Skip to main content
Top
Published in: Critical Care 1/2024

Open Access 07-03-2024 | Traumatic Brain Injuries | Review

Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis

Authors: Mairi Ziaka, Aristomenis Exadaktylos

Published in: Critical Care | Issue 1/2024

Login to get access

Abstract

It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain–lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment (“first hit”) that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections (“second hit”). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the “gut-microbiome–brain axis.” Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the “gut-lung axis,” in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the “double-hit” theory, proposing the “triple-hit” hypothesis, focused on the influence of the gut–lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut–lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the “third hit.”
Literature
1.
go back to reference Robba C, et al. Extracranial complications after traumatic brain injury: targeting the brain and the body. Curr Opin Crit Care. 2020;26(2):137–46.CrossRefPubMed Robba C, et al. Extracranial complications after traumatic brain injury: targeting the brain and the body. Curr Opin Crit Care. 2020;26(2):137–46.CrossRefPubMed
2.
go back to reference McDonald SJ, et al. Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020;37(5):770–81.CrossRefPubMed McDonald SJ, et al. Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020;37(5):770–81.CrossRefPubMed
3.
go back to reference Vaporidi K, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43(2):184–91.CrossRefPubMed Vaporidi K, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43(2):184–91.CrossRefPubMed
4.
5.
go back to reference Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. 2009;11(3):417–26.CrossRefPubMed Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. 2009;11(3):417–26.CrossRefPubMed
6.
7.
go back to reference Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.CrossRefPubMed Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.CrossRefPubMed
8.
go back to reference Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol. 2011;23(6):761–8.CrossRefPubMed Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol. 2011;23(6):761–8.CrossRefPubMed
9.
go back to reference Chervonsky AV. Intestinal commensals: influence on immune system and tolerance to pathogens. Curr Opin Immunol. 2012;24(3):255–60.CrossRefPubMed Chervonsky AV. Intestinal commensals: influence on immune system and tolerance to pathogens. Curr Opin Immunol. 2012;24(3):255–60.CrossRefPubMed
10.
go back to reference Paun A, Danska JS. Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr Opin Immunol. 2015;37:34–9.CrossRefPubMed Paun A, Danska JS. Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr Opin Immunol. 2015;37:34–9.CrossRefPubMed
12.
go back to reference Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.CrossRefPubMed Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.CrossRefPubMed
13.
go back to reference Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMed Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMed
14.
go back to reference Fond G, et al. The “psychomicrobiotic”: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol (Paris). 2015;63(1):35–42.CrossRefPubMed Fond G, et al. The “psychomicrobiotic”: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol (Paris). 2015;63(1):35–42.CrossRefPubMed
15.
go back to reference Pirbaglou M, et al. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98.CrossRefPubMed Pirbaglou M, et al. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98.CrossRefPubMed
16.
go back to reference Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12.CrossRefPubMed Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12.CrossRefPubMed
17.
go back to reference Wang H, et al. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil. 2016;22(4):589–605.CrossRefPubMedPubMedCentral Wang H, et al. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil. 2016;22(4):589–605.CrossRefPubMedPubMedCentral
18.
go back to reference George AK, et al. Rebuilding microbiome for mitigating traumatic brain injury: importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol. 2021;58(8):3614–27.CrossRefPubMedPubMedCentral George AK, et al. Rebuilding microbiome for mitigating traumatic brain injury: importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol. 2021;58(8):3614–27.CrossRefPubMedPubMedCentral
19.
go back to reference Baguley IJ, et al. Dysautonomia after severe traumatic brain injury: evidence of persisting overresponsiveness to afferent stimuli. Am J Phys Med Rehabil. 2009;88(8):615–22.CrossRefPubMed Baguley IJ, et al. Dysautonomia after severe traumatic brain injury: evidence of persisting overresponsiveness to afferent stimuli. Am J Phys Med Rehabil. 2009;88(8):615–22.CrossRefPubMed
20.
go back to reference Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017;10(2):299–306.CrossRefPubMed Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017;10(2):299–306.CrossRefPubMed
21.
22.
go back to reference Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med (Lond). 2017;17(6):525–9.CrossRefPubMed Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med (Lond). 2017;17(6):525–9.CrossRefPubMed
23.
go back to reference Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111(5):1266–72.CrossRefPubMed Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111(5):1266–72.CrossRefPubMed
24.
go back to reference Huxley EJ, et al. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med. 1978;64(4):564–8.CrossRefPubMed Huxley EJ, et al. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med. 1978;64(4):564–8.CrossRefPubMed
26.
go back to reference Budden KF, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.CrossRefPubMed Budden KF, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.CrossRefPubMed
28.
go back to reference Segal LN, Rom WN, Weiden MD. Lung microbiome for clinicians. New discoveries about bugs in healthy and diseased lungs. Ann Am Thorac Soc. 2014;11(1):108–16.CrossRefPubMedPubMedCentral Segal LN, Rom WN, Weiden MD. Lung microbiome for clinicians. New discoveries about bugs in healthy and diseased lungs. Ann Am Thorac Soc. 2014;11(1):108–16.CrossRefPubMedPubMedCentral
29.
go back to reference Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–50.CrossRefPubMed Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–50.CrossRefPubMed
30.
go back to reference Wang H, et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J Neuroinflamm. 2022;19(1):76.CrossRef Wang H, et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J Neuroinflamm. 2022;19(1):76.CrossRef
31.
go back to reference Bradley CP, et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe. 2017;22(5):697–704.CrossRefPubMedPubMedCentral Bradley CP, et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe. 2017;22(5):697–704.CrossRefPubMedPubMedCentral
32.
go back to reference Wang G, et al. Gut-lung dysbiosis accompanied by diabetes mellitus leads to pulmonary fibrotic change through the NF-kappaB signaling pathway. Am J Pathol. 2021;191(5):838–56.CrossRefPubMed Wang G, et al. Gut-lung dysbiosis accompanied by diabetes mellitus leads to pulmonary fibrotic change through the NF-kappaB signaling pathway. Am J Pathol. 2021;191(5):838–56.CrossRefPubMed
33.
go back to reference Boesch M, et al. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology. 2021;10(1):1988403.CrossRefPubMedPubMedCentral Boesch M, et al. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology. 2021;10(1):1988403.CrossRefPubMedPubMedCentral
35.
go back to reference Avlonitis VS, et al. Pulmonary transplantation: the role of brain death in donor lung injury. Transplantation. 2003;75(12):1928–33.CrossRefPubMed Avlonitis VS, et al. Pulmonary transplantation: the role of brain death in donor lung injury. Transplantation. 2003;75(12):1928–33.CrossRefPubMed
36.
go back to reference Skandsen T, et al. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg. 2010;113(3):556–63.CrossRefPubMed Skandsen T, et al. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg. 2010;113(3):556–63.CrossRefPubMed
37.
go back to reference Das M, et al. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflamm. 2011;8:148.CrossRef Das M, et al. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflamm. 2011;8:148.CrossRef
38.
go back to reference Ott L, et al. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11(5):447–72.CrossRefPubMed Ott L, et al. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11(5):447–72.CrossRefPubMed
39.
go back to reference McKeating EG, et al. Transcranial cytokine gradients in patients requiring intensive care after acute brain injury. Br J Anaesth. 1997;78(5):520–3.CrossRefPubMed McKeating EG, et al. Transcranial cytokine gradients in patients requiring intensive care after acute brain injury. Br J Anaesth. 1997;78(5):520–3.CrossRefPubMed
40.
go back to reference van Vliet EA, et al. Long-lasting blood–brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis. 2020;145:105080.CrossRefPubMed van Vliet EA, et al. Long-lasting blood–brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis. 2020;145:105080.CrossRefPubMed
41.
go back to reference Sweeney MD, et al. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.CrossRefPubMed Sweeney MD, et al. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.CrossRefPubMed
42.
43.
go back to reference Baskaya MK, et al. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997;226(1):33–6.CrossRefPubMed Baskaya MK, et al. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997;226(1):33–6.CrossRefPubMed
46.
go back to reference Habgood MD, et al. Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007;25(1):231–8.CrossRefPubMed Habgood MD, et al. Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007;25(1):231–8.CrossRefPubMed
48.
go back to reference Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001;130(2):169–75.CrossRefPubMed Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001;130(2):169–75.CrossRefPubMed
49.
50.
go back to reference Csuka E, et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood–brain barrier function. J Neuroimmunol. 1999;101(2):211–21.CrossRefPubMed Csuka E, et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood–brain barrier function. J Neuroimmunol. 1999;101(2):211–21.CrossRefPubMed
51.
go back to reference Semple BD, et al. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab. 2010;30(4):769–82.CrossRefPubMed Semple BD, et al. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab. 2010;30(4):769–82.CrossRefPubMed
52.
go back to reference Morganti-Kossman MC, et al. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry. 1997;2(2):133–6.CrossRefPubMed Morganti-Kossman MC, et al. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry. 1997;2(2):133–6.CrossRefPubMed
53.
go back to reference Frugier T, et al. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma. 2010;27(3):497–507.CrossRefPubMed Frugier T, et al. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma. 2010;27(3):497–507.CrossRefPubMed
54.
go back to reference Yenari MA, et al. Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93.CrossRefPubMed Yenari MA, et al. Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93.CrossRefPubMed
55.
go back to reference Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348–64.CrossRefPubMed Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348–64.CrossRefPubMed
56.
go back to reference Fisher AJ, et al. Enhanced pulmonary inflammation in organ donors following fatal non-traumatic brain injury. Lancet. 1999;353(9162):1412–3.CrossRefPubMed Fisher AJ, et al. Enhanced pulmonary inflammation in organ donors following fatal non-traumatic brain injury. Lancet. 1999;353(9162):1412–3.CrossRefPubMed
57.
go back to reference Fisher AJ, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med. 2001;163(1):259–65.CrossRefADSPubMed Fisher AJ, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med. 2001;163(1):259–65.CrossRefADSPubMed
58.
go back to reference Siwicka-Gieroba D, et al. Concentration of apoptotic factors in bronchoalveolar lavage fluid, as potential brain-lung oxygen relationship, correspond to the severity of brain injury. J Integr Neurosci. 2023;22(2):49.CrossRefPubMed Siwicka-Gieroba D, et al. Concentration of apoptotic factors in bronchoalveolar lavage fluid, as potential brain-lung oxygen relationship, correspond to the severity of brain injury. J Integr Neurosci. 2023;22(2):49.CrossRefPubMed
59.
go back to reference Wu S, et al. Enhanced pulmonary inflammation following experimental intracerebral hemorrhage. Exp Neurol. 2006;200(1):245–9.CrossRefPubMed Wu S, et al. Enhanced pulmonary inflammation following experimental intracerebral hemorrhage. Exp Neurol. 2006;200(1):245–9.CrossRefPubMed
60.
go back to reference Kalsotra A, et al. Brain trauma leads to enhanced lung inflammation and injury: evidence for role of P4504Fs in resolution. J Cereb Blood Flow Metab. 2007;27(5):963–74.CrossRefPubMed Kalsotra A, et al. Brain trauma leads to enhanced lung inflammation and injury: evidence for role of P4504Fs in resolution. J Cereb Blood Flow Metab. 2007;27(5):963–74.CrossRefPubMed
61.
62.
go back to reference Ziaka M, et al. High-tidal-volume mechanical ventilation and lung inflammation in intensive care patients with normal lungs. Am J Crit Care. 2020;29(1):15–21.CrossRefPubMed Ziaka M, et al. High-tidal-volume mechanical ventilation and lung inflammation in intensive care patients with normal lungs. Am J Crit Care. 2020;29(1):15–21.CrossRefPubMed
65.
go back to reference Turnbaugh PJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6–14.CrossRef Turnbaugh PJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6–14.CrossRef
66.
go back to reference Claesson MJ, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.CrossRefADSPubMed Claesson MJ, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.CrossRefADSPubMed
67.
68.
go back to reference Makivuokko H, et al. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(2):227–34.CrossRefPubMed Makivuokko H, et al. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(2):227–34.CrossRefPubMed
69.
go back to reference Carabotti M, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.PubMedPubMedCentral Carabotti M, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.PubMedPubMedCentral
70.
go back to reference Houlden A, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun. 2016;57:10–20.CrossRefPubMedPubMedCentral Houlden A, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun. 2016;57:10–20.CrossRefPubMedPubMedCentral
71.
go back to reference Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016;6(3):1239–78.CrossRefPubMed Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016;6(3):1239–78.CrossRefPubMed
72.
go back to reference Hang CH, et al. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J Gastroenterol. 2003;9(12):2776–81.CrossRefPubMedPubMedCentral Hang CH, et al. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J Gastroenterol. 2003;9(12):2776–81.CrossRefPubMedPubMedCentral
74.
go back to reference Sundman MH, et al. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44.CrossRefPubMed Sundman MH, et al. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44.CrossRefPubMed
76.
go back to reference Jin W, et al. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res. 2009;157(2):251–60.CrossRefPubMed Jin W, et al. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res. 2009;157(2):251–60.CrossRefPubMed
77.
go back to reference Mahajan C, et al. Characteristics of gut microbiome after traumatic brain injury. J Neurosurg Anesthesiol. 2023;35(1):86–90.CrossRefPubMed Mahajan C, et al. Characteristics of gut microbiome after traumatic brain injury. J Neurosurg Anesthesiol. 2023;35(1):86–90.CrossRefPubMed
78.
81.
go back to reference Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Comp Physiol. 2015;5(1):1–15.ADS Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Comp Physiol. 2015;5(1):1–15.ADS
82.
go back to reference Stanley D, et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med. 2016;22(11):1277–84.CrossRefPubMed Stanley D, et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med. 2016;22(11):1277–84.CrossRefPubMed
83.
go back to reference Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci. 2014;182:83–8.CrossRefPubMed Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci. 2014;182:83–8.CrossRefPubMed
84.
go back to reference Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil. 2010;22(1):7–18.CrossRefPubMed Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil. 2010;22(1):7–18.CrossRefPubMed
85.
86.
go back to reference Yang S, et al. Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol. 2000;279(6):G1274–81.CrossRefPubMed Yang S, et al. Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol. 2000;279(6):G1274–81.CrossRefPubMed
87.
go back to reference Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203–12.CrossRefPubMed Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203–12.CrossRefPubMed
88.
go back to reference Doherty NC, et al. The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen Helicobacter pylori. Helicobacter. 2009;14(3):223–30.CrossRefPubMed Doherty NC, et al. The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen Helicobacter pylori. Helicobacter. 2009;14(3):223–30.CrossRefPubMed
89.
go back to reference Cogan TA, et al. Norepinephrine increases the pathogenic potential of campylobacter jejuni. Gut. 2007;56(8):1060–5.CrossRefPubMed Cogan TA, et al. Norepinephrine increases the pathogenic potential of campylobacter jejuni. Gut. 2007;56(8):1060–5.CrossRefPubMed
90.
go back to reference Clifton GL, et al. Cardiovascular response to severe head injury. J Neurosurg. 1983;59(3):447–54.CrossRefPubMed Clifton GL, et al. Cardiovascular response to severe head injury. J Neurosurg. 1983;59(3):447–54.CrossRefPubMed
91.
go back to reference Kalsotra A, et al. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism. J Neurotrauma. 2003;20(12):1339–50.CrossRefPubMed Kalsotra A, et al. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism. J Neurotrauma. 2003;20(12):1339–50.CrossRefPubMed
92.
go back to reference Feighery, L., et al., Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. J Trauma. 2008;64(1):131–7; discussion 137–8. Feighery, L., et al., Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. J Trauma. 2008;64(1):131–7; discussion 137–8.
93.
go back to reference Catania A, et al. Detrimental consequences of brain injury on peripheral cells. Brain Behav Immun. 2009;23(7):877–84.CrossRefPubMed Catania A, et al. Detrimental consequences of brain injury on peripheral cells. Brain Behav Immun. 2009;23(7):877–84.CrossRefPubMed
94.
go back to reference Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci. 2004;61(18):2322–31.CrossRefPubMed Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci. 2004;61(18):2322–31.CrossRefPubMed
95.
go back to reference Khaksari M, et al. The effect of female sexual hormones on the intestinal and serum cytokine response after traumatic brain injury: different roles for estrogen receptor subtypes. Can J Physiol Pharmacol. 2013;91(9):700–7.CrossRefPubMed Khaksari M, et al. The effect of female sexual hormones on the intestinal and serum cytokine response after traumatic brain injury: different roles for estrogen receptor subtypes. Can J Physiol Pharmacol. 2013;91(9):700–7.CrossRefPubMed
97.
go back to reference Wang, H et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J Neuroinflammation. 2022;19:1-15.CrossRef Wang, H et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J Neuroinflammation. 2022;19:1-15.CrossRef
98.
go back to reference Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019;328:98–104.CrossRefPubMed Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019;328:98–104.CrossRefPubMed
99.
go back to reference Kang Y, et al. Correlation between intestinal flora and serum inflammatory factors in post-stroke depression in ischemic stroke. J Coll Physicians Surg Pak. 2021;31(10):1224–7.CrossRefPubMed Kang Y, et al. Correlation between intestinal flora and serum inflammatory factors in post-stroke depression in ischemic stroke. J Coll Physicians Surg Pak. 2021;31(10):1224–7.CrossRefPubMed
101.
go back to reference Shukla SD, et al. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunol. 2017;6(3):e133.CrossRef Shukla SD, et al. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunol. 2017;6(3):e133.CrossRef
104.
go back to reference Weinberg F, et al. The lung microbiome: a central mediator of host inflammation and metabolism in lung cancer patients? Cancers (Basel). 2020;13(1):13.CrossRefPubMed Weinberg F, et al. The lung microbiome: a central mediator of host inflammation and metabolism in lung cancer patients? Cancers (Basel). 2020;13(1):13.CrossRefPubMed
105.
go back to reference Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21(4):222–35.CrossRefPubMed Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21(4):222–35.CrossRefPubMed
106.
go back to reference Gollwitzer ES, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–7.CrossRefPubMed Gollwitzer ES, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–7.CrossRefPubMed
107.
go back to reference Biesbroek G, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190(11):1283–92.CrossRefPubMed Biesbroek G, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190(11):1283–92.CrossRefPubMed
110.
go back to reference Morinaga Y, et al. Exploring the microbiota of upper respiratory tract during the development of pneumonia in a mouse model. PLoS ONE. 2019;14(9):e0222589.CrossRefPubMedPubMedCentral Morinaga Y, et al. Exploring the microbiota of upper respiratory tract during the development of pneumonia in a mouse model. PLoS ONE. 2019;14(9):e0222589.CrossRefPubMedPubMedCentral
113.
go back to reference Herbst T, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med. 2011;184(2):198–205.CrossRefPubMed Herbst T, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med. 2011;184(2):198–205.CrossRefPubMed
114.
go back to reference Gaudêncio TG, de Moura Leão G. Epidemiologia do Traumatismo Crânio- Encefálico. Rev Neurociências. 2013;21(3):427–34. Gaudêncio TG, de Moura Leão G. Epidemiologia do Traumatismo Crânio- Encefálico. Rev Neurociências. 2013;21(3):427–34.
115.
go back to reference Oliveira CO, Ikuta N, Regner A. Outcome biomarkers following severe traumatic brain injury. Rev Bras Ter Intensiva. 2008;20(4):411–21.PubMed Oliveira CO, Ikuta N, Regner A. Outcome biomarkers following severe traumatic brain injury. Rev Bras Ter Intensiva. 2008;20(4):411–21.PubMed
116.
go back to reference Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44(10):2–10.CrossRefPubMed Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44(10):2–10.CrossRefPubMed
117.
go back to reference Steyerberg EW, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34.CrossRefPubMed Steyerberg EW, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34.CrossRefPubMed
118.
go back to reference Georgakopoulou VE, et al. Lower respiratory tract infections due to multi-drug resistant pathogens in central nervous system injuries (review). Biomed Rep. 2023;18(4):30.CrossRefPubMedPubMedCentral Georgakopoulou VE, et al. Lower respiratory tract infections due to multi-drug resistant pathogens in central nervous system injuries (review). Biomed Rep. 2023;18(4):30.CrossRefPubMedPubMedCentral
119.
go back to reference Dhillon NK, et al. Early antibiotic administration is independently associated with improved survival in traumatic brain injury. J Surg Res. 2022;270:495–502.CrossRefPubMed Dhillon NK, et al. Early antibiotic administration is independently associated with improved survival in traumatic brain injury. J Surg Res. 2022;270:495–502.CrossRefPubMed
120.
go back to reference Krishnamoorthy V, et al. Association of early multiple organ dysfunction with clinical and functional outcomes over the year following traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury study. Crit Care Med. 2021;49(10):1769–78.CrossRefPubMedPubMedCentral Krishnamoorthy V, et al. Association of early multiple organ dysfunction with clinical and functional outcomes over the year following traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury study. Crit Care Med. 2021;49(10):1769–78.CrossRefPubMedPubMedCentral
122.
go back to reference Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med. 2003;31(2):598–607.CrossRefPubMed Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med. 2003;31(2):598–607.CrossRefPubMed
124.
go back to reference Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett. 2016;590(21):3721–38.CrossRefPubMed Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett. 2016;590(21):3721–38.CrossRefPubMed
125.
go back to reference Dumas A, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966.CrossRefPubMed Dumas A, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966.CrossRefPubMed
126.
go back to reference Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med. 2018;91(2):143–9.PubMedPubMedCentral Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med. 2018;91(2):143–9.PubMedPubMedCentral
128.
131.
132.
go back to reference Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol. 2017;23(12):2124–40.CrossRefPubMedPubMedCentral Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol. 2017;23(12):2124–40.CrossRefPubMedPubMedCentral
133.
go back to reference Rutten EPA, et al. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest. 2014;145(2):245–52.CrossRefADSPubMed Rutten EPA, et al. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest. 2014;145(2):245–52.CrossRefADSPubMed
134.
go back to reference Girosi D, et al. The lung and the gut: common origins, close links. Paediatr Respir Rev. 2006;7(Suppl 1):S235–9.CrossRefPubMed Girosi D, et al. The lung and the gut: common origins, close links. Paediatr Respir Rev. 2006;7(Suppl 1):S235–9.CrossRefPubMed
135.
go back to reference Tulic MK, Piche T, Verhasselt V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy. 2016;46(4):519–28.CrossRefPubMed Tulic MK, Piche T, Verhasselt V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy. 2016;46(4):519–28.CrossRefPubMed
136.
go back to reference Ma PJ, Wang MM, Wang Y. Gut microbiota: a new insight into lung diseases. Biomed Pharmacother. 2022;155:113810.CrossRefPubMed Ma PJ, Wang MM, Wang Y. Gut microbiota: a new insight into lung diseases. Biomed Pharmacother. 2022;155:113810.CrossRefPubMed
137.
go back to reference Lu Q, et al. The anatomic sites of disruption of the mucus layer directly correlate with areas of trauma/hemorrhagic shock-induced gut injury. J Trauma. 2011;70(3):630–5.PubMed Lu Q, et al. The anatomic sites of disruption of the mucus layer directly correlate with areas of trauma/hemorrhagic shock-induced gut injury. J Trauma. 2011;70(3):630–5.PubMed
138.
go back to reference Rupani B, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery. 2007;141(4):481–9.CrossRefPubMed Rupani B, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery. 2007;141(4):481–9.CrossRefPubMed
139.
go back to reference Panzer AR, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med. 2018;197(5):621–31.CrossRefPubMedPubMedCentral Panzer AR, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med. 2018;197(5):621–31.CrossRefPubMedPubMedCentral
140.
go back to reference Dickson RP, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.CrossRefPubMedPubMedCentral Dickson RP, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.CrossRefPubMedPubMedCentral
143.
go back to reference Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207(Suppl 1):E103–11.ADSPubMed Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207(Suppl 1):E103–11.ADSPubMed
145.
go back to reference Sertaridou E, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28(3):309–22.PubMedPubMedCentral Sertaridou E, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28(3):309–22.PubMedPubMedCentral
146.
149.
go back to reference Freestone P. Communication between bacteria and their hosts. Scientifica (Cairo). 2013;2013:361073.PubMed Freestone P. Communication between bacteria and their hosts. Scientifica (Cairo). 2013;2013:361073.PubMed
150.
go back to reference Sandrini S, et al. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol. 2015;225(2):R21-34.CrossRefPubMed Sandrini S, et al. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol. 2015;225(2):R21-34.CrossRefPubMed
151.
go back to reference Freestone PP, et al. Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest. 2012;142(5):1200–10.CrossRefPubMed Freestone PP, et al. Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest. 2012;142(5):1200–10.CrossRefPubMed
152.
go back to reference Marks LR, et al. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013;4(4):10–1128.CrossRef Marks LR, et al. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013;4(4):10–1128.CrossRef
153.
go back to reference Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1047–55.CrossRefPubMedPubMedCentral Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1047–55.CrossRefPubMedPubMedCentral
154.
155.
go back to reference Flierl MA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature. 2007;449(7163):721–5.CrossRefADSPubMed Flierl MA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature. 2007;449(7163):721–5.CrossRefADSPubMed
156.
go back to reference Kopin IJ, et al. Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1984;325(4):298–305.CrossRefPubMed Kopin IJ, et al. Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1984;325(4):298–305.CrossRefPubMed
157.
go back to reference Kovarik MF, Jones SB, Romano FD. Plasma catecholamines following cecal ligation and puncture in the rat. Circ Shock. 1987;22(4):281–90.PubMed Kovarik MF, Jones SB, Romano FD. Plasma catecholamines following cecal ligation and puncture in the rat. Circ Shock. 1987;22(4):281–90.PubMed
158.
go back to reference Meduri GU, et al. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med. 1999;160(3):961–7.CrossRefPubMed Meduri GU, et al. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med. 1999;160(3):961–7.CrossRefPubMed
160.
go back to reference Kaza SK, McClean S, Callaghan M. IL-8 released from human lung epithelial cells induced by cystic fibrosis pathogens Burkholderia cepacia complex affects the growth and intracellular survival of bacteria. Int J Med Microbiol. 2011;301(1):26–33.CrossRefPubMed Kaza SK, McClean S, Callaghan M. IL-8 released from human lung epithelial cells induced by cystic fibrosis pathogens Burkholderia cepacia complex affects the growth and intracellular survival of bacteria. Int J Med Microbiol. 2011;301(1):26–33.CrossRefPubMed
161.
go back to reference Plotkin BJ, et al. Effect of androgens and glucocorticoids on microbial growth and antimicrobial susceptibility. Curr Microbiol. 2003;47(6):514–20.CrossRefPubMed Plotkin BJ, et al. Effect of androgens and glucocorticoids on microbial growth and antimicrobial susceptibility. Curr Microbiol. 2003;47(6):514–20.CrossRefPubMed
162.
go back to reference Faura J, et al. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127.CrossRefPubMedPubMedCentral Faura J, et al. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127.CrossRefPubMedPubMedCentral
163.
go back to reference Dirnagl U, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2 Suppl):770–3.CrossRefPubMed Dirnagl U, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2 Suppl):770–3.CrossRefPubMed
164.
go back to reference Prass K, et al. Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke. 2006;37(10):2607–12.CrossRefPubMed Prass K, et al. Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke. 2006;37(10):2607–12.CrossRefPubMed
166.
167.
go back to reference Zakharkina T, et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax. 2017;72(9):803–10.CrossRefPubMed Zakharkina T, et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax. 2017;72(9):803–10.CrossRefPubMed
168.
go back to reference Akrami K, Sweeney DA. The microbiome of the critically ill patient. Curr Opin Crit Care. 2018;24(1):49–54.CrossRefPubMed Akrami K, Sweeney DA. The microbiome of the critically ill patient. Curr Opin Crit Care. 2018;24(1):49–54.CrossRefPubMed
170.
172.
go back to reference Schmitt FCF, et al. Pulmonary microbiome patterns correlate with the course of the disease in patients with sepsis-induced ARDS following major abdominal surgery. J Hosp Infect. 2020;105:438–46.CrossRef Schmitt FCF, et al. Pulmonary microbiome patterns correlate with the course of the disease in patients with sepsis-induced ARDS following major abdominal surgery. J Hosp Infect. 2020;105:438–46.CrossRef
173.
go back to reference Cotoia A, et al. Modifications of lung microbiota structure in traumatic brain injury ventilated patients according to time and enteral feeding formulas: a prospective randomized study. Crit Care. 2023;27(1):244.CrossRefPubMedPubMedCentral Cotoia A, et al. Modifications of lung microbiota structure in traumatic brain injury ventilated patients according to time and enteral feeding formulas: a prospective randomized study. Crit Care. 2023;27(1):244.CrossRefPubMedPubMedCentral
174.
go back to reference Wu H, et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest. 2003;111(10):1589–602.CrossRefPubMedPubMedCentral Wu H, et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest. 2003;111(10):1589–602.CrossRefPubMedPubMedCentral
175.
go back to reference Gunther A, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996;153(1):176–84.CrossRefPubMed Gunther A, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996;153(1):176–84.CrossRefPubMed
176.
177.
go back to reference Nseir S, et al. Microaspiration in intubated critically ill patients: diagnosis and prevention. Infect Disord Drug Targets. 2011;11(4):413–23.CrossRefPubMed Nseir S, et al. Microaspiration in intubated critically ill patients: diagnosis and prevention. Infect Disord Drug Targets. 2011;11(4):413–23.CrossRefPubMed
178.
179.
go back to reference Rogers, F.B., et al., Neurogenic pulmonary edema in fatal and nonfatal head injuries. J Trauma. 1995;39(5): 860–6; discussion 866–8. Rogers, F.B., et al., Neurogenic pulmonary edema in fatal and nonfatal head injuries. J Trauma. 1995;39(5): 860–6; discussion 866–8.
180.
go back to reference Fontes RB, et al. Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol. 2003;15(2):144–50.CrossRefPubMed Fontes RB, et al. Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol. 2003;15(2):144–50.CrossRefPubMed
181.
182.
go back to reference Kim JA, et al. Focused management of patients with severe acute brain injury and ARDS. Chest. 2022;161(1):140–51.CrossRefPubMed Kim JA, et al. Focused management of patients with severe acute brain injury and ARDS. Chest. 2022;161(1):140–51.CrossRefPubMed
183.
go back to reference Brower RG, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRefPubMed Brower RG, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRefPubMed
184.
go back to reference Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med. 2012;367(8):746–52.CrossRefPubMed Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med. 2012;367(8):746–52.CrossRefPubMed
185.
go back to reference McHugh GS, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):287–93.CrossRefPubMed McHugh GS, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):287–93.CrossRefPubMed
186.
go back to reference Robba C, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–410.CrossRefPubMedPubMedCentral Robba C, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–410.CrossRefPubMedPubMedCentral
187.
go back to reference Investigators I-R, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989–98.CrossRef Investigators I-R, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989–98.CrossRef
188.
go back to reference Davis DP, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–23.CrossRefPubMed Davis DP, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–23.CrossRefPubMed
189.
go back to reference Schjorring OL, et al. Lower or higher oxygenation targets for acute hypoxemic respiratory failure. N Engl J Med. 2021;384(14):1301–11.CrossRefPubMed Schjorring OL, et al. Lower or higher oxygenation targets for acute hypoxemic respiratory failure. N Engl J Med. 2021;384(14):1301–11.CrossRefPubMed
190.
191.
go back to reference Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369(9572):1553–64.CrossRefPubMed Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369(9572):1553–64.CrossRefPubMed
192.
193.
go back to reference Czosnyka M, et al. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.CrossRefPubMed Czosnyka M, et al. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.CrossRefPubMed
194.
go back to reference Bein T, et al. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002;28(5):554–8.CrossRefPubMed Bein T, et al. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002;28(5):554–8.CrossRefPubMed
195.
go back to reference Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122(1):196–205.CrossRefPubMed Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122(1):196–205.CrossRefPubMed
196.
go back to reference Severdija EE, et al. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Med Biol Eng Comput. 2015;53(3):195–203.CrossRefPubMed Severdija EE, et al. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Med Biol Eng Comput. 2015;53(3):195–203.CrossRefPubMed
197.
198.
go back to reference Asehnoune K, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43(7):957–70.CrossRefPubMed Asehnoune K, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43(7):957–70.CrossRefPubMed
199.
go back to reference Schramm P, et al. Influence of PEEP on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome. J Neurosurg Anesthesiol. 2013;25(2):162–7.CrossRefPubMed Schramm P, et al. Influence of PEEP on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome. J Neurosurg Anesthesiol. 2013;25(2):162–7.CrossRefPubMed
200.
go back to reference Modock J. Complex care: ventilation management when brain injury and acute lung injury coexist. J Neurosci Nurs. 2014;46(2):71–8.CrossRefPubMed Modock J. Complex care: ventilation management when brain injury and acute lung injury coexist. J Neurosci Nurs. 2014;46(2):71–8.CrossRefPubMed
201.
202.
go back to reference Nemer SN, et al. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: a pilot study. J Crit Care. 2015;30(6):1263–6.CrossRefPubMed Nemer SN, et al. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: a pilot study. J Crit Care. 2015;30(6):1263–6.CrossRefPubMed
203.
go back to reference Nemer SN, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7.CrossRefPubMed Nemer SN, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7.CrossRefPubMed
205.
206.
go back to reference Batista KS, et al. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev. 2023;36(2):181–98.CrossRefPubMed Batista KS, et al. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev. 2023;36(2):181–98.CrossRefPubMed
207.
go back to reference Tan M, et al. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care. 2011;15(6):R290.CrossRefPubMedPubMedCentral Tan M, et al. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care. 2011;15(6):R290.CrossRefPubMedPubMedCentral
208.
go back to reference Falcao de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond). 2004;106(3):287–92.CrossRefPubMed Falcao de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond). 2004;106(3):287–92.CrossRefPubMed
210.
go back to reference Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78(2):240–9.CrossRefPubMed Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78(2):240–9.CrossRefPubMed
212.
go back to reference Du D, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev. 2021;2021:5816837.CrossRefPubMedPubMedCentral Du D, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev. 2021;2021:5816837.CrossRefPubMedPubMedCentral
213.
214.
go back to reference Guha L, et al. Gut microbiota and traumatic central nervous system injuries: insights into pathophysiology and therapeutic approaches. Life Sci. 2023;334:122193.CrossRefPubMed Guha L, et al. Gut microbiota and traumatic central nervous system injuries: insights into pathophysiology and therapeutic approaches. Life Sci. 2023;334:122193.CrossRefPubMed
Metadata
Title
Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis
Authors
Mairi Ziaka
Aristomenis Exadaktylos
Publication date
07-03-2024
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2024
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-024-04855-w

Other articles of this Issue 1/2024

Critical Care 1/2024 Go to the issue