFLP, spoligotyping and MIRU-VNTRs. Infect Genet Evol. 2013;16:157–64.CrossRef Joseph BV, Soman S, Radhakrishnan I, Hill V, Dhanasooraj D, Kumar RA, et al. Molecular epidemiology of mycobacterium tuberculosis isolates from Kerala, India using IS6110-RFLP, spoligotyping and MIRU-VNTRs. Infect Genet Evol. 2013;16:157–64.CrossRef
22.
go back to reference Singh UB, Suresh N, Bhanu NV, Arora J, Pant H, Sinha S, et al. Predominant tuberculosis spoligotypes, Delhi, India. Emerg Infect Dis. 2004;10:1138–42.CrossRef Singh UB, Suresh N, Bhanu NV, Arora J, Pant H, Sinha S, et al. Predominant tuberculosis spoligotypes, Delhi, India. Emerg Infect Dis. 2004;10:1138–42.CrossRef
23.
go back to reference Chatterjee A, D’Souza D, Vira T, Bamne A, Ambe GT, Nicol MP, et al. Strains of mycobacterium tuberculosis from western Maharashtra, India, exhibit a high degree of diversity and strain-specific associations with drug resistance, cavitary disease, and treatment failure. J Clin Microbiol. 2010;48:3593–9.CrossRef Chatterjee A, D’Souza D, Vira T, Bamne A, Ambe GT, Nicol MP, et al. Strains of mycobacterium tuberculosis from western Maharashtra, India, exhibit a high degree of diversity and strain-specific associations with drug resistance, cavitary disease, and treatment failure. J Clin Microbiol. 2010;48:3593–9.CrossRef
24.
go back to reference Mathuria JP, Sharma P, Prakash P, Samaria JK, Katoch VM, Anupurba S. Role of spoligotyping and IS6110-RFLP in assessing genetic diversity of mycobacterium tuberculosis in India. Infect Genet Evol. 2008;8:346–51.CrossRef Mathuria JP, Sharma P, Prakash P, Samaria JK, Katoch VM, Anupurba S. Role of spoligotyping and IS6110-RFLP in assessing genetic diversity of mycobacterium tuberculosis in India. Infect Genet Evol. 2008;8:346–51.CrossRef
25.
go back to reference Singh UB, Arora J, Suresh N, Pant H, Rana T, Sola C, et al. Genetic biodiversity of mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in India. Infect Genet Evol. 2007;7(4):441–8.CrossRef Singh UB, Arora J, Suresh N, Pant H, Rana T, Sola C, et al. Genetic biodiversity of mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in India. Infect Genet Evol. 2007;7(4):441–8.CrossRef
26.
go back to reference Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–73.CrossRef Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–73.CrossRef
27.
go back to reference Kandhakumari G, Stephen S, Sivakumar S, Narayanan S. Spoligotype patterns of mycobacterium tuberculosis isolated from extra pulmonary tuberculosis patients in Puducherry, India. Indian J Med Microbiol. 2015;33:267–70.CrossRef Kandhakumari G, Stephen S, Sivakumar S, Narayanan S. Spoligotype patterns of mycobacterium tuberculosis isolated from extra pulmonary tuberculosis patients in Puducherry, India. Indian J Med Microbiol. 2015;33:267–70.CrossRef
28.
go back to reference Vadwai V, Shetty A, Supply P, Rodrigues C. Evaluation of 24-locus MIRU-VNTR in extrapulmonary specimens: study from a tertiary Centre in Mumbai. Tuberculosis (Edinb). 2012;92:264–72.CrossRef Vadwai V, Shetty A, Supply P, Rodrigues C. Evaluation of 24-locus MIRU-VNTR in extrapulmonary specimens: study from a tertiary Centre in Mumbai. Tuberculosis (Edinb). 2012;92:264–72.CrossRef
29.
go back to reference Thomas SK, Iravatham CC, Moni BH, Kumar A, Archana BV, Majid M, et al. Modern and ancestral genotypes of mycobacterium tuberculosis from Andhra Pradesh, India. PLoS One. 2011;6:e27584.CrossRef Thomas SK, Iravatham CC, Moni BH, Kumar A, Archana BV, Majid M, et al. Modern and ancestral genotypes of mycobacterium tuberculosis from Andhra Pradesh, India. PLoS One. 2011;6:e27584.CrossRef
30.
go back to reference Faksri K, Drobniewski F, Nikolayevskyy V, Brown T, Prammananan T, Palittapongarnpim P, et al. Epidemiological trends and clinical comparisons of mycobacterium tuberculosis lineages in Thai TB meningitis. Tubercul. 2011;91:594–600.CrossRef Faksri K, Drobniewski F, Nikolayevskyy V, Brown T, Prammananan T, Palittapongarnpim P, et al. Epidemiological trends and clinical comparisons of mycobacterium tuberculosis lineages in Thai TB meningitis. Tubercul. 2011;91:594–600.CrossRef
31.
go back to reference Yorsangsukkamol J, Chaiprasert A, Prammananan T, Palittapongarnpim P, Limsoontarakul S, Prayoonwiwat N. Molecular analysis of mycobacterium tuberculosis from tuberculous meningitis patients in Thailand. Tubercul. 2009;89:304309.CrossRef Yorsangsukkamol J, Chaiprasert A, Prammananan T, Palittapongarnpim P, Limsoontarakul S, Prayoonwiwat N. Molecular analysis of mycobacterium tuberculosis from tuberculous meningitis patients in Thailand. Tubercul. 2009;89:304309.CrossRef
32.
go back to reference Desikan P, Chauhan DS, Sharma P, Panwalkar N, Gautam S, Katoch VM. A pilot study to determine genetic polymorphism in mycobacterium tuberculosis isolates in Central India. Indian J Med Microbiol. 2012;30:470–3.CrossRef Desikan P, Chauhan DS, Sharma P, Panwalkar N, Gautam S, Katoch VM. A pilot study to determine genetic polymorphism in mycobacterium tuberculosis isolates in Central India. Indian J Med Microbiol. 2012;30:470–3.CrossRef
33.
go back to reference Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L, et al. Impact of HIV infection on the recurrence of tuberculosis in South India. JID. 2010;201(5):691–703.CrossRef Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L, et al. Impact of HIV infection on the recurrence of tuberculosis in South India. JID. 2010;201(5):691–703.CrossRef
34.
go back to reference O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.CrossRef O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.CrossRef
35.
go back to reference Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during mycobacterium tuberculosis infection. Immunity. 2011;35:1023–34.CrossRef Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during mycobacterium tuberculosis infection. Immunity. 2011;35:1023–34.CrossRef
36.
go back to reference Toossi Z, Kleinhenz ME, Ellner JJ. Defective interleukin 2 production and responsiveness in human pulmonary tuberculosis. J Exp Med. 1986;163:1162–72.CrossRef Toossi Z, Kleinhenz ME, Ellner JJ. Defective interleukin 2 production and responsiveness in human pulmonary tuberculosis. J Exp Med. 1986;163:1162–72.CrossRef
37.
go back to reference Millington KA, Innes JA, Hackforth S, Hinks TS, Deeks JJ, Dosanjh DP, et al. Dynamic relationship between IFN-gamma and IL-2 profile of mycobacterium tuberculosis-specific T cells and antigen load. J Immunol. 2007;178:5217–26.CrossRef Millington KA, Innes JA, Hackforth S, Hinks TS, Deeks JJ, Dosanjh DP, et al. Dynamic relationship between IFN-gamma and IL-2 profile of mycobacterium tuberculosis-specific T cells and antigen load. J Immunol. 2007;178:5217–26.CrossRef
38.
go back to reference Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 2004;25:75–84.CrossRef Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 2004;25:75–84.CrossRef
39.
go back to reference Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley, et al. IL 23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during mycobacterium tuberculosis challenge. Nat Immunol. 2007;8:369–77.CrossRef Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley, et al. IL 23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during mycobacterium tuberculosis challenge. Nat Immunol. 2007;8:369–77.CrossRef
Metadata
Title
The recent trend in mycobacterial strain diversity among extra pulmonary lymph node tuberculosis and their association with drug resistance and the host immunological response in South India
Authors
Shanmugam Sivakumar
Yuvaraj Chandramohan
Gokul Raj Kathamuthu
Gomathi Sekar
Devika Kandhasamy
Venkatesan Padmanaban
Syed Hissar
Srikanth P. Tripathy
Ramalingam Bethunaickan
Baskaran Dhanaraj
Subash Babu
Uma Devi Ranganathan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05597-0

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.