Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement

Authors: Tabea Aurich Schuler, Roland Müller, Hubertus JA van Hedel

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns.

Methods

Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories.

Results

The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking.

Conclusions

Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cherng RJ, Liu CF, Lau TW, Hong RB: Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil 2007,86(7):548-555. 10.1097/PHM.0b013e31806dc302CrossRefPubMed Cherng RJ, Liu CF, Lau TW, Hong RB: Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil 2007,86(7):548-555. 10.1097/PHM.0b013e31806dc302CrossRefPubMed
2.
go back to reference Sandlund M, McDonough S, Hager-Ross C: Interactive computer play in rehabilitation of children with sensorimotor disorders: a systematic review. Dev Med Child Neurol 2009,51(3):173-179. 10.1111/j.1469-8749.2008.03184.xCrossRefPubMed Sandlund M, McDonough S, Hager-Ross C: Interactive computer play in rehabilitation of children with sensorimotor disorders: a systematic review. Dev Med Child Neurol 2009,51(3):173-179. 10.1111/j.1469-8749.2008.03184.xCrossRefPubMed
4.
go back to reference Day JA, Fox EJ, Lowe J, Swales HB, Behrman AL: Locomotor training with partial body weight support on a treadmill in a nonambulatory child with spastic tetraplegic cerebral palsy: a case report. Pediatr Phys Ther 2004,16(2):106-113. 10.1097/01.PEP.0000127569.83372.C8CrossRefPubMed Day JA, Fox EJ, Lowe J, Swales HB, Behrman AL: Locomotor training with partial body weight support on a treadmill in a nonambulatory child with spastic tetraplegic cerebral palsy: a case report. Pediatr Phys Ther 2004,16(2):106-113. 10.1097/01.PEP.0000127569.83372.C8CrossRefPubMed
5.
go back to reference Schindl MR, Forstner C, Kern H, Hesse S: Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil 2000,81(3):301-306. 10.1016/S0003-9993(00)90075-3CrossRefPubMed Schindl MR, Forstner C, Kern H, Hesse S: Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil 2000,81(3):301-306. 10.1016/S0003-9993(00)90075-3CrossRefPubMed
6.
go back to reference Kurz MJ, Stuberg W, DeJong SL: Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. Dev Neurorehabil 2011,14(2):87-93. 10.3109/17518423.2011.552459CrossRefPubMed Kurz MJ, Stuberg W, DeJong SL: Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. Dev Neurorehabil 2011,14(2):87-93. 10.3109/17518423.2011.552459CrossRefPubMed
7.
go back to reference Willoughby KL, Dodd KJ, Shields N, Foley S: Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil 2010,91(3):333-339. 10.1016/j.apmr.2009.10.029CrossRefPubMed Willoughby KL, Dodd KJ, Shields N, Foley S: Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil 2010,91(3):333-339. 10.1016/j.apmr.2009.10.029CrossRefPubMed
8.
go back to reference Zwicker JG, Mayson TA: Effectiveness of treadmill training in children with motor impairments: an overview of systematic reviews. Pediatr Phys Ther 2010,22(4):361-377. 10.1097/PEP.0b013e3181f92e54CrossRefPubMed Zwicker JG, Mayson TA: Effectiveness of treadmill training in children with motor impairments: an overview of systematic reviews. Pediatr Phys Ther 2010,22(4):361-377. 10.1097/PEP.0b013e3181f92e54CrossRefPubMed
9.
go back to reference Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG: Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 2009,89(8):829-839. 10.2522/ptj.20080180PubMedCentralCrossRefPubMed Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG: Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 2009,89(8):829-839. 10.2522/ptj.20080180PubMedCentralCrossRefPubMed
10.
go back to reference Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001,39(5):252-255. 10.1038/sj.sc.3101154CrossRefPubMed Colombo G, Wirz M, Dietz V: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001,39(5):252-255. 10.1038/sj.sc.3101154CrossRefPubMed
11.
go back to reference Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K: Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons. J Neurophysiol 2005,93(2):777-785.CrossRefPubMed Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K: Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons. J Neurophysiol 2005,93(2):777-785.CrossRefPubMed
12.
go back to reference Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F: Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord 2008,23(2):280-283. 10.1002/mds.21802CrossRefPubMed Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F: Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord 2008,23(2):280-283. 10.1002/mds.21802CrossRefPubMed
13.
go back to reference Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D: Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011,90(2):137-149. 10.1097/PHM.0b013e318201741eCrossRefPubMed Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D: Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011,90(2):137-149. 10.1097/PHM.0b013e318201741eCrossRefPubMed
14.
go back to reference Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007,38(2):349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007,38(2):349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed
15.
go back to reference Beck RJ, Andriacchi TP, Kuo KN, Fermier RW, Galante JO: Changes in the gait patterns of growing children. J Bone Joint Surg Am 1981,63(9):1452-1457.PubMed Beck RJ, Andriacchi TP, Kuo KN, Fermier RW, Galante JO: Changes in the gait patterns of growing children. J Bone Joint Surg Am 1981,63(9):1452-1457.PubMed
16.
17.
go back to reference Hausdorff JM, Zemany L, Peng C, Goldberger AL: Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 1999,86(3):1040-1047.PubMed Hausdorff JM, Zemany L, Peng C, Goldberger AL: Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 1999,86(3):1040-1047.PubMed
18.
go back to reference Schuler T, Brutsch K, Muller R, van Hedel HJ, Meyer-Heim A: Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011,28(4):401-411.PubMed Schuler T, Brutsch K, Muller R, van Hedel HJ, Meyer-Heim A: Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011,28(4):401-411.PubMed
19.
go back to reference Hermens H, Freriks B, Disselhorst-Klug C, Rau G: Development of recommodations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000, 10: 361-374. 10.1016/S1050-6411(00)00027-4CrossRefPubMed Hermens H, Freriks B, Disselhorst-Klug C, Rau G: Development of recommodations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000, 10: 361-374. 10.1016/S1050-6411(00)00027-4CrossRefPubMed
20.
go back to reference Mesin L, Merletti R, Rainoldi A: Surface EMG: the issue of electrode location. J Electromyogr Kinesiol 2009,19(5):719-726. 10.1016/j.jelekin.2008.07.006CrossRefPubMed Mesin L, Merletti R, Rainoldi A: Surface EMG: the issue of electrode location. J Electromyogr Kinesiol 2009,19(5):719-726. 10.1016/j.jelekin.2008.07.006CrossRefPubMed
21.
go back to reference Chang WN, Lipton JS, Tsirikos AI, Miller F: Kinesiological surface electromyography in normal children: range of normal activity and pattern analysis. J Electromyogr Kinesiol 2007,17(4):437-445. 10.1016/j.jelekin.2006.02.003CrossRefPubMed Chang WN, Lipton JS, Tsirikos AI, Miller F: Kinesiological surface electromyography in normal children: range of normal activity and pattern analysis. J Electromyogr Kinesiol 2007,17(4):437-445. 10.1016/j.jelekin.2006.02.003CrossRefPubMed
22.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G: SENIAM 8: European Recommendations for Surface ElectroMyoGraphy. Roessingh Research and Development; 1999. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G: SENIAM 8: European Recommendations for Surface ElectroMyoGraphy. Roessingh Research and Development; 1999.
23.
go back to reference Altman BM, Smith RT: Rehabilitation service utilization models: changes in the opportunity structure for disabled women. Int Disabil Stud 1990,12(4):149-156. 10.3109/03790799009166607CrossRefPubMed Altman BM, Smith RT: Rehabilitation service utilization models: changes in the opportunity structure for disabled women. Int Disabil Stud 1990,12(4):149-156. 10.3109/03790799009166607CrossRefPubMed
24.
go back to reference van Hedel HJ, Tomatis L, Muller R: Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture 2006,24(1):35-45. 10.1016/j.gaitpost.2005.06.015CrossRefPubMed van Hedel HJ, Tomatis L, Muller R: Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture 2006,24(1):35-45. 10.1016/j.gaitpost.2005.06.015CrossRefPubMed
25.
26.
go back to reference Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Lacquaniti F: Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping. Exp Brain Res 2004,157(3):377-382.CrossRefPubMed Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Lacquaniti F: Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping. Exp Brain Res 2004,157(3):377-382.CrossRefPubMed
27.
go back to reference Domingo A, Sawicki GS, Ferris DP: Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance. J Neuroeng Rehabil 2007, 4: 32. 10.1186/1743-0003-4-32PubMedCentralCrossRefPubMed Domingo A, Sawicki GS, Ferris DP: Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance. J Neuroeng Rehabil 2007, 4: 32. 10.1186/1743-0003-4-32PubMedCentralCrossRefPubMed
28.
go back to reference Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006,86(11):1466-1478. 10.2522/ptj.20050266CrossRefPubMed Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006,86(11):1466-1478. 10.2522/ptj.20050266CrossRefPubMed
29.
go back to reference Agostini V, Nascimbeni A, Gaffuri A, Imazio P, Benedetti MG, Knaflitz M: Normative EMG activation patterns of school-age children during gait. Gait Posture 2010,32(3):285-289. 10.1016/j.gaitpost.2010.06.024CrossRefPubMed Agostini V, Nascimbeni A, Gaffuri A, Imazio P, Benedetti MG, Knaflitz M: Normative EMG activation patterns of school-age children during gait. Gait Posture 2010,32(3):285-289. 10.1016/j.gaitpost.2010.06.024CrossRefPubMed
30.
go back to reference den Otter AR, Geurts AC, Mulder T, Duysens J: Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture 2004,19(3):270-278. 10.1016/S0966-6362(03)00071-7CrossRefPubMed den Otter AR, Geurts AC, Mulder T, Duysens J: Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture 2004,19(3):270-278. 10.1016/S0966-6362(03)00071-7CrossRefPubMed
31.
go back to reference Sutherland DH, Olshen R, Cooper L, Woo SL: The development of mature gait. J Bone Joint Surg Am 1980,62(3):336-353.PubMed Sutherland DH, Olshen R, Cooper L, Woo SL: The development of mature gait. J Bone Joint Surg Am 1980,62(3):336-353.PubMed
32.
go back to reference Brunner R, Romkes J: Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait Posture 2008,27(3):399-407. 10.1016/j.gaitpost.2007.05.009CrossRefPubMed Brunner R, Romkes J: Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait Posture 2008,27(3):399-407. 10.1016/j.gaitpost.2007.05.009CrossRefPubMed
33.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005,20(2):184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005,20(2):184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef
34.
go back to reference Lauer RT, Pierce SR, Tucker CA, Barbe MF, Prosser LA: Age and electromyographic frequency alterations during walking in children with cerebral palsy. Gait Posture 2010,31(1):136-139. 10.1016/j.gaitpost.2009.09.015PubMedCentralCrossRefPubMed Lauer RT, Pierce SR, Tucker CA, Barbe MF, Prosser LA: Age and electromyographic frequency alterations during walking in children with cerebral palsy. Gait Posture 2010,31(1):136-139. 10.1016/j.gaitpost.2009.09.015PubMedCentralCrossRefPubMed
Metadata
Title
Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement
Authors
Tabea Aurich Schuler
Roland Müller
Hubertus JA van Hedel
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-78

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue