We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies

    ,
    John Z Metcalfe

    University of California, San Francisco, Francis J Curry National Tuberculosis Center, Division of Pulmonary & Critical Care Medicine, San Francisco General Hospital, 1001 Potrero Avenue, Building 100, Room 109, Mail box 0841, San Francisco, CA 94110–0111, USA

    &
    Laura Flores

    University of California, San Francisco, Francis J Curry National Tuberculosis Center, Division of Pulmonary & Critical Care Medicine, San Francisco General Hospital, 1001 Potrero Avenue, Building 100, Room 109, Mail box 0841, San Francisco, CA 94110–0111, USA

    Published Online:https://doi.org/10.2217/fmb.10.165

    Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed ‘molecular epidemiology’) to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Rouillon A, Perdrizet S, Parrot R: Transmission of tubercle bacilli: the effects of chemotherapy. Tubercle57(4),275–299 (1976).
    • Houk VN, Baker JH, Sorensen K, Kent DC: The epidemiology of tuberculosis infection in a closed environment. Arch. Environ. Health16(1),26–35 (1968).
    • Centers for Disease Control and Prevention: Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm. Rep.49(RR-6),1–51 (2000).
    • Foxman B, Riley L: Molecular epidemiology: focus on infection. Am. J. Epidemiol.153(12),1135–1141 (2001).
    • Houben RM, Glynn JR: A systematic review and meta-analysis of molecular epidemiological studies of tuberculosis: development of a new tool to aid interpretation. Trop. Med. Int. Health14(8),892–909 (2009).
    • Cattamanchi A, Hopewell PC, Gonzalez LC et al.: A 13-year molecular epidemiological analysis of tuberculosis in San Francisco. Int. J. Tuberc. Lung Dis.10(3),297–304 (2006).
    • Comas I, Gagneux S: The past and future of tuberculosis research. PLoS Pathog.5(10),E1000600 (2009).
    • Malik AN, Godfrey-Faussett P: Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. Lancet Infect. Dis.5(3),174–183 (2005).
    • Nicol MP, Wilkinson RJ: The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans. R. Soc. Trop. Med. Hyg.102(10),955–965 (2008).▪ Review of the clinical consequences of strain diversity in Mycobacterium tuberculosis.
    • 10  Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV: Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol.7(7),537–544 (2009).
    • 11  Gutierrez C, Brisse S, Brosch R et al.: Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog.1,1–7 (2005).
    • 12  Achtman M: Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol.62,53–70 (2008).▪▪ Review of genetically monomorphic bacteria.
    • 13  Tsolaki AG, Hirsh AE, DeRiemer K et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl Acad. Sci. USA101(14),4865–4870 (2004).
    • 14  McEvoy CR, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM: The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb.)87(5),393–404 (2007).
    • 15  van Embden JD, van Gorkom T, Kremer K, Jansen R, van Der Zeijst BA, Schouls LM: Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J. Bacteriol.182(9),2393–2401 (2000).
    • 16  Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C: Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol. Microbiol.36(3),762–771 (2000).
    • 17  van Embden JD, Cave MD, Crawford JT et al.: Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol.31(2),406–409 (1993).
    • 18  Kamerbeek J, Schouls L, Kolk A et al.: Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol.35(4),907–914 (1997).
    • 19  Mazars E, Lesjean S, Banuls AL et al.: High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc. Natl Acad. Sci. USA98(4),1901–1906 (2001).
    • 20  Schurch AC, Kremer K, Daviena O et al.: High resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J. Clin. Microbiol.48(9),3403–3406 (2010).▪▪ Use of whole-genome sequencing in three isolates with the same IS6110-restriction fragment length polymorphism genotype to determine the molecular evolution of M. tuberculosis.
    • 21  Schurch AC, Kremer K, Kiers A et al.: The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect. Genet. Evol.10(1),108–114 (2010).
    • 22  Kim EY, Nahid P, Hopewell PC, Kato-Maeda M: Novel hot spot of IS6110 insertion in Mycobacterium tuberculosis. J. Clin. Microbiol.48(4),1422–1424 (2010).
    • 23  de Boer AS, Borgdorff MW, de Haas PE, Nagelkerke NJ, van Embden JD, van Soolingen D: Analysis of rate of change of IS6110-RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J. Infect. Dis.180(4),1238–1244 (1999).
    • 24  Warren RM, van der Spuy GD, Richardson M et al.: Evolution of the IS6110-based restriction fragment length polymorphism pattern during the transmission of Mycobacterium tuberculosis. J. Clin. Microbiol.40(4),1277–1282 (2002).
    • 25  Warren RM, van der Spuy GD, Richardson M et al.: Calculation of the stability of the IS6110 banding pattern in patients with persistent Mycobacterium tuberculosis disease. J. Clin. Microbiol.40(5),1705–1708 (2002).
    • 26  Soini H, Pan X, Teeter L, Musser JM, Graviss EA: Transmission dynamics and molecular characterization of Mycobacterium tuberculosis isolates with low copy numbers of IS6110. J. Clin. Microbiol.39(1),217–221 (2001).
    • 27  Yang ZH, Ijaz K, Bates JH, Eisenach KD, Cave MD: Spoligotyping and polymorphic GC-rich repetitive sequence fingerprinting of Mycobacterium tuberculosis strains having few copies of IS6110. J. Clin. Microbiol.38(10),3572–3576 (2000).
    • 28  Rhee JT, Tanaka MM, Behr MA et al.: Use of multiple markers in population-based molecular epidemiologic studies of tuberculosis. Int. J. Tuberc. Lung Dis.4(12),1111–1119 (2000).
    • 29  Karboul A, Gey van Pittius NC, Namouchi A et al.: Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evol. Biol.6,107 (2006).
    • 30  Richardson M, van der Spuy GD, Sampson SL, Beyers N, van Helden PD, Warren RM: Stability of polymorphic GC-rich repeat sequence-containing regions of Mycobacterium tuberculosis. J. Clin. Microbiol.42(3),1302–1304 (2004).
    • 31  Yeh RW, Ponce de Leon A, Agasino CB et al.: Stability of Mycobacterium tuberculosis DNA genotypes. J. Infect. Dis.177(4),1107–1111 (1998).
    • 32  Flores L, Jarlsberg LG, Kim EY et al.: Comparison of restriction fragment length polymorphism with the polymorphic guanine-cytosine-rich sequence and spoligotyping for differentiation of Mycobacterium tuberculosis isolates with five or fewer copies of IS6110. J. Clin. Microbiol.48(2),575–578 (2010).
    • 33  Yang ZH, Bates JH, Eisenach KD, Cave MD: Secondary typing of Mycobacterium tuberculosis isolates with matching IS6110 fingerprints from different geographic regions of the United States. J. Clin. Microbiol.39(5),1691–1695 (2001).
    • 34  CDC: Notice to readers: new CDC program for rapid genotyping of Mycobacterium tuberculosis isolates. MMWR Morb. Mortal. Wkly Rep.54(2),47 (2005).
    • 35  Oelemann MC, Diel R, Vatin V et al.: Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J. Clin. Microbiol.45(3),691–697 (2007).
    • 36  Zhang J, Abadia E, Refregier G et al.: Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay. J. Med. Microbiol.59(Pt 3),285–294 (2009).
    • 37  Aga RS, Fair E, Abernethy NF et al.: Microevolution of the direct repeat locus of Mycobacterium tuberculosis in a strain prevalent in San Francisco. J. Clin. Microbiol.44(4),1558–1560 (2006).
    • 38  Warren RM, Streicher EM, Sampson SL et al.: Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J. Clin. Microbiol.40(12),4457–4465 (2002).
    • 39  Niemann S, Richter E, Rusch-Gerdes S: Stability of Mycobacterium tuberculosis IS6110 restriction fragment length polymorphism patterns and spoligotypes determined by analyzing serial isolates from patients with drug-resistant tuberculosis. J. Clin. Microbiol.37(2),409–412 (1999).
    • 40  Driscoll JR: Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol. Biol.551,117–128 (2009).
    • 41  Cowan LS, Diem L, Brake MC, Crawford JT: Transfer of a Mycobacterium tuberculosis genotyping method, spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J. Clin. Microbiol.42(1),474–477 (2004).
    • 42  Cafrune PI, Possuelo LG, Ribeiro AW et al.: Prospective study applying spoligotyping directly to DNA from sputum samples of patients suspected of having tuberculosis. Can. J. Microbiol.55(7),895–900 (2009).
    • 43  Brudey K, Driscoll JR, Rigouts L et al.: Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol.6,23 (2006).▪▪ Description of the fourth international spoligotyping database, SpolDB4.
    • 44  Hanekom M, van der Spuy GD, Gey van Pittius NC et al.: Discordance between mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing and IS6110 restriction fragment length polymorphism genotyping for analysis of Mycobacterium tuberculosis Beijing strains in a setting of high incidence of tuberculosis. J. Clin. Microbiol.46(10),338–3345 (2008).
    • 45  Zhang J, Abadia E, Refregier G et al.: Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay. J. Med. Microbiol.59(Pt 3),285–294 (2010).
    • 46  Filliol I, Driscoll JR, van Soolingen D et al.: Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J. Clin. Microbiol.41(5),1963–1970 (2003).
    • 47  van Soolingen D, Qian L, de Haas PE et al.: Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J. Clin. Microbiol.33(12),3234–3238 (1995).
    • 48  Douglas JT, Qian L, Montoya JC et al.: Characterization of the Manila family of Mycobacterium tuberculosis. J. Clin. Microbiol.41(6),2723–2726 (2003).
    • 49  Niobe-Eyangoh SN, Kuaban C, Sorlin P et al.: Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J. Clin. Microbiol.41(6),2547–2553 (2003).
    • 50  Kulkarni S, Sola C, Filliol I, Rastogi N, Kadival G: Spoligotyping of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mumbai, India. Res. Microbiol.156(4),588–596 (2005).
    • 51  Kato-Maeda M, Gagneux S, Flores LL et al.: Strain classification of M. tuberculosis: congruence between large sequence polymorphisms and spoligotypes. Int. J. Tuberc. Lung Dis.15(1),131–133 (2011).
    • 52  Weniger T, Krawczyk J, Supply P, Niemann S, Harmsen D: MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res.38(Web Server issue) W326–W331 (2010).
    • 53  Iwamoto T, Yoshida S, Suzuki K et al.: Hypervariable loci that enhance the discriminatory ability of newly proposed 15-loci and 24-loci variable-number tandem repeat typing method on Mycobacterium tuberculosis strains predominated by the Beijing family. FEMS Microbiol. Lett.270(1),67–74 (2007).
    • 54  Allix-Beguec C, Fauville-Dufaux M, Supply P: Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol.46(4),1398–1406 (2008).▪▪ Evaluation of mycobacterial interspersed repetitive unit variable number tandem repeats typing based on 15 and 24 loci in a population-based study.
    • 55  Velji P, Nikolayevskyy V, Brown T, Drobniewski F: Discriminatory ability of hypervariable variable number tandem repeat loci in population-based analysis of Mycobacterium tuberculosis strains, London, UK. Emerg. Infect. Dis.15(10),1609–1616 (2009).
    • 56  Supply P, Allix C, Lesjean S et al.: Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol.44(12),4498–4510 (2006).
    • 57  Christianson S, Wolfe J, Orr P et al.: Evaluation of 24 locus MIRU-VNTR genotyping of Mycobacterium tuberculosis isolates in Canada. Tuberculosis (Edinb.)90(1),31–38 (2010).
    • 58  Alonso M, Alonso Rodriguez N, Garzelli C et al.: Characterization of Mycobacterium tuberculosis Beijing isolates from the Mediterranean area. BMC Microbiol.10,151 (2010).
    • 59  Mokrousov I, Narvskaya O, Vyazovaya A et al.: Mycobacterium tuberculosis Beijing genotype in Russia: in search of informative variable-number tandem-repeat loci. J. Clin. Microbiol.46(11),3576–3584 (2008).
    • 60  Jiao WW, Mokrousov I, Sun GZ et al.: Evaluation of new variable-number tandem-repeat systems for typing Mycobacterium tuberculosis with Beijing genotype isolates from Beijing, China. J. Clin. Microbiol.46(3),1045–1049 (2008).
    • 61  Valcheva V, Mokrousov I, Narvskaya O, Rastogi N, Markova N: Utility of new 24-locus variable-number tandem-repeat typing for discriminating Mycobacterium tuberculosis clinical isolates collected in Bulgaria. J. Clin. Microbiol.46(9),3005–3011 (2008).
    • 62  Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C: Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J. Clin. Microbiol.39(10),3563–3571 (2001).
    • 63  Ferdinand S, Valetudie G, Sola C, Rastogi N: Data mining of Mycobacterium tuberculosis complex genotyping results using mycobacterial interspersed repetitive units validates the clonal structure of spoligotyping-defined families. Res. Microbiol.155(8),647–654 (2004).
    • 64  Gagneux S, Small PM: Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis.7(5),328–337 (2007).▪▪ Review of the global phylogeography of M. tuberculosis.
    • 65  Mulenga C, Shamputa IC, Mwakazanga D, Kapata N, Portaels F, Rigouts L: Diversity of Mycobacterium tuberculosis genotypes circulating in Ndola, Zambia. BMC Infect. Dis.10,177 (2010).
    • 66  Smittipat N, Billamas P, Palittapongarnpim M et al.: Polymorphism of variable-number tandem repeats at multiple loci in Mycobacterium tuberculosis. J. Clin. Microbiol.43(10),5034–5043 (2005).
    • 67  Yokoyama E, Kishida K, Uchimura M, Ichinohe S: Improved differentiation of Mycobacterium tuberculosis strains, including many Beijing genotype strains, using a new combination of variable number of tandem repeats loci. Infect. Genet. Evol.7(4),499–508 (2007).
    • 68  Gagneux S, Burgos MV, DeRiemer K et al.: Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog.2(6),E61 (2006).
    • 69  Metcalfe JZ, Kim EY, Lin SY et al.: Determinants of multidrug-resistant tuberculosis clusters, California, USA, 2004–2007. Emerg. Infect. Dis.16(9),1403–1409 (2010).
    • 70  van Doorn HR, de Haas PE, Kremer K, Vandenbroucke-Grauls CM, Borgdorff MW, van Soolingen D: Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at amino-acid position 315 of katG: a decade of experience in The Netherlands. Clin. Microbiol. Infect.12(8),769–775 (2006).
    • 71  Hu Y, Hoffner S, Jiang W, Wang W, Xu B: Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China: a molecular epidemiological study. BMC Infect. Dis.10,43 (2010).
    • 72  Dalla Costa ER, Ribeiro MO, Silva MS et al.: Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiol.9,39 (2009).
    • 73  Morgan M, Kalantri S, Flores L, Pai M: A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect. Dis.5,62 (2005).
    • 74  Niemann S, Koser CU, Gagneux S et al.: Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS ONE4(10),E7407 (2009).
    • 75  MacLean D, Jones JD, Studholme DJ: Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat. Rev. Microbiol.7(4),287–296 (2009).
    • 76  Caws M, Thwaites G, Dunstan S et al.: The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog.4(3),E1000034 (2008).
    • 77  de Jong BC, Hill PC, Aiken A et al.: Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J. Infect. Dis.198(7),1037–1043 (2008).
    • 78  Thwaites G, Caws M, Chau TT et al.: Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J. Clin. Microbiol.46(4),1363–1368 (2008).
    • 79  Gagneux S, DeRiemer K, Van T et al.: Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103(8),2869–2873 (2006).
    • 80  Hershberg R, Lipatov M, Small PM et al.: High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol.6(12),E311 (2008).
    • 81  Comas I, Chakravartti J, Small PM et al.: Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet.42(6),498–503 (2010).
    • 82  Comas I, Homolka S, Niemann S, Gagneux S: Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE4(11),E7815 (2009).
    • 83  Wada T, Iwamoto T, Maeda S: Genetic diversity of the Mycobacterium tuberculosis Beijing family in East Asia revealed through refined population structure analysis. FEMS Microbiol. Lett.291(1),35–43 (2009).
    • 84  Bolotin S, Alexander D, Guthrie J, Drews S, Jamieson F: The Ontario universal typing of tuberculosis (OUT-TB) surveillance program – what it means to you. Can. Respir. J.17(3),51–54 (2010).
    • 85  Small PM, Hopewell PC, Singh SP et al.: The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N. Engl. J. Med.330(24),1703–1709 (1994).
    • 86  Clark CM, Driver CR, Munsiff SS et al.: Universal genotyping in tuberculosis control program, New York City, 2001–2003. Emerg. Infect. Dis.12(5),719–724 (2006).
    • 87  van Soolingen D, Borgdorff MW, de Haas PE et al.: Molecular epidemiology of tuberculosis in The Netherlands: a nationwide study from 1993 through 1997. J. Infect. Dis.180(3),726–736 (1999).
    • 88  Kulaga S, Behr M, Musana K et al.: Molecular epidemiology of tuberculosis in Montreal. CMAJ167(4),353–354 (2002).
    • 89  Bauer J, Yang Z, Poulsen S, Andersen AB: Results from 5 years of nationwide DNA fingerprinting of Mycobacterium tuberculosis complex isolates in a country with a low incidence of M. tuberculosis infection. J. Clin. Microbiol.36(1),305–308 (1998).
    • 90  Cowan LS, Diem L, Monson T et al.: Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J. Clin. Microbiol.43(2),688–695 (2005).
    • 91  Jasmer RM, Hahn JA, Small PM et al.: A molecular epidemiologic analysis of tuberculosis trends in San Francisco, 1991–1997. Ann. Intern. Med.130(12),971–978 (1999).
    • 92  Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN: Molecular epidemiology of tuberculosis: current insights. Clin. Microbiol. Rev.19(4),658–685 (2006).
    • 93  Borgdorff MW, van den Hof S, Kremer K et al.: Progress towards tuberculosis elimination: secular trend, immigration and transmission. Eur. Respir. J.36(2),339–347 (2010).▪▪ Discusses use of molecular epidemiologic data to evaluate the progress towards TB elimination.
    • 94  Dahle UR, Eldholm V, Winje BA, Mannsaker T, Heldal E: Impact of immigration on the molecular epidemiology of Mycobacterium tuberculosis in a low-incidence country. Am. J. Respir. Crit. Care Med.176(9),930–935 (2007).
    • 95  Verver S, Warren RM, Munch Z et al.: Proportion of tuberculosis transmission that takes place in households in a high-incidence area. Lancet363(9404),212–214 (2004).
    • 96  Glynn JR, Crampin AC, Yates MD et al.: The importance of recent infection with Mycobacterium tuberculosis in an area with high HIV prevalence: a long-term molecular epidemiological study in Northern Malawi. J. Infect. Dis.192(3),480–487 (2005).
    • 97  Verver S, Warren RM, Munch Z et al.: Transmission of tuberculosis in a high incidence urban community in South Africa. Int. J. Epidemiol.33(2),351–357 (2004).
    • 98  McNabb SJ, Kammerer JS, Hickey AC et al.: Added epidemiologic value to tuberculosis prevention and control of the investigation of clustered genotypes of Mycobacterium tuberculosis isolates. Am. J. Epidemiol.160(6),589–597 (2004).▪▪ Outlines impact of additional epidemiologic investigations of cases with genotypically matched M. tuberculosis isolates (cluster cases).
    • 99  Sebek M: DNA fingerprinting and contact investigation. Int. J. Tuberc. Lung Dis.4(2 Suppl.1),S45–S48 (2000).
    • 100  van Deutekom H, Hoijng SP, de Haas PE et al.: Clustered tuberculosis cases: do they represent recent transmission and can they be detected earlier? Am. J. Respir. Crit. Care Med.169(7),806–810 (2004).
    • 101  Tuberculosis outbreak in a low-incidence state – Indiana, 2001–2004. MMWR Morb. Mortal. Wkly Rep.53(48),1134–1135 (2004).
    • 102  Centers for Disease Control and Prevention (CDC): Tuberculosis outbreak in a community hospital – District of Columbia, 2002. MMWR Morb. Mortal. Wkly Rep.53(10),214–216 (2004).
    • 103  Dewan PK, Banouvong H, Abernethy N et al.: A tuberculosis outbreak in a private-home family child care center in San Francisco, 2002 to 2004. Pediatrics117(3),863–869 (2006).
    • 104  Johnson R, Warren R, Strauss OJ et al.: An outbreak of drug-resistant tuberculosis caused by a Beijing strain in the western Cape, South Africa. Int. J. Tuberc. Lung Dis.10(12),1412–1414 (2006).
    • 105  McElroy PD, Southwick KL, Fortenberry ER et al.: Outbreak of tuberculosis among homeless persons coinfected with human immunodeficiency virus. Clin. Infect. Dis.36(10),1305–1312 (2003).
    • 106  Lai CC, Tan CK, Lin SH et al.: Molecular evidence of false-positive cultures for Mycobacterium tuberculosis in a Taiwanese hospital with a high incidence of TB. Chest137(5),1065–1070 (2010).
    • 107  van Rie A, Warren R, Richardson M et al.: Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med.341(16),1174–1179 (1999).
    • 108  Dwyer B, Jackson K, Raios K, Sievers A, Wilshire E, Ross B: DNA restriction fragment analysis to define an extended cluster of tuberculosis in homeless men and their associates. J. Infect. Dis.167(2),490–494 (1993).
    • 109  Nava-Aguilera E, Andersson N, Harris E et al.: Risk factors associated with recent transmission of tuberculosis: systematic review and meta-analysis. Int. J. Tuberc. Lung Dis.13(1),17–26 (2009).
    • 110  Kliiman K, Altraja A: Predictors of extensively drug-resistant pulmonary tuberculosis. Ann. Intern. Med.150(11),766–775 (2009).
    • 111  Dye C: Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol.7(1),81–87 (2009).
    • 112  Valway SE, Sanchez MP, Shinnick TF et al.: An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med.338(10),633–639 (1998).
    • 113  Williams A, James BW, Bacon J et al.: An assay to compare the infectivity of Mycobacterium tuberculosis isolates based on aerosol infection of guinea pigs and assessment of bacteriology. Tuberculosis (Edinb.)85(3),177–184 (2005).
    • 114  Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE 3rd: The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J. Bacteriol.189(7),2583–2589 (2007).
    • 115  Lopez B, Aguilar D, Orozco H et al.: A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol.133(1),30–37 (2003).
    • 116  Kato-Maeda M, Kim EY, Flores L, Jarlsberg LG, Osmond D, Hopewell PC: Differences among sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. Int. J. Tuberc. Lung Dis.14(5),538–544 (2010).
    • 117  Coscolla M, Gagneux S: Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov. Today Dis. Mech.7(1),E43–E59 (2010).
    • 118  Daley CL, Kawamura LM: The role of molecular epidemiology in contact investigations: a US perspective. Int. J. Tuberc. Lung Dis.7(12 Suppl. 3),S458–S462 (2003).
    • 119  Zeger SL, Liang KY: Longitudinal data analysis for discrete and continuous outcomes. Biometrics42(1),121–130 (1986).
    • 120  Glynn JR, Vynnycky E, Fine PE: Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. Am. J. Epidemiol.149(4),366–371 (1999).
    • 121  Murray M: Sampling bias in the molecular epidemiology of tuberculosis. Emerg. Infect. Dis.8(4),363–369 (2002).
    • 122  Braden CR, Templeton GL, Cave MD et al.: Interpretation of restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from a state with a large rural population. J. Infect. Dis.175(6),1446–1452 (1997).
    • 123  Chin DP, Crane CM, Diul MY et al.: Spread of Mycobacterium tuberculosis in a community implementing recommended elements of tuberculosis control. JAMA283(22),2968–2974 (2000).
    • 124  Shamputa IC, Lee J, Allix-Beguec C et al.: Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care tuberculosis hospital in South Korea. J. Clin. Microbiol.48(2),387–394 (2010).
    • 125  Al-Hajoj SA, Akkerman O, Parwati I et al.: Microevolution of Mycobacterium tuberculosis in a tuberculosis patient. J. Clin. Microbiol.48(10),3813–3816 (2010).
    • 201  WHO: Tuberculosis. Fact Sheet No. 104 www.who.int/mediacentre/factsheets/fs104/en/
    • 202  WHO: Global tuberculosis control – epidemiology, strategy, financing. WHO Report 2009. WHO, Geneva, 2009 www.who.int/tb/publications/global_report/2009/en/index.html
    • 203  Institut Pasteur De La Guadeloupe. Tuberculose et Mycobactéries www.pasteur-guadeloupe.fr/tb/bd_myco.html
    • 204  MIRU-VNTRplus www.miru-vntrplus.org/