Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

Authors: Yubo Wang, Kalyana C Veluvolu, Minho Lee

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications.

Methods

To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal.

Results

The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods.

Conclusions

Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buzsaki G, Draguhn A: Neuronal oscillations in cortical networks. Science 2004, 304: 1926-1929. 10.1126/science.1099745CrossRefPubMed Buzsaki G, Draguhn A: Neuronal oscillations in cortical networks. Science 2004, 304: 1926-1929. 10.1126/science.1099745CrossRefPubMed
2.
go back to reference Olufsen MS, Whittington MA, Camperi M, Kopell N: New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci 2003, 14: 33-54. 10.1023/A:1021124317706CrossRefPubMed Olufsen MS, Whittington MA, Camperi M, Kopell N: New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci 2003, 14: 33-54. 10.1023/A:1021124317706CrossRefPubMed
3.
go back to reference Dimitriadis SI, Laskarisb NA, Tsirkac V, Vourkasd M, Micheloyannisc S: What does delta band tell us about cognitive processes: A mental calculation study. Neurosci Lett 2010, 483: 11-15. 10.1016/j.neulet.2010.07.034CrossRefPubMed Dimitriadis SI, Laskarisb NA, Tsirkac V, Vourkasd M, Micheloyannisc S: What does delta band tell us about cognitive processes: A mental calculation study. Neurosci Lett 2010, 483: 11-15. 10.1016/j.neulet.2010.07.034CrossRefPubMed
4.
go back to reference Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C: Rehabilitation with brain-computer interface systems. Computer 2008, 41: 1-8.CrossRef Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C: Rehabilitation with brain-computer interface systems. Computer 2008, 41: 1-8.CrossRef
5.
go back to reference Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughana TM: Brain computer interfaces for communication and control. Clin Neurophysiol 2002, 113: 767-791. 10.1016/S1388-2457(02)00057-3CrossRefPubMed Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughana TM: Brain computer interfaces for communication and control. Clin Neurophysiol 2002, 113: 767-791. 10.1016/S1388-2457(02)00057-3CrossRefPubMed
6.
go back to reference Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Muller KR: The Berlin brain-computer interface: accurate performance from first-session in BCI-Naive subjects. IEEE Trans Biomed Eng 2008, 55: 2452-2462.CrossRefPubMed Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Muller KR: The Berlin brain-computer interface: accurate performance from first-session in BCI-Naive subjects. IEEE Trans Biomed Eng 2008, 55: 2452-2462.CrossRefPubMed
7.
go back to reference Ferreira A, Celeste WC, Cheein FA, Bastos-Filho TF, Sarcinelli-Filho M, Carelli R: Human-machine interfaces based on EMG and EEG applied to robotic systems. J Neuroeng Rehabil 2008, 5: 10. 10.1186/1743-0003-5-10PubMedCentralCrossRefPubMed Ferreira A, Celeste WC, Cheein FA, Bastos-Filho TF, Sarcinelli-Filho M, Carelli R: Human-machine interfaces based on EMG and EEG applied to robotic systems. J Neuroeng Rehabil 2008, 5: 10. 10.1186/1743-0003-5-10PubMedCentralCrossRefPubMed
8.
go back to reference Liu G, Zhang D, Meng J, Huang G, Zhu X: Unsupervised adaptation of electroencephalogram signal processing based on fuzzy C-means algorithm. Int J Adaptive Control Signal Process 2012, 26: 482-495. 10.1002/acs.1293CrossRef Liu G, Zhang D, Meng J, Huang G, Zhu X: Unsupervised adaptation of electroencephalogram signal processing based on fuzzy C-means algorithm. Int J Adaptive Control Signal Process 2012, 26: 482-495. 10.1002/acs.1293CrossRef
9.
go back to reference Pfurtscheller G, Silva FLD: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999, 110: 1842-1857. 10.1016/S1388-2457(99)00141-8CrossRefPubMed Pfurtscheller G, Silva FLD: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999, 110: 1842-1857. 10.1016/S1388-2457(99)00141-8CrossRefPubMed
10.
go back to reference Prasad G, Herman P, Coyle D, McDonough S, Crosbie J: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 2010, 7: 60. 10.1186/1743-0003-7-60PubMedCentralCrossRefPubMed Prasad G, Herman P, Coyle D, McDonough S, Crosbie J: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 2010, 7: 60. 10.1186/1743-0003-7-60PubMedCentralCrossRefPubMed
11.
go back to reference Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 1997, 103: 642-651. 10.1016/S0013-4694(97)00080-1CrossRefPubMed Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 1997, 103: 642-651. 10.1016/S0013-4694(97)00080-1CrossRefPubMed
12.
go back to reference Qin L, He B: A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2005,2(4):65. 10.1088/1741-2560/2/4/001PubMedCentralCrossRefPubMed Qin L, He B: A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2005,2(4):65. 10.1088/1741-2560/2/4/001PubMedCentralCrossRefPubMed
13.
go back to reference Yuan H, Doud A, Gururajan A, He B: Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 425-431.PubMedCentralCrossRefPubMed Yuan H, Doud A, Gururajan A, He B: Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 425-431.PubMedCentralCrossRefPubMed
14.
go back to reference Herman P, Prasad G, McGinnity T, Coyle D: Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):317-326.CrossRefPubMed Herman P, Prasad G, McGinnity T, Coyle D: Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):317-326.CrossRefPubMed
15.
go back to reference Krusienski DJ, McFarland DJ, Wolpaw JR: Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain computer interface. Brain Res Bull 2012, 87: 130-134. 10.1016/j.brainresbull.2011.09.019PubMedCentralCrossRefPubMed Krusienski DJ, McFarland DJ, Wolpaw JR: Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain computer interface. Brain Res Bull 2012, 87: 130-134. 10.1016/j.brainresbull.2011.09.019PubMedCentralCrossRefPubMed
16.
go back to reference McFarland DJ, Sarnacki WA, Wolpaw JR: Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 2010,7(3):036007. 10.1088/1741-2560/7/3/036007PubMedCentralCrossRefPubMed McFarland DJ, Sarnacki WA, Wolpaw JR: Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 2010,7(3):036007. 10.1088/1741-2560/7/3/036007PubMedCentralCrossRefPubMed
17.
go back to reference Do AH, Wang PT, King CE, Abiri A, Nenadic Z: Brain-computer interface controlled functional electrical stimulation system for ankle movement. J Neuroeng Rehabil 2011, 8: 49. 10.1186/1743-0003-8-49PubMedCentralCrossRefPubMed Do AH, Wang PT, King CE, Abiri A, Nenadic Z: Brain-computer interface controlled functional electrical stimulation system for ankle movement. J Neuroeng Rehabil 2011, 8: 49. 10.1186/1743-0003-8-49PubMedCentralCrossRefPubMed
18.
go back to reference Veluvolu KC, Wang Y, Kavuri SS: Adaptive estimation of EEG-rhythms for optimal band identification in BCI. J Neurosci Methods 2012, 203: 163-172. 10.1016/j.jneumeth.2011.08.035CrossRefPubMed Veluvolu KC, Wang Y, Kavuri SS: Adaptive estimation of EEG-rhythms for optimal band identification in BCI. J Neurosci Methods 2012, 203: 163-172. 10.1016/j.jneumeth.2011.08.035CrossRefPubMed
19.
go back to reference McFarland DJ, Wolpaw JR: Sensorimotor rhythm-based brain computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng 2008, 5: 155-162. 10.1088/1741-2560/5/2/006PubMedCentralCrossRefPubMed McFarland DJ, Wolpaw JR: Sensorimotor rhythm-based brain computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng 2008, 5: 155-162. 10.1088/1741-2560/5/2/006PubMedCentralCrossRefPubMed
20.
go back to reference Pfurtscheller G, Neuper C, Schlogl A, Lugger K: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Neural Syst Rehabil Eng 1998,6(NO.3):316-325.CrossRef Pfurtscheller G, Neuper C, Schlogl A, Lugger K: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Neural Syst Rehabil Eng 1998,6(NO.3):316-325.CrossRef
21.
go back to reference Kiymik MK, Guler I, Dizibuyuk A, Akin M: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput Biol Med 2005, 35: 603-616. 10.1016/j.compbiomed.2004.05.001CrossRefPubMed Kiymik MK, Guler I, Dizibuyuk A, Akin M: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput Biol Med 2005, 35: 603-616. 10.1016/j.compbiomed.2004.05.001CrossRefPubMed
22.
go back to reference Allen DP, MacKinnon CD: Time frequency analysis of movement-related spectral power in EEG during repetitive movements: A comparison of methods. J Neurosci Methods 2010, 186: 107-115. 10.1016/j.jneumeth.2009.10.022PubMedCentralCrossRefPubMed Allen DP, MacKinnon CD: Time frequency analysis of movement-related spectral power in EEG during repetitive movements: A comparison of methods. J Neurosci Methods 2010, 186: 107-115. 10.1016/j.jneumeth.2009.10.022PubMedCentralCrossRefPubMed
23.
go back to reference Veluvolu KC, Ang WT: Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int J Med Robot Comput Assist Surg 2010, 6: 334-342. 10.1002/rcs.340CrossRef Veluvolu KC, Ang WT: Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int J Med Robot Comput Assist Surg 2010, 6: 334-342. 10.1002/rcs.340CrossRef
24.
go back to reference Latt WT, Veluvolu KC, Ang WT: Drift-free position estimation of periodic or quasi-periodic motion using inertial sensors. Sensors 2011,11(6):5931-5951.PubMedCentralCrossRefPubMed Latt WT, Veluvolu KC, Ang WT: Drift-free position estimation of periodic or quasi-periodic motion using inertial sensors. Sensors 2011,11(6):5931-5951.PubMedCentralCrossRefPubMed
25.
go back to reference Gabor D: Theory of communication. Electrical Eng - Part III: Radio Commun Eng J Inst 1946, 93: 442-445. Gabor D: Theory of communication. Electrical Eng - Part III: Radio Commun Eng J Inst 1946, 93: 442-445.
26.
go back to reference Mallat S: a Wavelet Tour of Signal Processing. Burlington: Elsevier; 2009. Mallat S: a Wavelet Tour of Signal Processing. Burlington: Elsevier; 2009.
27.
go back to reference Daubechies I: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 1990,36(5):961-1005. 10.1109/18.57199CrossRef Daubechies I: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 1990,36(5):961-1005. 10.1109/18.57199CrossRef
28.
go back to reference Zhan Y, Halliday D, Jiang P, Liu X, Feng J: Detecting time-dependent coherence between non-stationary electrophysiological signals- A combined statistical and time-frequency approach. J Neurosci Methods 2006, 156: 322-332. 10.1016/j.jneumeth.2006.02.013CrossRefPubMed Zhan Y, Halliday D, Jiang P, Liu X, Feng J: Detecting time-dependent coherence between non-stationary electrophysiological signals- A combined statistical and time-frequency approach. J Neurosci Methods 2006, 156: 322-332. 10.1016/j.jneumeth.2006.02.013CrossRefPubMed
29.
go back to reference Goupillaud P, Grossmann A, Morlet J: Cycle-octave and related transforms in seismic signal analysis. Geoexploration 1984, 23: 85-102. 10.1016/0016-7142(84)90025-5CrossRef Goupillaud P, Grossmann A, Morlet J: Cycle-octave and related transforms in seismic signal analysis. Geoexploration 1984, 23: 85-102. 10.1016/0016-7142(84)90025-5CrossRef
30.
go back to reference Aguiar-Conraia L, Soares MJ: The continuous wavelet transform: a primer. NIPE Working Paper Series 2011, NIPE WP 16: 1-46. Aguiar-Conraia L, Soares MJ: The continuous wavelet transform: a primer. NIPE Working Paper Series 2011, NIPE WP 16: 1-46.
31.
go back to reference Vaz CA, Thakor NV: Adaptive Fourier estimation of time-varying evoked potentials. IEEE Trans Biomed Eng 1989,36(4):448-455. 10.1109/10.18751CrossRefPubMed Vaz CA, Thakor NV: Adaptive Fourier estimation of time-varying evoked potentials. IEEE Trans Biomed Eng 1989,36(4):448-455. 10.1109/10.18751CrossRefPubMed
32.
go back to reference Wang Y, Veluvolu KC, Cho JH, Defoort M: Adaptive estimation of EEG for subject-specific reactive band identification and improved ERD detection. Neurosci Lett 2012,528(2):137-42. 10.1016/j.neulet.2012.09.001CrossRefPubMed Wang Y, Veluvolu KC, Cho JH, Defoort M: Adaptive estimation of EEG for subject-specific reactive band identification and improved ERD detection. Neurosci Lett 2012,528(2):137-42. 10.1016/j.neulet.2012.09.001CrossRefPubMed
33.
go back to reference Haykin S: Adaptive Filter Theory. Upper Saddle River: Prentice Hall; 2002. Haykin S: Adaptive Filter Theory. Upper Saddle River: Prentice Hall; 2002.
34.
go back to reference Tarvainen MP, Hiltunen JK, Ranta-aho PO, Karjalainen PA: Estimation of nonstationary EEG with Kalman smoother approach: an application to event-related synchronization (ERS). IEEE Trans Biomed Eng 2004,51(3):516-524. 10.1109/TBME.2003.821029CrossRefPubMed Tarvainen MP, Hiltunen JK, Ranta-aho PO, Karjalainen PA: Estimation of nonstationary EEG with Kalman smoother approach: an application to event-related synchronization (ERS). IEEE Trans Biomed Eng 2004,51(3):516-524. 10.1109/TBME.2003.821029CrossRefPubMed
35.
go back to reference Shumway RH, Stoffer DS: Time Series Analysis and Its Applications. New York: Springer; 2000.CrossRef Shumway RH, Stoffer DS: Time Series Analysis and Its Applications. New York: Springer; 2000.CrossRef
37.
go back to reference Guo L: Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence. IEEE Trans Automatic Control 1990,35(2):141-147. 10.1109/9.45169CrossRef Guo L: Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence. IEEE Trans Automatic Control 1990,35(2):141-147. 10.1109/9.45169CrossRef
38.
go back to reference Guo L, Ljung L: Exponential stability of general tracking algorithms. IEEE Trans Automatic Control 1995,40(8):1376-1387. 10.1109/9.402229CrossRef Guo L, Ljung L: Exponential stability of general tracking algorithms. IEEE Trans Automatic Control 1995,40(8):1376-1387. 10.1109/9.402229CrossRef
39.
go back to reference Ljung L, Gunnarsson S: Adaptation and tracking in system identification: a survey. Automatica 1990, 26: 7-21. 10.1016/0005-1098(90)90154-ACrossRef Ljung L, Gunnarsson S: Adaptation and tracking in system identification: a survey. Automatica 1990, 26: 7-21. 10.1016/0005-1098(90)90154-ACrossRef
40.
go back to reference Cao L, Schwartz HM: Exponential convergence of the Kalman filter based parameter estimation algorithm. Int J Adaptive Control Signal Process 2003,17(10):763-783. 10.1002/acs.774CrossRef Cao L, Schwartz HM: Exponential convergence of the Kalman filter based parameter estimation algorithm. Int J Adaptive Control Signal Process 2003,17(10):763-783. 10.1002/acs.774CrossRef
41.
go back to reference Brunner C, Naeem M, Leeb R, Graimann B, Pfurtscheller G: Spatial filtering and selection of optimized components in four class motor imagery data using independent components analysis. Pattern Recognit Lett 2007, 28: 957-964. 10.1016/j.patrec.2007.01.002CrossRef Brunner C, Naeem M, Leeb R, Graimann B, Pfurtscheller G: Spatial filtering and selection of optimized components in four class motor imagery data using independent components analysis. Pattern Recognit Lett 2007, 28: 957-964. 10.1016/j.patrec.2007.01.002CrossRef
42.
go back to reference Graimanna B, Huggins J, Levineb S, Pfurtscheller G: Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol 2002, 113: 43-47. 10.1016/S1388-2457(01)00697-6CrossRef Graimanna B, Huggins J, Levineb S, Pfurtscheller G: Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol 2002, 113: 43-47. 10.1016/S1388-2457(01)00697-6CrossRef
43.
go back to reference Chang DC, Wu WR: Maneuvering target tracking with high-order correlated noise - a multirate Kalman filtering approach. Wireless Pers Commun 2001, 17: 103-123. 10.1023/A:1008965502460CrossRef Chang DC, Wu WR: Maneuvering target tracking with high-order correlated noise - a multirate Kalman filtering approach. Wireless Pers Commun 2001, 17: 103-123. 10.1023/A:1008965502460CrossRef
44.
go back to reference Rockmore D: The FFT: an algorithm the whole family can use. Comput Sci Eng 2000, 2: 60-64. 10.1109/5992.814659CrossRef Rockmore D: The FFT: an algorithm the whole family can use. Comput Sci Eng 2000, 2: 60-64. 10.1109/5992.814659CrossRef
45.
go back to reference Do AH, Wang PT, King CE, Abiri A, Nenadic Z: Brain computer interface controlled functional electrical stimulation system for ankle movement. J NeuroEng Rehabil 2011, 8: 1-21. 10.1186/1743-0003-8-1CrossRef Do AH, Wang PT, King CE, Abiri A, Nenadic Z: Brain computer interface controlled functional electrical stimulation system for ankle movement. J NeuroEng Rehabil 2011, 8: 1-21. 10.1186/1743-0003-8-1CrossRef
Metadata
Title
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
Authors
Yubo Wang
Kalyana C Veluvolu
Minho Lee
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-109

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue