Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Effects of robotic guidance on the coordination of locomotion

Authors: Juan C Moreno, Filipe Barroso, Dario Farina, Leonardo Gizzi, Cristina Santos, Marco Molinari, José L Pons

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Functional integration of motor activity patterns enables the production of coordinated movements, such as walking. The activation of muscles by weightened summation of activation signals has been demonstrated to represent the spatiotemporal components that determine motor behavior during walking. Exoskeleton robotic devices are now often used in the rehabilitation practice to assist physical therapy of individuals with neurological disorders. These devices are used to promote motor recovery by providing guidance force to the patients. The guidance should in principle lead to a muscle coordination similar to physiological human walking. However, the influence of robotic devices on locomotor patterns needs still to be characterized. The aim of this study was to analyze the effect of force guidance and gait speed on the modular organization of walking in a group of eight healthy subjects.

Method

A group of healthy subjects walked on a treadmill with and without robotic aiding at speeds of 1.5, 2.0 and 2.5 Km/h. The guidance force was varied between 20%, 40%, 70% and 100% level of assistance. EMG recordings were obtained from seven leg muscles of the dominant leg and kinematic and kinetic features of the knee and hip joints were extracted.

Results

Four motor modules were sufficient to represent the variety of behavioral goals demanded during robotic guidance, with similar relationships between muscle patterns and biomechanical parameters across subjects, confirming that the low-dimensional and impulsive control of human walking is maintained using robotic force guidance. The conditions of guidance force and speed that maintained correct and incorrect (not natural) modular control were identified.

Conclusion

In neurologically intact subjects robotic-guided walking at various force guidance and speed levels does not alter the basic locomotor control and timing. This allows the design of robotic-aided rehabilitation strategies aimed at the modulation of motor modules, which are altered in stroke.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matthews P: Neural control of movement historical analysis of the neural control of movement from the bedrock of animal experimentation to human studies. J Appl Physiology 2004,96(4):1478-1485. 10.1152/japplphysiol.00978.2003CrossRef Matthews P: Neural control of movement historical analysis of the neural control of movement from the bedrock of animal experimentation to human studies. J Appl Physiology 2004,96(4):1478-1485. 10.1152/japplphysiol.00978.2003CrossRef
2.
go back to reference Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M: Supraspinal locomotor control in quadrupeds and humans. Progress Brain Res 2008,171(08):353-362.CrossRef Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M: Supraspinal locomotor control in quadrupeds and humans. Progress Brain Res 2008,171(08):353-362.CrossRef
3.
go back to reference Grasso R, Bianchi L, Lacquaniti F: Motor patterns for human gait: backward versus forward locomotion motor patterns for human gait: backward versus forward locomotion. J Neurophysiol 1998,80(4):1868-1885.PubMed Grasso R, Bianchi L, Lacquaniti F: Motor patterns for human gait: backward versus forward locomotion motor patterns for human gait: backward versus forward locomotion. J Neurophysiol 1998,80(4):1868-1885.PubMed
4.
go back to reference Hussain S, Xie S, Liu G: Robot assisted treadmill training: mechanisms and training strategies. Med Eng Phys 2011,33(5):527-533. 10.1016/j.medengphy.2010.12.010CrossRefPubMed Hussain S, Xie S, Liu G: Robot assisted treadmill training: mechanisms and training strategies. Med Eng Phys 2011,33(5):527-533. 10.1016/j.medengphy.2010.12.010CrossRefPubMed
5.
go back to reference Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):380-394. 10.1109/TNSRE.2005.848628CrossRefPubMed Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005,13(3):380-394. 10.1109/TNSRE.2005.848628CrossRefPubMed
6.
go back to reference Brown T: The factors in rhythmic activity of the nervous system. Proc R Soc London Series B 1911,85(579):278-289.CrossRef Brown T: The factors in rhythmic activity of the nervous system. Proc R Soc London Series B 1911,85(579):278-289.CrossRef
7.
go back to reference Brown TG: The intrinsic factors in the act of progression in the mammal. Proc R Soc B: Biological Sciences 1912,84(572):308-319.CrossRef Brown TG: The intrinsic factors in the act of progression in the mammal. Proc R Soc B: Biological Sciences 1912,84(572):308-319.CrossRef
8.
go back to reference Grillner S, Zangger P: On the central generation of locomotion in the low spinal cat. Exp Brain Res 1979,34(2):241-261.CrossRefPubMed Grillner S, Zangger P: On the central generation of locomotion in the low spinal cat. Exp Brain Res 1979,34(2):241-261.CrossRefPubMed
9.
go back to reference Barbeau H, Rossignol S: Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987,412(1):84-95. 10.1016/0006-8993(87)91442-9CrossRefPubMed Barbeau H, Rossignol S: Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987,412(1):84-95. 10.1016/0006-8993(87)91442-9CrossRefPubMed
10.
go back to reference Belda-Lois JM, Mena-Del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M: Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 2011,8(1):66. 10.1186/1743-0003-8-66PubMedCentralCrossRefPubMed Belda-Lois JM, Mena-Del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M: Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 2011,8(1):66. 10.1186/1743-0003-8-66PubMedCentralCrossRefPubMed
11.
go back to reference Pennycott A, Ureta V, Wyss D, Vallery H, Klamroth-Marganska V, Riener R: Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil 2012, 9: 65. 10.1186/1743-0003-9-65PubMedCentralCrossRefPubMed Pennycott A, Ureta V, Wyss D, Vallery H, Klamroth-Marganska V, Riener R: Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil 2012, 9: 65. 10.1186/1743-0003-9-65PubMedCentralCrossRefPubMed
12.
go back to reference Clark D, Ting LH, Zajac FE, Neptune RR, Kautz SA: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103: 844-857. 10.1152/jn.00825.2009PubMedCentralCrossRefPubMed Clark D, Ting LH, Zajac FE, Neptune RR, Kautz SA: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103: 844-857. 10.1152/jn.00825.2009PubMedCentralCrossRefPubMed
13.
go back to reference Ting LH, Macpherson JM: A limited set of muscle synergies for force control during a postural task. J Neurophysiol 2005,93(1):609-613. 10.1152/jn.00681.2004CrossRefPubMed Ting LH, Macpherson JM: A limited set of muscle synergies for force control during a postural task. J Neurophysiol 2005,93(1):609-613. 10.1152/jn.00681.2004CrossRefPubMed
14.
go back to reference Rathelot JA, Strick PL: Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA 2009,106(3):918-923. 10.1073/pnas.0808362106PubMedCentralCrossRefPubMed Rathelot JA, Strick PL: Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA 2009,106(3):918-923. 10.1073/pnas.0808362106PubMedCentralCrossRefPubMed
15.
go back to reference Af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ: Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 2010,103(5):2747-2756. 10.1152/jn.00547.2009CrossRefPubMed Af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ: Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 2010,103(5):2747-2756. 10.1152/jn.00547.2009CrossRefPubMed
16.
go back to reference McGowan CP, Neptune RR, Clark DJ, Kautz SA: Modular control of human walking: adaptations to altered mechanical demands. J Biomech 2010,43(3):412-419. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed McGowan CP, Neptune RR, Clark DJ, Kautz SA: Modular control of human walking: adaptations to altered mechanical demands. J Biomech 2010,43(3):412-419. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed
17.
go back to reference Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F: Motor patterns in human walking and running. J Neurophysiol 2006,95(6):3426-3437. 10.1152/jn.00081.2006CrossRefPubMed Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F: Motor patterns in human walking and running. J Neurophysiol 2006,95(6):3426-3437. 10.1152/jn.00081.2006CrossRefPubMed
18.
go back to reference Muceli S, Boye AT, d’Avella A, Farina D: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J Neurophysiol 2010,103(3):1532-1542. 10.1152/jn.00559.2009CrossRefPubMed Muceli S, Boye AT, d’Avella A, Farina D: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J Neurophysiol 2010,103(3):1532-1542. 10.1152/jn.00559.2009CrossRefPubMed
19.
go back to reference Galle S, Malcolm P, Derave W, De Clercq D: Adaptation to walking with an exoskeleton that assists ankle extension. Gait & posture 2013. ISSN 0966-6362 Galle S, Malcolm P, Derave W, De Clercq D: Adaptation to walking with an exoskeleton that assists ankle extension. Gait & posture 2013. ISSN 0966-6362
20.
go back to reference Ivanenko YP, Poppele RE, Lacquaniti F: Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004,556(Pt 1):267-282.PubMedCentralCrossRefPubMed Ivanenko YP, Poppele RE, Lacquaniti F: Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004,556(Pt 1):267-282.PubMedCentralCrossRefPubMed
21.
go back to reference Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 38-48.CrossRefPubMed Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 38-48.CrossRefPubMed
22.
go back to reference Gizzi L, Nielsen JF, Felici F, Ivanenko YP, Farina D: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 2011,106(1):202-210. 10.1152/jn.00727.2010CrossRefPubMed Gizzi L, Nielsen JF, Felici F, Ivanenko YP, Farina D: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 2011,106(1):202-210. 10.1152/jn.00727.2010CrossRefPubMed
23.
go back to reference Avella A, Saltiel P, Bizzi E: Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 2003,6(3):300-308. 10.1038/nn1010CrossRefPubMed Avella A, Saltiel P, Bizzi E: Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 2003,6(3):300-308. 10.1038/nn1010CrossRefPubMed
24.
go back to reference Torres-Oviedo G, Ting LH: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J Neurophysiol 2010,103(6):3084-3098. 10.1152/jn.00960.2009PubMedCentralCrossRefPubMed Torres-Oviedo G, Ting LH: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J Neurophysiol 2010,103(6):3084-3098. 10.1152/jn.00960.2009PubMedCentralCrossRefPubMed
25.
go back to reference Lee DD, Seung HS: Learning the parts of objects by non-negative matrix factorization. Nature 1999,401(6755):788-791. 10.1038/44565CrossRefPubMed Lee DD, Seung HS: Learning the parts of objects by non-negative matrix factorization. Nature 1999,401(6755):788-791. 10.1038/44565CrossRefPubMed
26.
go back to reference Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP: Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 2010, 202: 809-824. 10.1007/s00221-010-2187-5CrossRefPubMed Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP: Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 2010, 202: 809-824. 10.1007/s00221-010-2187-5CrossRefPubMed
27.
go back to reference Gizzi L, Nielsen JF, Felici F, Moreno JC, Pons JL, Farina D: Motor modules in robot-aided walking. J Neuroeng Rehabil 2012, 9: 76. 10.1186/1743-0003-9-76PubMedCentralCrossRefPubMed Gizzi L, Nielsen JF, Felici F, Moreno JC, Pons JL, Farina D: Motor modules in robot-aided walking. J Neuroeng Rehabil 2012, 9: 76. 10.1186/1743-0003-9-76PubMedCentralCrossRefPubMed
28.
go back to reference Klarner T, Chan HK, Wakeling JM, Lam T: Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking. Gait Posture 2010,31(3):360-365. 10.1016/j.gaitpost.2010.01.001CrossRefPubMed Klarner T, Chan HK, Wakeling JM, Lam T: Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking. Gait Posture 2010,31(3):360-365. 10.1016/j.gaitpost.2010.01.001CrossRefPubMed
29.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 2005,20(2):184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 2005,20(2):184-193. 10.1016/j.clinbiomech.2004.09.016CrossRef
30.
go back to reference Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009,6(1):20. 10.1186/1743-0003-6-20PubMedCentralCrossRefPubMed Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009,6(1):20. 10.1186/1743-0003-6-20PubMedCentralCrossRefPubMed
31.
go back to reference van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):360-370.CrossRefPubMed van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):360-370.CrossRefPubMed
32.
go back to reference Brown TH, Mount J, Barnes RM, Kim J: Body weight-supported treadmill training versus people with chronic traumatic. J Head Trauma Rehabil 2005,20(5):402-415. 10.1097/00001199-200509000-00002CrossRefPubMed Brown TH, Mount J, Barnes RM, Kim J: Body weight-supported treadmill training versus people with chronic traumatic. J Head Trauma Rehabil 2005,20(5):402-415. 10.1097/00001199-200509000-00002CrossRefPubMed
33.
go back to reference Hidler J, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech 2008,23(10):1251-1259. 10.1016/j.clinbiomech.2008.08.004CrossRef Hidler J, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech 2008,23(10):1251-1259. 10.1016/j.clinbiomech.2008.08.004CrossRef
34.
go back to reference Iosa M, Tamburella F, Moreno JC, Collantes I, Asín G, Aloise F, Pisotta I, Muzzioli L, Mattia D, Molinari M, Pons JL, Cincotti F: Neurorehabilitation after stroke: a new tool for a Top-Down approach. Rome, Italy: Terzo Congresso Nazionale di Bioingegneria 2012 Patron Editore, Bologna; 2012. 3th GNB2012, June 26th-29th Iosa M, Tamburella F, Moreno JC, Collantes I, Asín G, Aloise F, Pisotta I, Muzzioli L, Mattia D, Molinari M, Pons JL, Cincotti F: Neurorehabilitation after stroke: a new tool for a Top-Down approach. Rome, Italy: Terzo Congresso Nazionale di Bioingegneria 2012 Patron Editore, Bologna; 2012. 3th GNB2012, June 26th-29th
35.
go back to reference Hermens H, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg EG: European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM project. The Netherlands: Roessingh Research and Development, Enschede; 1999. Hermens H, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg EG: European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM project. The Netherlands: Roessingh Research and Development, Enschede; 1999.
37.
go back to reference Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F: Coordination of locomotion with voluntary movements in humans. J Neurosci 2005,25(31):7238-7253. 10.1523/JNEUROSCI.1327-05.2005CrossRefPubMed Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F: Coordination of locomotion with voluntary movements in humans. J Neurosci 2005,25(31):7238-7253. 10.1523/JNEUROSCI.1327-05.2005CrossRefPubMed
38.
go back to reference Neptune RR, McGowan CP: Muscle contributions to whole-body sagittal plane angular momentum during walking. J Biomech 2011,44(1):6-12. 10.1016/j.jbiomech.2010.08.015PubMedCentralCrossRefPubMed Neptune RR, McGowan CP: Muscle contributions to whole-body sagittal plane angular momentum during walking. J Biomech 2011,44(1):6-12. 10.1016/j.jbiomech.2010.08.015PubMedCentralCrossRefPubMed
39.
go back to reference Ivanenko YP, Grasso R, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 2003,90(5):3555-3565. 10.1152/jn.00223.2003CrossRefPubMed Ivanenko YP, Grasso R, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 2003,90(5):3555-3565. 10.1152/jn.00223.2003CrossRefPubMed
40.
go back to reference Nadeau S, Duclos C, Bouyer L, Richards CL: Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog Brain Res 2011, 192: 161-180.CrossRefPubMed Nadeau S, Duclos C, Bouyer L, Richards CL: Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog Brain Res 2011, 192: 161-180.CrossRefPubMed
41.
go back to reference Shumway-Cook A: Reactive strategies for modifying gait. In Motor control: translating research into clinical practice. Fourth edition. Edited by: ShumWay-Cook A, Woollacott M. North American: Lippincot Williams & Wilkins; 2007. Shumway-Cook A: Reactive strategies for modifying gait. In Motor control: translating research into clinical practice. Fourth edition. Edited by: ShumWay-Cook A, Woollacott M. North American: Lippincot Williams & Wilkins; 2007.
42.
go back to reference Cheung VCK, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009,106(46):19563-19568. 10.1073/pnas.0910114106PubMedCentralCrossRefPubMed Cheung VCK, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009,106(46):19563-19568. 10.1073/pnas.0910114106PubMedCentralCrossRefPubMed
43.
go back to reference Jonsdottir J: Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair 2010,24(5):478-485. 10.1177/1545968309355986CrossRefPubMed Jonsdottir J: Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair 2010,24(5):478-485. 10.1177/1545968309355986CrossRefPubMed
44.
go back to reference Molinari M: Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res Bull 2009,78(1):22-25. 10.1016/j.brainresbull.2008.02.030CrossRefPubMed Molinari M: Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res Bull 2009,78(1):22-25. 10.1016/j.brainresbull.2008.02.030CrossRefPubMed
Metadata
Title
Effects of robotic guidance on the coordination of locomotion
Authors
Juan C Moreno
Filipe Barroso
Dario Farina
Leonardo Gizzi
Cristina Santos
Marco Molinari
José L Pons
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-79

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue