Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats

Authors: Parag Gad, Jaehoon Choe, Mandheerej Singh Nandra, Hui Zhong, Roland R Roy, Yu-Chong Tai, V Reggie Edgerton

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array.

Methods

We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1–100 Hz and 1–10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats.

Results

In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia.

Conclusions

Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grillner S: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 1975, 55: 247-304. 10.1104/pp.55.2.247PubMed Grillner S: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 1975, 55: 247-304. 10.1104/pp.55.2.247PubMed
2.
go back to reference Edgerton VR, Tilakaratne N, Bigbee A, de Leon R, Roy RR: Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 2004, 27: 145-167. 10.1146/annurev.neuro.27.070203.144308PubMedCrossRef Edgerton VR, Tilakaratne N, Bigbee A, de Leon R, Roy RR: Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 2004, 27: 145-167. 10.1146/annurev.neuro.27.070203.144308PubMedCrossRef
3.
go back to reference Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR: Can the mammalian lumbar spinal cord learn a motor task? Med Sci Sports Exercise 1994, 26: 1491-1497.CrossRef Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR: Can the mammalian lumbar spinal cord learn a motor task? Med Sci Sports Exercise 1994, 26: 1491-1497.CrossRef
4.
go back to reference Forssberg H: Stumbling corrective reaction: a phase-dependent compensatory re- action during locomotion. J Neurophysiol 1979, 42: 936-953.PubMed Forssberg H: Stumbling corrective reaction: a phase-dependent compensatory re- action during locomotion. J Neurophysiol 1979, 42: 936-953.PubMed
5.
go back to reference Harkema SJ, Hurley SL, Patel UK, Reguejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997, 77: 797-811.PubMed Harkema SJ, Hurley SL, Patel UK, Reguejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997, 77: 797-811.PubMed
6.
go back to reference Musienko PE, Bogacheva IN, Gerasimenko YP: Significance of peripheral feed-back in the generation of stepping movements during epidural stimulation of the spinal cord. Neurosci Behav Physiol 2007, 37: 180-191.CrossRef Musienko PE, Bogacheva IN, Gerasimenko YP: Significance of peripheral feed-back in the generation of stepping movements during epidural stimulation of the spinal cord. Neurosci Behav Physiol 2007, 37: 180-191.CrossRef
7.
go back to reference Lavrov I, Courtine G, Dy CJ, van den Brand R, Fong AJ, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input. J Neurosci 2008, 28: 7774-7780. 10.1523/JNEUROSCI.1069-08.2008PubMedPubMedCentralCrossRef Lavrov I, Courtine G, Dy CJ, van den Brand R, Fong AJ, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input. J Neurosci 2008, 28: 7774-7780. 10.1523/JNEUROSCI.1069-08.2008PubMedPubMedCentralCrossRef
8.
go back to reference Harkema SJ, Gerasimenko YP, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman R, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing and assisted stepping after motor complete paraplegia: a case study. Lancet 2011, 377: 1938-1947. 10.1016/S0140-6736(11)60547-3PubMedPubMedCentralCrossRef Harkema SJ, Gerasimenko YP, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman R, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing and assisted stepping after motor complete paraplegia: a case study. Lancet 2011, 377: 1938-1947. 10.1016/S0140-6736(11)60547-3PubMedPubMedCentralCrossRef
9.
go back to reference Musienko P, Courtine G, Tibbs JE, Kilimnik V, Savochin A, Roy RR, Edgerton VR, Gerasimenko Y: Somatosensory control of balance during locomotion in decerebrated cat. J Neurophysiol in press Musienko P, Courtine G, Tibbs JE, Kilimnik V, Savochin A, Roy RR, Edgerton VR, Gerasimenko Y: Somatosensory control of balance during locomotion in decerebrated cat. J Neurophysiol in press
10.
go back to reference Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003, 33: 247-254. 10.1023/A:1022199214515PubMedCrossRef Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003, 33: 247-254. 10.1023/A:1022199214515PubMedCrossRef
11.
go back to reference Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR: Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 2007, 98: 2525-2536. 10.1152/jn.00836.2007PubMedCrossRef Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR: Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 2007, 98: 2525-2536. 10.1152/jn.00836.2007PubMedCrossRef
12.
go back to reference Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005, 383: 339-344. 10.1016/j.neulet.2005.04.049PubMedCrossRef Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005, 383: 339-344. 10.1016/j.neulet.2005.04.049PubMedCrossRef
13.
go back to reference Nandra MS, Lavrov IA, Edgerton VR, Tai YC: A Parylene-based microelectrode array implant for spinal cord stimulation in rats. In Proceedings of the 24th IEEE Conference Engineering in Medicine and Biological Society. : ; 2011:1007-1010. Jan 23 Nandra MS, Lavrov IA, Edgerton VR, Tai YC: A Parylene-based microelectrode array implant for spinal cord stimulation in rats. In Proceedings of the 24th IEEE Conference Engineering in Medicine and Biological Society. : ; 2011:1007-1010. Jan 23
14.
go back to reference Rodger DC, Tai YC: Microelectronic packaging for retinal prostheses. IEEE Eng Med Biol Mag 2005, 24: 52-57.PubMedCrossRef Rodger DC, Tai YC: Microelectronic packaging for retinal prostheses. IEEE Eng Med Biol Mag 2005, 24: 52-57.PubMedCrossRef
15.
go back to reference Wolgemuth L: Assessing the performance and suitability of parylene coating. Med Device Diagn Ind 2000, 22: 42-49. Wolgemuth L: Assessing the performance and suitability of parylene coating. Med Device Diagn Ind 2000, 22: 42-49.
16.
go back to reference Rodger DC, Weiland JD, Humayun MS, Tai YC: Scalable high lead-count parylene package for retinal prostheses. Sensor Actuator B Chem 2006, 117: 107-114. 10.1016/j.snb.2005.11.010CrossRef Rodger DC, Weiland JD, Humayun MS, Tai YC: Scalable high lead-count parylene package for retinal prostheses. Sensor Actuator B Chem 2006, 117: 107-114. 10.1016/j.snb.2005.11.010CrossRef
17.
go back to reference Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, Lavrov IA, Zhong H, Roy RR, Edgerton VR: Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci 2008, 28: 7370-7375. 10.1523/JNEUROSCI.1881-08.2008PubMedCrossRef Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, Lavrov IA, Zhong H, Roy RR, Edgerton VR: Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci 2008, 28: 7370-7375. 10.1523/JNEUROSCI.1881-08.2008PubMedCrossRef
18.
go back to reference Roy RR, Hodgson JA, Lauretz SD, Pierotti DJ, Gayek RJ, Edgerton VR: Chronic spinal cord-injured cats: surgical procedures and management. Lab Anim Sci 1992, 42: 335-343.PubMed Roy RR, Hodgson JA, Lauretz SD, Pierotti DJ, Gayek RJ, Edgerton VR: Chronic spinal cord-injured cats: surgical procedures and management. Lab Anim Sci 1992, 42: 335-343.PubMed
19.
go back to reference Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiolology 1991, 70: 2522-2529. Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiolology 1991, 70: 2522-2529.
20.
go back to reference Courtine G, Gerasimenko YP, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov IA, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedPubMedCentralCrossRef Courtine G, Gerasimenko YP, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov IA, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedPubMedCentralCrossRef
21.
go back to reference Lavrov I, Gerasimenko YP, Ichiyama RM, Courtine G, Zhong H, Roy RR, Edgerton VR: Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. J Neurophysiol 2006, 96: 1699-1710. 10.1152/jn.00325.2006PubMedCrossRef Lavrov I, Gerasimenko YP, Ichiyama RM, Courtine G, Zhong H, Roy RR, Edgerton VR: Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. J Neurophysiol 2006, 96: 1699-1710. 10.1152/jn.00325.2006PubMedCrossRef
22.
go back to reference de Leon RD, Reinkensmeyer DJ, Timoszyk WK, London NJ, Roy RR, Edgerton VR: Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. Prog Brain Res 2002, 137: 141-149.PubMedCrossRef de Leon RD, Reinkensmeyer DJ, Timoszyk WK, London NJ, Roy RR, Edgerton VR: Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. Prog Brain Res 2002, 137: 141-149.PubMedCrossRef
23.
go back to reference de Guzman CP, Roy RR, Hodgson JZ, Edgerton VR: Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking. Brain Res 1991, 555: 202-214. 10.1016/0006-8993(91)90343-TPubMedCrossRef de Guzman CP, Roy RR, Hodgson JZ, Edgerton VR: Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking. Brain Res 1991, 555: 202-214. 10.1016/0006-8993(91)90343-TPubMedCrossRef
24.
go back to reference Manzano G, McComas AJ: Longitudinal structure and innervation of two mammalian hindlimb muscles. Muscle Nerve 1988, 11: 1115-1122. 10.1002/mus.880111103PubMedCrossRef Manzano G, McComas AJ: Longitudinal structure and innervation of two mammalian hindlimb muscles. Muscle Nerve 1988, 11: 1115-1122. 10.1002/mus.880111103PubMedCrossRef
25.
go back to reference Rivero-Melián C: Organization of hindlimb nerve projections to the rat spinal cord: a choleragenoid horseradish peroxidase study. J Comp Neurol 1996, 364: 651-663. 10.1002/(SICI)1096-9861(19960122)364:4<651::AID-CNE4>3.0.CO;2-2PubMedCrossRef Rivero-Melián C: Organization of hindlimb nerve projections to the rat spinal cord: a choleragenoid horseradish peroxidase study. J Comp Neurol 1996, 364: 651-663. 10.1002/(SICI)1096-9861(19960122)364:4<651::AID-CNE4>3.0.CO;2-2PubMedCrossRef
26.
go back to reference Nelson S, Mendell L: Projection of single knee flexor Ia fibers to homonymous and heteronymous motoneurons. J Neurophysiol 1978,41(3):778-787.PubMed Nelson S, Mendell L: Projection of single knee flexor Ia fibers to homonymous and heteronymous motoneurons. J Neurophysiol 1978,41(3):778-787.PubMed
27.
go back to reference Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A: Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 2010,30(31):10324-10336. 10.1523/JNEUROSCI.1208-10.2010PubMedCrossRef Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A: Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 2010,30(31):10324-10336. 10.1523/JNEUROSCI.1208-10.2010PubMedCrossRef
Metadata
Title
Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats
Authors
Parag Gad
Jaehoon Choe
Mandheerej Singh Nandra
Hui Zhong
Roland R Roy
Yu-Chong Tai
V Reggie Edgerton
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-2

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue