Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Thrombocytopenia | Research

The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent

Authors: Ophélie Le Chapelain, Soumaya Jadoui, Angèle Gros, Samir Barbaria, Keltouma Benmeziane, Véronique Ollivier, Sébastien Dupont, Mialitiana Solo Nomenjanahary, Sabrina Mavouna, Jasmina Rogozarski, Marie-Anne Mawhin, Giuseppina Caligiuri, Sandrine Delbosc, Françoise Porteu, Bernhard Nieswandt, Pierre H Mangin, Yacine Boulaftali, Benoit Ho-Tin-Noé

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized.

Methods

We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma.

Results

We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors.

Conclusions

These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Appendix
Available only for authorised users
Literature
2.
go back to reference Labelle M, Begum S, Hynes RO. Direct signaling between platelets and Cancer cells induces an epithelial-mesenchymal-like Transition and promotes metastasis. Cancer Cell. 2011;20:576–90.PubMedPubMedCentralCrossRef Labelle M, Begum S, Hynes RO. Direct signaling between platelets and Cancer cells induces an epithelial-mesenchymal-like Transition and promotes metastasis. Cancer Cell. 2011;20:576–90.PubMedPubMedCentralCrossRef
3.
go back to reference Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59:1295–300.PubMed Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59:1295–300.PubMed
5.
go back to reference Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104:9024–8.ADSPubMedPubMedCentralCrossRef Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104:9024–8.ADSPubMedPubMedCentralCrossRef
6.
go back to reference Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7:1713–7.PubMedCrossRef Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7:1713–7.PubMedCrossRef
7.
go back to reference Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136:462–75.PubMedCrossRef Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136:462–75.PubMedCrossRef
8.
go back to reference Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, et al. Paraneoplastic thrombocytosis in Ovarian Cancer. N Engl J Med. 2012;366:610–8.PubMedPubMedCentralCrossRef Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, et al. Paraneoplastic thrombocytosis in Ovarian Cancer. N Engl J Med. 2012;366:610–8.PubMedPubMedCentralCrossRef
9.
go back to reference Bottsford-Miller J, Choi HJ, Dalton HJ, Stone RL, Cho MS, Haemmerle M, et al. Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res. 2015;21:602–10.PubMedCrossRef Bottsford-Miller J, Choi HJ, Dalton HJ, Stone RL, Cho MS, Haemmerle M, et al. Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res. 2015;21:602–10.PubMedCrossRef
10.
go back to reference Plantureux L, Mege D, Crescence L, Carminita E, Robert S, Cointe S, et al. The interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis. Cancer Res. 2020;80:291–303.PubMedCrossRef Plantureux L, Mege D, Crescence L, Carminita E, Robert S, Cointe S, et al. The interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis. Cancer Res. 2020;80:291–303.PubMedCrossRef
11.
go back to reference Volz J, Mammadova-Bach E, Gil-Pulido J, Nandigama R, Remer K, Sorokin L, et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood. 2019;133:2696–706.PubMedCrossRef Volz J, Mammadova-Bach E, Gil-Pulido J, Nandigama R, Remer K, Sorokin L, et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood. 2019;133:2696–706.PubMedCrossRef
12.
go back to reference Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, et al. Platelets increase the proliferation of ovarian cancer cells. Blood. 2012;120:4869–72.PubMedPubMedCentralCrossRef Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, et al. Platelets increase the proliferation of ovarian cancer cells. Blood. 2012;120:4869–72.PubMedPubMedCentralCrossRef
13.
go back to reference Michael Jv, Wurtzel JGT, Mao GF, Rao AK, Kolpakov MA, Sabri A, et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood. 2017;130:567–80.PubMedPubMedCentralCrossRef Michael Jv, Wurtzel JGT, Mao GF, Rao AK, Kolpakov MA, Sabri A, et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood. 2017;130:567–80.PubMedPubMedCentralCrossRef
14.
go back to reference Egan K, Crowley D, Smyth P, O’Toole S, Spillane C, Martin C et al. Platelet adhesion and Degranulation Induce Pro-survival and Pro-angiogenic Signalling in Ovarian Cancer cells. PLoS ONE. 2011;6. Egan K, Crowley D, Smyth P, O’Toole S, Spillane C, Martin C et al. Platelet adhesion and Degranulation Induce Pro-survival and Pro-angiogenic Signalling in Ovarian Cancer cells. PLoS ONE. 2011;6.
15.
go back to reference Ibele GM, Kay NE, Johnson GJ, Jacob HS. Human platelets exert cytotoxic effects on tumor cells. Blood. 1985;65:1252–5.PubMedCrossRef Ibele GM, Kay NE, Johnson GJ, Jacob HS. Human platelets exert cytotoxic effects on tumor cells. Blood. 1985;65:1252–5.PubMedCrossRef
16.
go back to reference Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A. 2006;103:855–60.ADSPubMedPubMedCentralCrossRef Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A. 2006;103:855–60.ADSPubMedPubMedCentralCrossRef
17.
go back to reference Zhang Y, Cedervall J, Hamidi A, Herre M, Viitaniemi K, D’Amico G, et al. Platelet-specific PDGFB ablation impairs Tumor Vessel Integrity and promotes metastasis. Cancer Res. 2020;80:3345–58.PubMedCrossRef Zhang Y, Cedervall J, Hamidi A, Herre M, Viitaniemi K, D’Amico G, et al. Platelet-specific PDGFB ablation impairs Tumor Vessel Integrity and promotes metastasis. Cancer Res. 2020;80:3345–58.PubMedCrossRef
18.
go back to reference Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008;68:6851–8.PubMedPubMedCentralCrossRef Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008;68:6851–8.PubMedPubMedCentralCrossRef
19.
go back to reference Ho-Tin-Noé B, Carbo C, Demers M, Cifuni SM, Goerge T, Wagner DD. Innate Immune cells induce hemorrhage in tumors during Thrombocytopenia. Am J Pathol. 2009;175:1699–708.PubMedPubMedCentralCrossRef Ho-Tin-Noé B, Carbo C, Demers M, Cifuni SM, Goerge T, Wagner DD. Innate Immune cells induce hemorrhage in tumors during Thrombocytopenia. Am J Pathol. 2009;175:1699–708.PubMedPubMedCentralCrossRef
20.
go back to reference Pavlović N, Kopsida M, Gerwins P, Heindryckx F. Activated platelets contribute to the progression of hepatocellular carcinoma by altering the tumor environment. Life Sci. 2021;277:119612.PubMedCrossRef Pavlović N, Kopsida M, Gerwins P, Heindryckx F. Activated platelets contribute to the progression of hepatocellular carcinoma by altering the tumor environment. Life Sci. 2021;277:119612.PubMedCrossRef
21.
go back to reference Hinterleitner C, Strähle J, Malenke E, Hinterleitner M, Henning M, Seehawer M et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat Commun. 2021;12. Hinterleitner C, Strähle J, Malenke E, Hinterleitner M, Henning M, Seehawer M et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat Commun. 2021;12.
22.
go back to reference Gurney AL, Carver-Moore K, De Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science. 1994;265:1445–7.ADSPubMedCrossRef Gurney AL, Carver-Moore K, De Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science. 1994;265:1445–7.ADSPubMedCrossRef
23.
go back to reference Lockyer S, Okuyama K, Begum S, Le S, Sun B, Watanabe T, et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res. 2006;118:371–80.PubMedCrossRef Lockyer S, Okuyama K, Begum S, Le S, Sun B, Watanabe T, et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res. 2006;118:371–80.PubMedCrossRef
24.
go back to reference Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 1975;35:218–24.PubMed Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 1975;35:218–24.PubMed
25.
go back to reference Stewart TJ, Abrams SI. Altered Immune function during long-term host-tumor interactions can be modulated to Retard Autochthonous neoplastic growth. J Immunol. 2007;179:2851–9.PubMedCrossRef Stewart TJ, Abrams SI. Altered Immune function during long-term host-tumor interactions can be modulated to Retard Autochthonous neoplastic growth. J Immunol. 2007;179:2851–9.PubMedCrossRef
26.
go back to reference Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.PubMedPubMedCentral Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.PubMedPubMedCentral
27.
go back to reference Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to Malignancy in the Polyoma Middle T Oncoprotein mouse breast Cancer Model provides a Reliable Model for Human diseases. Am J Pathol. 2003;163:2113–26.PubMedPubMedCentralCrossRef Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to Malignancy in the Polyoma Middle T Oncoprotein mouse breast Cancer Model provides a Reliable Model for Human diseases. Am J Pathol. 2003;163:2113–26.PubMedPubMedCentralCrossRef
28.
go back to reference Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 2013;14:1–16.CrossRef Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 2013;14:1–16.CrossRef
29.
go back to reference Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene. 2021;40:475–91.PubMedCrossRef Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene. 2021;40:475–91.PubMedCrossRef
30.
go back to reference Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, et al. Angiogenesis, Microvascular Architecture, Microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992;52:6553–60.PubMed Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, et al. Angiogenesis, Microvascular Architecture, Microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992;52:6553–60.PubMed
31.
go back to reference Lockyer S, Okuyama K, Begum S, Le S, Sun B, Watanabe T, et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood. 2015;126:1017–26.CrossRef Lockyer S, Okuyama K, Begum S, Le S, Sun B, Watanabe T, et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood. 2015;126:1017–26.CrossRef
32.
go back to reference Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68:8437–45.PubMedCrossRef Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68:8437–45.PubMedCrossRef
33.
go back to reference Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in Progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the Thrombopoietin receptor c-Mpl. Blood. 1996;87:2162–70.PubMedCrossRef Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in Progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the Thrombopoietin receptor c-Mpl. Blood. 1996;87:2162–70.PubMedCrossRef
34.
go back to reference Morowski M, Vögtle T, Kraft P, Kleinschnitz C, Stoll G, Nieswandt B. Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood. 2013;121:4938–47.PubMedCrossRef Morowski M, Vögtle T, Kraft P, Kleinschnitz C, Stoll G, Nieswandt B. Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood. 2013;121:4938–47.PubMedCrossRef
35.
go back to reference Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O’Donnell E, Zhao BQ, et al. Inflammation induces hemorrhage in thrombocytopenia. Blood. 2008;111:4958–64.PubMedPubMedCentralCrossRef Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O’Donnell E, Zhao BQ, et al. Inflammation induces hemorrhage in thrombocytopenia. Blood. 2008;111:4958–64.PubMedPubMedCentralCrossRef
36.
go back to reference Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N, et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest. 2013;123:908–16.PubMedPubMedCentral Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N, et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest. 2013;123:908–16.PubMedPubMedCentral
37.
go back to reference Rayes J, Jadoui S, Lax S, Gros A, Wichaiyo S, Ollivier V, et al. The contribution of platelet glycoprotein receptors to inflammatory bleeding prevention is stimulus and organ dependent. Haematologica. 2018;103:e256–8.PubMedPubMedCentralCrossRef Rayes J, Jadoui S, Lax S, Gros A, Wichaiyo S, Ollivier V, et al. The contribution of platelet glycoprotein receptors to inflammatory bleeding prevention is stimulus and organ dependent. Haematologica. 2018;103:e256–8.PubMedPubMedCentralCrossRef
38.
go back to reference Kaiser R, Escaig R, Kranich J, Hoffknecht ML, Anjum A, Polewka V, et al. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 2022;140:121–39.PubMedPubMedCentralCrossRef Kaiser R, Escaig R, Kranich J, Hoffknecht ML, Anjum A, Polewka V, et al. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 2022;140:121–39.PubMedPubMedCentralCrossRef
39.
go back to reference Currie SM, Stegmeyer RI, Mildner K, Breitsprecher L, Zeuschner D, Psathaki OE, et al. Confocal Real-Time Analysis of Cutaneous Platelet Recruitment during Immune complex–mediated inflammation. J Invest Dermatology. 2022;142:2724–e27323.CrossRef Currie SM, Stegmeyer RI, Mildner K, Breitsprecher L, Zeuschner D, Psathaki OE, et al. Confocal Real-Time Analysis of Cutaneous Platelet Recruitment during Immune complex–mediated inflammation. J Invest Dermatology. 2022;142:2724–e27323.CrossRef
40.
go back to reference Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 2010;17:616–23.PubMedCrossRef Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 2010;17:616–23.PubMedCrossRef
41.
go back to reference Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128:4654–68.PubMedPubMedCentralCrossRef Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128:4654–68.PubMedPubMedCentralCrossRef
42.
go back to reference Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Nicholas Haining W, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214:895–904.PubMedPubMedCentralCrossRef Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Nicholas Haining W, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214:895–904.PubMedPubMedCentralCrossRef
43.
go back to reference Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018;11. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018;11.
44.
go back to reference Le Chapelain O, Ho-Tin-noé B. Intratumoral platelets: harmful or incidental bystanders of the Tumor Microenvironment? Cancers (Basel). 2022;14:2192.PubMedCrossRef Le Chapelain O, Ho-Tin-noé B. Intratumoral platelets: harmful or incidental bystanders of the Tumor Microenvironment? Cancers (Basel). 2022;14:2192.PubMedCrossRef
45.
go back to reference Manegold PC, Hutter J, Pahernik SA, Messmer K, Dellian M. Platelet-endothelial interaction in tumor angiogenesis and microcirculation. Blood. 2003;101:1970–6.PubMedCrossRef Manegold PC, Hutter J, Pahernik SA, Messmer K, Dellian M. Platelet-endothelial interaction in tumor angiogenesis and microcirculation. Blood. 2003;101:1970–6.PubMedCrossRef
46.
go back to reference Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol Oncol. 2019;153:639–50.PubMedCrossRef Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol Oncol. 2019;153:639–50.PubMedCrossRef
47.
go back to reference Zhang Y, Manouchehri Doulabi E, Herre M, Cedervall J, Qiao Q, Miao Z, et al. Platelet-derived PDGFB promotes recruitment of Cancer-Associated fibroblasts, deposition of extracellular matrix and Tgfβ signaling in the Tumor Microenvironment. Cancers (Basel). 2022;14:1947.PubMedPubMedCentralCrossRef Zhang Y, Manouchehri Doulabi E, Herre M, Cedervall J, Qiao Q, Miao Z, et al. Platelet-derived PDGFB promotes recruitment of Cancer-Associated fibroblasts, deposition of extracellular matrix and Tgfβ signaling in the Tumor Microenvironment. Cancers (Basel). 2022;14:1947.PubMedPubMedCentralCrossRef
48.
go back to reference Ho-Tin-Noé B, Boulaftali Y, Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood. 2018;131:277–88.PubMedCrossRef Ho-Tin-Noé B, Boulaftali Y, Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood. 2018;131:277–88.PubMedCrossRef
49.
go back to reference Gupta S, Konradt C, Corken A, Ware J, Nieswandt B, Di Paola J, et al. Hemostasis vs. homeostasis: platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A. 2020;117:24316–25.ADSPubMedPubMedCentralCrossRef Gupta S, Konradt C, Corken A, Ware J, Nieswandt B, Di Paola J, et al. Hemostasis vs. homeostasis: platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A. 2020;117:24316–25.ADSPubMedPubMedCentralCrossRef
50.
go back to reference Ho-Tin-Noé B, Le Chapelain O, Camerer E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J Thromb Haemost. 2021;19:1145–8.PubMedCrossRef Ho-Tin-Noé B, Le Chapelain O, Camerer E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J Thromb Haemost. 2021;19:1145–8.PubMedCrossRef
51.
go back to reference Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126:1601–8.PubMedPubMedCentralCrossRef Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126:1601–8.PubMedPubMedCentralCrossRef
52.
go back to reference Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126:683–91.PubMedCrossRef Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126:683–91.PubMedCrossRef
53.
go back to reference Gauer JS, Duval C, Xu RG, Macrae FL, McPherson HR, Tiede C, et al. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J Thromb Haemost. 2023;21:667–81.PubMedCrossRef Gauer JS, Duval C, Xu RG, Macrae FL, McPherson HR, Tiede C, et al. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J Thromb Haemost. 2023;21:667–81.PubMedCrossRef
54.
go back to reference Brockmann MA, Bender B, Plaxina E, Nolte I, Erber R, Lamszus K, et al. Differential effects of tumor-platelet interaction in vitro and in vivo in glioblastoma. J Neurooncol. 2011;105:45–56.PubMedCrossRef Brockmann MA, Bender B, Plaxina E, Nolte I, Erber R, Lamszus K, et al. Differential effects of tumor-platelet interaction in vitro and in vivo in glioblastoma. J Neurooncol. 2011;105:45–56.PubMedCrossRef
55.
go back to reference Li R, Ren M, Chen N, Luo M, Deng X, Xia J et al. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 2014;14. Li R, Ren M, Chen N, Luo M, Deng X, Xia J et al. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 2014;14.
56.
go back to reference Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, et al. Inflammation-Induced Emergency Megakaryopoiesis Driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell. 2015;17:422–34.PubMedCrossRef Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, et al. Inflammation-Induced Emergency Megakaryopoiesis Driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell. 2015;17:422–34.PubMedCrossRef
57.
go back to reference Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209:453–66.PubMedPubMedCentralCrossRef Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209:453–66.PubMedPubMedCentralCrossRef
58.
go back to reference Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res. 2019;179:114–20.PubMedCrossRef Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res. 2019;179:114–20.PubMedCrossRef
59.
go back to reference Morodomi Y, Kanaji S, Sullivan BM, Zarpellon A, Orje JN, Won E, et al. Inflammatory platelet production stimulated by tyrosyl-tRNA synthetase mimicking viral infection. Proc Natl Acad Sci U S A. 2022;119:e2212659119.PubMedPubMedCentralCrossRef Morodomi Y, Kanaji S, Sullivan BM, Zarpellon A, Orje JN, Won E, et al. Inflammatory platelet production stimulated by tyrosyl-tRNA synthetase mimicking viral infection. Proc Natl Acad Sci U S A. 2022;119:e2212659119.PubMedPubMedCentralCrossRef
60.
go back to reference Matsubara Y, Murata M, Ikeda Y. Culture of megakaryocytes and platelets from subcutaneous adipose tissue and a preadipocyte cell line. Methods Mol Biol. 2012;788:249–58.PubMedCrossRef Matsubara Y, Murata M, Ikeda Y. Culture of megakaryocytes and platelets from subcutaneous adipose tissue and a preadipocyte cell line. Methods Mol Biol. 2012;788:249–58.PubMedCrossRef
61.
go back to reference Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, Zhu X, et al. Adipose-derived mesenchymal stem cells (ADSCs) with the potential to ameliorate platelet recovery, enhance megakaryopoiesis, and inhibit apoptosis of bone marrow cells in a mouse model of Radiation-Induced Thrombocytopenia. Cell Transpl. 2016;25:261–73.CrossRef Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, Zhu X, et al. Adipose-derived mesenchymal stem cells (ADSCs) with the potential to ameliorate platelet recovery, enhance megakaryopoiesis, and inhibit apoptosis of bone marrow cells in a mouse model of Radiation-Induced Thrombocytopenia. Cell Transpl. 2016;25:261–73.CrossRef
62.
go back to reference Tozawa K, Ono-Uruga Y, Yazawa M, Mori T, Murata M, Okamoto S, et al. Megakaryocytes and platelets from a novel human adipose tissue-derived mesenchymal stem cell line. Blood. 2019;133:633–43.PubMedPubMedCentralCrossRef Tozawa K, Ono-Uruga Y, Yazawa M, Mori T, Murata M, Okamoto S, et al. Megakaryocytes and platelets from a novel human adipose tissue-derived mesenchymal stem cell line. Blood. 2019;133:633–43.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Riesenberg BP, Ansa-Addo EA, Gutierrez J, Timmers CD, Liu B, Li Z. Cutting Edge: Targeting thrombocytes to rewire anticancer immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 blockade. J Immunol. 2019;203:1105–10.PubMedCrossRef Riesenberg BP, Ansa-Addo EA, Gutierrez J, Timmers CD, Liu B, Li Z. Cutting Edge: Targeting thrombocytes to rewire anticancer immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 blockade. J Immunol. 2019;203:1105–10.PubMedCrossRef
65.
go back to reference Zaslavsky AB, Adams MP, Cao X, Maj T, Choi JE, Stangl-Kremser J, et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci Rep 2020. 2020;10:1. Zaslavsky AB, Adams MP, Cao X, Maj T, Choi JE, Stangl-Kremser J, et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci Rep 2020. 2020;10:1.
66.
go back to reference Darga EP, Dolce EM, Fang F, Kidwell KM, Gersch CL, Kregel S et al. PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS ONE. 2021;16. Darga EP, Dolce EM, Fang F, Kidwell KM, Gersch CL, Kregel S et al. PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS ONE. 2021;16.
Metadata
Title
The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent
Authors
Ophélie Le Chapelain
Soumaya Jadoui
Angèle Gros
Samir Barbaria
Keltouma Benmeziane
Véronique Ollivier
Sébastien Dupont
Mialitiana Solo Nomenjanahary
Sabrina Mavouna
Jasmina Rogozarski
Marie-Anne Mawhin
Giuseppina Caligiuri
Sandrine Delbosc
Françoise Porteu
Bernhard Nieswandt
Pierre H Mangin
Yacine Boulaftali
Benoit Ho-Tin-Noé
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-024-03001-2

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine