Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Tuberculosis | Research

Increased risk of pulmonary and extrapulmonary tuberculosis infection in patients with polycystic kidney disease: a nationwide population-based study with propensity score-matching analysis

Authors: Ting-Fang Chiu, Tung-Min Yu, Chih-Wei Chiu, Brian K. Lee, Tsuo-Hung Lan, Chi-Yuan Li, Mei-Chen Lin, Chia-Hung Kao

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Polycystic kidney disease (PKD) is a common renal disorder affecting approximately 1 in 1000 live births. Tuberculosis (TB) is an infectious disease worldwide. This study investigated the risk of TB infection in patients with PKD.

Methods

A nationwide population-based cohort study was performed using Taiwan’s National Health Insurance Research Database. We used patients’ hospitalization files for the entire analysis during 2000–2012. As per diagnosis, we divided patients into PKD and non-PKD cohorts and the major outcome was TB infection.

Results

A total of 13,540 participants with 6770 patients in each cohort were enrolled. The PKD cohort had a higher risk of TB infection than did the non-PKD cohort after adjusting for age, sex, and comorbidities (adjusted hazard ratio (aHR) = 1.91, 95% confidence interval [CI] = 1.51–2.43). When classifying by sites of pulmonary TB (PTB) and extrapulmonary TB (EPTB), the PKD cohort demonstrated a significantly higher risk of EPTB (aHR = 2.44, 95% CI = 1.46–4.08) as well as a risk of PTB (aHR = 1.69, 95% CI = 1.29–2.22). When stratified by the presence or absence of a comorbidity, high TB infection risk was noted in the PKD patients without any comorbidity (HR = 2.69, 95% CI = 1.69–4.30).

Conclusions

Taken together, our findings suggest that PKD is associated with a 1.91-fold increased risk of TB infection. Medical professionls should maintain a high index of suspicion in daily practice for patients with PKD, particularly those with EPTB infection.
Literature
1.
go back to reference Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl. 1957;328:1–255.PubMed Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl. 1957;328:1–255.PubMed
2.
go back to reference Saran R, Robinson B, Abbott KC, et al. US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2017;69(3 Suppl 1):A7–8.CrossRef Saran R, Robinson B, Abbott KC, et al. US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2017;69(3 Suppl 1):A7–8.CrossRef
3.
go back to reference Neumann HP, Jilg C, Bacher J, et al. Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for south-western Germany. Nephrol Dial Transplant. 2013;28(6):1472–87.CrossRef Neumann HP, Jilg C, Bacher J, et al. Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for south-western Germany. Nephrol Dial Transplant. 2013;28(6):1472–87.CrossRef
4.
go back to reference McGovern AP, Jones S, van Vlymen J, Saggar AK, Sandford R, de Lusignan S. Identification of people with autosomal dominant polycystic kidney disease using routine data: a cross sectional study. BMC Nephrol. 2014;15(1):182.CrossRef McGovern AP, Jones S, van Vlymen J, Saggar AK, Sandford R, de Lusignan S. Identification of people with autosomal dominant polycystic kidney disease using routine data: a cross sectional study. BMC Nephrol. 2014;15(1):182.CrossRef
5.
go back to reference Willey C, Kamat S, Stellhorn R, Blais J. Analysis of nationwide data to determine the incidence and diagnosed prevalence of autosomal dominant polycystic kidney disease in the USA: 2013–2015. Kidney Dis (Basel). 2019;5(2):107–17.CrossRef Willey C, Kamat S, Stellhorn R, Blais J. Analysis of nationwide data to determine the incidence and diagnosed prevalence of autosomal dominant polycystic kidney disease in the USA: 2013–2015. Kidney Dis (Basel). 2019;5(2):107–17.CrossRef
6.
go back to reference Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.CrossRef Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.CrossRef
7.
go back to reference Cornec-Le Gall E, Audrezet MP, Chen JM, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24(6):1006–13.CrossRef Cornec-Le Gall E, Audrezet MP, Chen JM, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24(6):1006–13.CrossRef
8.
go back to reference Simms RJ. Autosomal dominant polycystic kidney disease. BMJ. 2016;352:i679.CrossRef Simms RJ. Autosomal dominant polycystic kidney disease. BMJ. 2016;352:i679.CrossRef
9.
go back to reference Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993;329(5):332–42.CrossRef Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993;329(5):332–42.CrossRef
10.
go back to reference Rizk D, Chapman AB. Cystic and inherited kidney diseases. Am J Kidney Dis. 2003;42(6):1305–17.CrossRef Rizk D, Chapman AB. Cystic and inherited kidney diseases. Am J Kidney Dis. 2003;42(6):1305–17.CrossRef
11.
go back to reference Levy M, Feingold J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 2000;58(3):925–43.CrossRef Levy M, Feingold J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 2000;58(3):925–43.CrossRef
12.
go back to reference Saran R, Robinson B, Abbott KC, et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2018;71(3 Suppl 1):A7.CrossRef Saran R, Robinson B, Abbott KC, et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2018;71(3 Suppl 1):A7.CrossRef
13.
go back to reference Gabow PA. Autosomal dominant polycystic kidney disease—more than a renal disease. Am J Kidney Dis. 1990;16(5):403–13.CrossRef Gabow PA. Autosomal dominant polycystic kidney disease—more than a renal disease. Am J Kidney Dis. 1990;16(5):403–13.CrossRef
14.
go back to reference Grantham JJ. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359(14):1477–85.CrossRef Grantham JJ. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359(14):1477–85.CrossRef
15.
go back to reference Luciano RL, Dahl NK. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): considerations for routine screening and management. Nephrol Dial Transplant. 2014;29(2):247–54.CrossRef Luciano RL, Dahl NK. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): considerations for routine screening and management. Nephrol Dial Transplant. 2014;29(2):247–54.CrossRef
16.
go back to reference Jilg CA, Drendel V, Bacher J, et al. Autosomal dominant polycystic kidney disease: prevalence of renal neoplasias in surgical kidney specimens. Nephron Clin Pract. 2013;123(1–2):13–21.CrossRef Jilg CA, Drendel V, Bacher J, et al. Autosomal dominant polycystic kidney disease: prevalence of renal neoplasias in surgical kidney specimens. Nephron Clin Pract. 2013;123(1–2):13–21.CrossRef
17.
go back to reference Van Laecke S, Kerre T, Nagler EV, et al. Hereditary polycystic kidney disease is characterized by lymphopenia across all stages of kidney dysfunction: an observational study. Nephrol Dial Transplant. 2018;33(3):489–96.CrossRef Van Laecke S, Kerre T, Nagler EV, et al. Hereditary polycystic kidney disease is characterized by lymphopenia across all stages of kidney dysfunction: an observational study. Nephrol Dial Transplant. 2018;33(3):489–96.CrossRef
18.
go back to reference Kunnath-Velayudhan S, Gennaro ML. Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev. 2011;24(4):792–805.CrossRef Kunnath-Velayudhan S, Gennaro ML. Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev. 2011;24(4):792–805.CrossRef
19.
go back to reference Lefford MJ. Transfer of adoptive immunity to tuberculosis in mice. Infect Immun. 1975;11(6):1174–81.CrossRef Lefford MJ. Transfer of adoptive immunity to tuberculosis in mice. Infect Immun. 1975;11(6):1174–81.CrossRef
20.
go back to reference World Health Organization-Global tuberculosis report 2019. 2019 World Health Organization-Global tuberculosis report 2019. 2019
21.
go back to reference Lo HY, Chou P, Yang SL, Lee CY, Kuo HS. Trends in tuberculosis in Taiwan, 2002–2008. J Formos Med Assoc. 2011;110(8):501–10.CrossRef Lo HY, Chou P, Yang SL, Lee CY, Kuo HS. Trends in tuberculosis in Taiwan, 2002–2008. J Formos Med Assoc. 2011;110(8):501–10.CrossRef
22.
go back to reference Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis. 2005;191(2):150–8.CrossRef Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis. 2005;191(2):150–8.CrossRef
23.
go back to reference Holmes CB, Wood R, Badri M, et al. CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment. J Acquir Immune Defic Syndr. 2006;42:464–9.CrossRef Holmes CB, Wood R, Badri M, et al. CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment. J Acquir Immune Defic Syndr. 2006;42:464–9.CrossRef
24.
go back to reference Ayelign B, Negash M, Genetu M, Wondmagegn T, Shibabaw T. Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res. 2019;2019:6196532.CrossRef Ayelign B, Negash M, Genetu M, Wondmagegn T, Shibabaw T. Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res. 2019;2019:6196532.CrossRef
25.
go back to reference Clemente WT, Faria LC, Lima SS, et al. Tuberculosis in liver transplant recipients: a single Brazilian center experience. Transplantation. 2009;87(3):397–401.CrossRef Clemente WT, Faria LC, Lima SS, et al. Tuberculosis in liver transplant recipients: a single Brazilian center experience. Transplantation. 2009;87(3):397–401.CrossRef
26.
go back to reference Okada RC, Barry PM, Skarbinski J, Chitnis AS. Epidemiology, detection, and management of tuberculosis among end-stage renal disease patients. Infect Control Hosp Epidemiol. 2018;39(11):1367–74.CrossRef Okada RC, Barry PM, Skarbinski J, Chitnis AS. Epidemiology, detection, and management of tuberculosis among end-stage renal disease patients. Infect Control Hosp Epidemiol. 2018;39(11):1367–74.CrossRef
27.
go back to reference Inghammar M, Ekbom A, Engstrom G, et al. COPD and the risk of tuberculosis—a population-based cohort study. PLoS ONE. 2010;5(4):e10138.CrossRef Inghammar M, Ekbom A, Engstrom G, et al. COPD and the risk of tuberculosis—a population-based cohort study. PLoS ONE. 2010;5(4):e10138.CrossRef
28.
go back to reference Cheng MP, Abou Chakra CN, Yansouni CP, et al. Risk of active tuberculosis in patients with cancer: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(5):635–44.PubMed Cheng MP, Abou Chakra CN, Yansouni CP, et al. Risk of active tuberculosis in patients with cancer: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(5):635–44.PubMed
29.
go back to reference Jick SS, Lieberman ES, Rahman MU, Choi HK. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 2006;55(1):19–26.CrossRef Jick SS, Lieberman ES, Rahman MU, Choi HK. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 2006;55(1):19–26.CrossRef
30.
go back to reference Winthrop K, Baxter R, Liu L, et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis. 2013;72(1):37–42.CrossRef Winthrop K, Baxter R, Liu L, et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis. 2013;72(1):37–42.CrossRef
31.
go back to reference Feleke BE, Feleke TE, Biadglegne F. Nutritional status of tuberculosis patients, a comparative cross-sectional study. BMC Pulm Med. 2019;19(1):182.CrossRef Feleke BE, Feleke TE, Biadglegne F. Nutritional status of tuberculosis patients, a comparative cross-sectional study. BMC Pulm Med. 2019;19(1):182.CrossRef
32.
go back to reference Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med. 2007;167(4):335–42.CrossRef Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med. 2007;167(4):335–42.CrossRef
33.
go back to reference Lonnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis—a systematic review. BMC Public Health. 2008;8:289.CrossRef Lonnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis—a systematic review. BMC Public Health. 2008;8:289.CrossRef
34.
go back to reference Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992;41(5):1311–9.CrossRef Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992;41(5):1311–9.CrossRef
35.
go back to reference Ou SM, Liu CJ, Teng CJ, et al. Impact of pulmonary and extrapulmonary tuberculosis infection in kidney transplantation: a nationwide population-based study in Taiwan. Transpl Infect Dis. 2012;14(5):502–9.CrossRef Ou SM, Liu CJ, Teng CJ, et al. Impact of pulmonary and extrapulmonary tuberculosis infection in kidney transplantation: a nationwide population-based study in Taiwan. Transpl Infect Dis. 2012;14(5):502–9.CrossRef
36.
go back to reference Sester U, Wilkens H, van Bentum K, et al. Impaired detection of Mycobacterium tuberculosis immunity in patients using high levels of immunosuppressive drugs. Eur Respir J. 2009;34(3):702–10.CrossRef Sester U, Wilkens H, van Bentum K, et al. Impaired detection of Mycobacterium tuberculosis immunity in patients using high levels of immunosuppressive drugs. Eur Respir J. 2009;34(3):702–10.CrossRef
Metadata
Title
Increased risk of pulmonary and extrapulmonary tuberculosis infection in patients with polycystic kidney disease: a nationwide population-based study with propensity score-matching analysis
Authors
Ting-Fang Chiu
Tung-Min Yu
Chih-Wei Chiu
Brian K. Lee
Tsuo-Hung Lan
Chi-Yuan Li
Mei-Chen Lin
Chia-Hung Kao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02921-3

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.