Skip to main content
Top
Published in: Critical Care 1/2023

Open Access 01-12-2023 | Respiratory Microbiota | Research

Modifications of lung microbiota structure in traumatic brain injury ventilated patients according to time and enteral feeding formulas: a prospective randomized study

Authors: A. Cotoia, R. Paradiso, G. Ferrara, G. Borriello, F. Santoro, I. Spina, L. Mirabella, K. Mariano, G. Fusco, G. Cinnella, P. Singer

Published in: Critical Care | Issue 1/2023

Login to get access

Abstract

Background

Specialized diets enriched with immune nutrients could be an important supplement in patients (pts) with acute traumatic brain injury (TBI). Omega-3 and arginine may interact with immune response and microbiota. No data are available about the role of the specialized diets in modulating the lung microbiota, and little is known about the influence of lung microbiota structure in development of ventilator-associated pneumonia (VAP) in TBI pts. The aims of this study are to evaluate the impact of specific nutrients on the lung microbiota and the variation of lung microbiota in TBI pts developing VAP.

Methods

A cohort of 31 TBI pts requiring mechanical ventilation in ICU was randomized for treatment with specialized (16pts) or standard nutrition (15pts). Alpha and beta diversity of lung microbiota were analyzed from bronco Alveolar Lavage (BAL) samples collected at admission and 7 days post-ICU admission in both groups. A further analysis was carried out on the same samples retrospectively grouped in VAP or no VAP pts.

Results

None developed VAP in the first week. Thereafter, ten out of thirty-one pts developed VAP. The BAL microbiota on VAP group showed significant differences in beta diversity and Staphylococcus and Acinetobacter Genera were high. The specialized nutrition had influence on beta diversity that reached statistical significance only in Bray–Curtis distance.

Conclusion

Our data suggest that TBI patients who developed VAP during ICU stay have different structures of BAL microbiota either at admission and at 7 days post-ICU admission, while no correlation has been observed between different enteral formulas and microbiota composition in terms of richness and evenness. These findings suggest that targeting the lung microbiota may be a promising approach for preventing infections in critically ill patients.
Literature
1.
go back to reference Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.CrossRefPubMed Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.CrossRefPubMed
2.
go back to reference McCarthy MS, Martindale RG. Immunonutrition in critical illness: what is the role? Nutr Clin Pract. 2018;33(3):348–58.CrossRefPubMed McCarthy MS, Martindale RG. Immunonutrition in critical illness: what is the role? Nutr Clin Pract. 2018;33(3):348–58.CrossRefPubMed
4.
go back to reference Lopez-Delgado JC, Grau-Carmona T, Trujillano-Cabello J, García-Fuentes C, Mor-Marco E, Bordeje-Laguna ML, et al. The effect of enteral immunonutrition in the intensive care unit: does it impact on outcomes? Nutrients. 2022;14(9):1904.CrossRefPubMedPubMedCentral Lopez-Delgado JC, Grau-Carmona T, Trujillano-Cabello J, García-Fuentes C, Mor-Marco E, Bordeje-Laguna ML, et al. The effect of enteral immunonutrition in the intensive care unit: does it impact on outcomes? Nutrients. 2022;14(9):1904.CrossRefPubMedPubMedCentral
5.
go back to reference Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;11:5. Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;11:5.
6.
go back to reference Yuan B, Lu XJ, Wu Q. Gut microbiota and acute central nervous system injury: a new target for therapeutic intervention. Front Immunol. 2021;24(12):800796.CrossRef Yuan B, Lu XJ, Wu Q. Gut microbiota and acute central nervous system injury: a new target for therapeutic intervention. Front Immunol. 2021;24(12):800796.CrossRef
7.
go back to reference Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020;25(11):301.CrossRef Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020;25(11):301.CrossRef
8.
go back to reference Wolff NS, Hugenholtz F, Wiersinga WJ. The emerging role of the microbiota in the ICU. Crit Care. 2018;22(1):1–7.CrossRef Wolff NS, Hugenholtz F, Wiersinga WJ. The emerging role of the microbiota in the ICU. Crit Care. 2018;22(1):1–7.CrossRef
10.
go back to reference Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21(4):222–35.CrossRefPubMed Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21(4):222–35.CrossRefPubMed
12.
go back to reference Powers KA, Dhamoon AS. Physiology pulmonary ventilation and perfusion. USA: Stat Pearls; 2022. Powers KA, Dhamoon AS. Physiology pulmonary ventilation and perfusion. USA: Stat Pearls; 2022.
13.
go back to reference Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.
14.
go back to reference Cotoia A, Spadaro S, Gambetti G, Koulenti D, Cinnella G. Pathogenesis-targeted preventive strategies for multidrug resistant ventilator-associated pneumonia: a narrative review. Microorganisms. 2020;8(6):821.CrossRefPubMedPubMedCentral Cotoia A, Spadaro S, Gambetti G, Koulenti D, Cinnella G. Pathogenesis-targeted preventive strategies for multidrug resistant ventilator-associated pneumonia: a narrative review. Microorganisms. 2020;8(6):821.CrossRefPubMedPubMedCentral
15.
go back to reference Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. In: methods in molecular biology. Humana Press Inc.; 2018. p. 113–29 Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. In: methods in molecular biology. Humana Press Inc.; 2018. p. 113–29
16.
go back to reference Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.CrossRefPubMedPubMedCentral Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.CrossRefPubMedPubMedCentral
17.
go back to reference Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.CrossRefPubMedPubMedCentral Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.CrossRefPubMedPubMedCentral
18.
go back to reference Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.CrossRefPubMedPubMedCentral Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.CrossRefPubMedPubMedCentral
19.
go back to reference DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.CrossRefPubMedPubMedCentral DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.CrossRefPubMedPubMedCentral
20.
go back to reference Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):1–7.CrossRef Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):1–7.CrossRef
21.
go back to reference Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, Melnik AV. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22.CrossRefPubMed Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, Melnik AV. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22.CrossRefPubMed
22.
23.
go back to reference Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, Albert PS, Caporaso JG. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. MSystems. 2018;3(6):e00219-e318.CrossRefPubMedPubMedCentral Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, Albert PS, Caporaso JG. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. MSystems. 2018;3(6):e00219-e318.CrossRefPubMedPubMedCentral
24.
go back to reference Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, Zengler K. A novel sparse compositional technique reveals microbial perturbations. MSystems. 2019;4(1):e00016-19.CrossRefPubMedPubMedCentral Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, Zengler K. A novel sparse compositional technique reveals microbial perturbations. MSystems. 2019;4(1):e00016-19.CrossRefPubMedPubMedCentral
25.
go back to reference Dickson RP, Schultz MJ, Van Der Poll T, Schouten LR, Falkowski NR, Luth JE, et al. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med. 2020;201(5):555–63.CrossRefPubMedPubMedCentral Dickson RP, Schultz MJ, Van Der Poll T, Schouten LR, Falkowski NR, Luth JE, et al. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med. 2020;201(5):555–63.CrossRefPubMedPubMedCentral
26.
go back to reference Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci. 2020;77(14):2739–49.CrossRefPubMedPubMedCentral Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci. 2020;77(14):2739–49.CrossRefPubMedPubMedCentral
27.
go back to reference Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Vol. 78, Annual Review of Physiology. Annual Reviews Inc.; 2016. p. 481–504 Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Vol. 78, Annual Review of Physiology. Annual Reviews Inc.; 2016. p. 481–504
28.
go back to reference Singer P, Calder PC. The role of omega-3 polyunsaturated fatty acids in the intensive care unit. Curr Opin Clin Nutr Metabolic Care. 2023;26(2):129–37.CrossRef Singer P, Calder PC. The role of omega-3 polyunsaturated fatty acids in the intensive care unit. Curr Opin Clin Nutr Metabolic Care. 2023;26(2):129–37.CrossRef
29.
go back to reference Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med. 1999;27(12):2799–805.CrossRefPubMed Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med. 1999;27(12):2799–805.CrossRefPubMed
30.
go back to reference Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients?: a systematic review of the evidence. JAMA. 2001;286(8):944–53.CrossRefPubMed Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients?: a systematic review of the evidence. JAMA. 2001;286(8):944–53.CrossRefPubMed
31.
go back to reference Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The importance of the microbiome in critically ill patients: role of nutrition. Nutrients. 2019;11(12):3002.CrossRefPubMedPubMedCentral Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The importance of the microbiome in critically ill patients: role of nutrition. Nutrients. 2019;11(12):3002.CrossRefPubMedPubMedCentral
32.
go back to reference Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care. 2020;32(1):272–85.CrossRefPubMed Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care. 2020;32(1):272–85.CrossRefPubMed
33.
go back to reference Marra A, Vargas M, Buonanno P, Iacovazzo C, Coviello A, Servillo G. Early vs. late tracheostomy in patients with traumatic brain injury: systematic review and meta-analysis. J Clin Med. 2021;10(15):3319. Marra A, Vargas M, Buonanno P, Iacovazzo C, Coviello A, Servillo G. Early vs. late tracheostomy in patients with traumatic brain injury: systematic review and meta-analysis. J Clin Med. 2021;10(15):3319.
34.
go back to reference Lamarche D, Johnstone J, Zytaruk N, Clarke F, Hand L, Loukov D, et al. Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respir Res. 2018;19(1):1–2.CrossRef Lamarche D, Johnstone J, Zytaruk N, Clarke F, Hand L, Loukov D, et al. Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respir Res. 2018;19(1):1–2.CrossRef
36.
go back to reference Kelly BJ, Imai I, Bittinger K, Laughlin A, Fuchs BD, Bushman FD, et al. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome. 2016;4:7. Kelly BJ, Imai I, Bittinger K, Laughlin A, Fuchs BD, Bushman FD, et al. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome. 2016;4:7.
37.
go back to reference Fenn D, Abdel-Aziz MI, van Oort PMP, Brinkman P, Ahmed WM, Felton T, et al. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit Care. 2022;26(1):1–2.CrossRef Fenn D, Abdel-Aziz MI, van Oort PMP, Brinkman P, Ahmed WM, Felton T, et al. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit Care. 2022;26(1):1–2.CrossRef
Metadata
Title
Modifications of lung microbiota structure in traumatic brain injury ventilated patients according to time and enteral feeding formulas: a prospective randomized study
Authors
A. Cotoia
R. Paradiso
G. Ferrara
G. Borriello
F. Santoro
I. Spina
L. Mirabella
K. Mariano
G. Fusco
G. Cinnella
P. Singer
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2023
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-023-04531-5

Other articles of this Issue 1/2023

Critical Care 1/2023 Go to the issue