Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Melanoma | Research

A novel PDPN antagonist peptide CY12-RP2 inhibits melanoma growth via Wnt/β-catenin and modulates the immune cells

Authors: Chunyan Feng, Albert Yu, Zhongfu Wang, Kun Wang, Jiawei Chen, Yaojiong Wu, Ting Deng, Huaqing Chen, Yibo Hou, Shaohua Ma, Xiaoyong Dai, Laiqiang Huang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

Podoplanin (PDPN) is a highly conserved, mucin-type protein specific to the lymphatic system. Overexpression of PDPN is associated with the progression of various solid tumors, and plays an important roles in the tumor microenvironment by regulating the immune system. However, the role of PDPN-mediated signal activation in the progression of melanoma is still unknown.

Methods

PDPN expression was first analyzed in 112 human melanoma tissue microarrays and melanoma cell lines. Functional experiments including proliferation, clone formation, migration, and metastasis were utilized to identify the suppressive effects of PDPN. The Ph.D.TM-12 Phage Display Peptide Library was used to obtain a PDPN antagonist peptide, named CY12-RP2. The immunofluorescence, SPR assay, and flow cytometry were used to identify the binding specificity of CY12-RP2 with PDPN in melanoma cells. Functional and mechanistic assays in vivo and in vitro were performed for discriminating the antitumor and immune activation effects of CY12-RP2.

Results

PDPN was overexpressed in melanoma tissue and cells, and inhibited melanoma cells proliferation, migration, and metastasis by blocking the EMT and Wnt/β-catenin pathway. PDPN antagonistic peptide, CY12-RP2, could specifically bind with PDPN, suppressing melanoma various functions inducing apoptosis in both melanoma cells and 3D spheroids. CY12-RP2 also enhanced the anti-tumor capacity of PBMC, and inhibited melanoma cells growth both in xenografts and allogeneic mice model. Moreover, CY12-RP2 could inhibit melanoma lung metastasis, and abrogated the immunosuppressive effects of PDPN by increasing the proportion of CD3 + CD4 + T cells, CD3 + CD8 + T cells, CD49b + Granzyme B + NK cells, and CD11b + CD86 + M1-like macrophages and the levels of IL-1β, TNF-α, and IFN-γ.

Conclusions

This study has demonstrated the important role of PDPN in the progression of melanoma and formation of immunosuppressive environment, and provided a potential approach of treating melanoma using the novel CY12-RP2 peptide.

Graphical Abstract

In melanoma, PDPN is overexpressed in the cancer cells, and promotes melanoma cells growth and metastasis through activating the Wnt/β-catenin pathway. Treatment with the PDPN antagonistic peptide CY12-RP2 could not only inhibit the melanoma growth and metastasis both in vitro and in vivo through Wnt/β-catenin pathway blockade, but also abrogate the immunosuppressive effects of PDPN through modulating immune cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gupta AK, Bharadwaj M, Mehrotra R. Skin cancer concerns in people of color: risk factors and prevention. Asian Pac J Cancer Prev. 2016;17(12):5257–64.PubMedPubMedCentral Gupta AK, Bharadwaj M, Mehrotra R. Skin cancer concerns in people of color: risk factors and prevention. Asian Pac J Cancer Prev. 2016;17(12):5257–64.PubMedPubMedCentral
2.
go back to reference van der Weyden L, Brenn T, Patton EE, Wood GA, Adams DJ. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J Pathol. 2020;252(1):4–21.PubMedCrossRef van der Weyden L, Brenn T, Patton EE, Wood GA, Adams DJ. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J Pathol. 2020;252(1):4–21.PubMedCrossRef
4.
go back to reference Bertrand JU, Steingrimsson E, Jouenne F, Bressac-de Paillerets B, Larue L. Melanoma Risk and Melanocyte Biology. Acta Derm Venereol. 2020;100(11):adv00139.PubMedCrossRef Bertrand JU, Steingrimsson E, Jouenne F, Bressac-de Paillerets B, Larue L. Melanoma Risk and Melanocyte Biology. Acta Derm Venereol. 2020;100(11):adv00139.PubMedCrossRef
5.
go back to reference Tyrell R, Antia C, Stanley S, Deutsch GB. Surgical resection of metastatic melanoma in the era of immunotherapy and targeted therapy. Melanoma Manag. 2017;4(1):61–8.PubMedPubMedCentralCrossRef Tyrell R, Antia C, Stanley S, Deutsch GB. Surgical resection of metastatic melanoma in the era of immunotherapy and targeted therapy. Melanoma Manag. 2017;4(1):61–8.PubMedPubMedCentralCrossRef
6.
go back to reference Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol Pract. 2020;18(5):335–51.CrossRef Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol Pract. 2020;18(5):335–51.CrossRef
7.
go back to reference Menon D, Das S, Rinner B, Heike K, Bonyadirad E, Hoefler G, Schaider H. Transient CD271+ve Drug Tolerant Stem Like Melanoma Cells Are Inherently Resistant Towards BRAF And MEK Inhibition. J Investig Dermatol. 2012;132:S124. Menon D, Das S, Rinner B, Heike K, Bonyadirad E, Hoefler G, Schaider H. Transient CD271+ve Drug Tolerant Stem Like Melanoma Cells Are Inherently Resistant Towards BRAF And MEK Inhibition. J Investig Dermatol. 2012;132:S124.
8.
go back to reference Subbiah V, Baik C, Kirkwood JM. Clinical development of BRAF plus MEK Inhibitor Combinations. Trends Cancer. 2020;6(9):797–810.PubMedCrossRef Subbiah V, Baik C, Kirkwood JM. Clinical development of BRAF plus MEK Inhibitor Combinations. Trends Cancer. 2020;6(9):797–810.PubMedCrossRef
9.
go back to reference Sikorska J, Gawel D, Domek H, Rudzinska M, Czarnocka B. Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer. 2019;19(1):85.PubMedPubMedCentralCrossRef Sikorska J, Gawel D, Domek H, Rudzinska M, Czarnocka B. Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer. 2019;19(1):85.PubMedPubMedCentralCrossRef
10.
go back to reference Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, Takemoto A, Chang YW, Yoneda K, Asai J, Jensen L, Chalise L, Natsume A, Goldberg GS. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 2018;109(5):1292–9.PubMedPubMedCentralCrossRef Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, Takemoto A, Chang YW, Yoneda K, Asai J, Jensen L, Chalise L, Natsume A, Goldberg GS. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 2018;109(5):1292–9.PubMedPubMedCentralCrossRef
12.
go back to reference Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, Eto S, Ikeda N, Saeki K, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kaneko MK, Fujita N, Nishimura R, Kato Y, Nakagawa T. PDPN Is Expressed in various types of canine tumors and its silencing induces apoptosis and cell cycle arrest in canine Malignant Melanoma. Cells. 2020;9(5):1136.PubMedPubMedCentralCrossRef Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, Eto S, Ikeda N, Saeki K, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kaneko MK, Fujita N, Nishimura R, Kato Y, Nakagawa T. PDPN Is Expressed in various types of canine tumors and its silencing induces apoptosis and cell cycle arrest in canine Malignant Melanoma. Cells. 2020;9(5):1136.PubMedPubMedCentralCrossRef
14.
go back to reference Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, Funakoshi S, Adachi M, Hamamoto Y, Kawachi S, Aiura K, Kitagawa Y, Sakamoto M, Hibi T. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013;104(2):157–64.PubMedPubMedCentralCrossRef Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, Funakoshi S, Adachi M, Hamamoto Y, Kawachi S, Aiura K, Kitagawa Y, Sakamoto M, Hibi T. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013;104(2):157–64.PubMedPubMedCentralCrossRef
16.
go back to reference Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E, Jones GE, Quintanilla M. Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell. 2010;21(24):4387–99.PubMedPubMedCentralCrossRef Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E, Jones GE, Quintanilla M. Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell. 2010;21(24):4387–99.PubMedPubMedCentralCrossRef
17.
go back to reference Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development. 2018;145(4):dev160382.PubMedCrossRef Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development. 2018;145(4):dev160382.PubMedCrossRef
18.
go back to reference Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, Bellei B. The role of WNT/β-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget. 2016;7(28):43295.PubMedPubMedCentralCrossRef Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, Bellei B. The role of WNT/β-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget. 2016;7(28):43295.PubMedPubMedCentralCrossRef
19.
go back to reference Sesartić M. The role of keratinocyte-expressed podoplanin in skin carcinogenesis and wound healing. 2020. Sesartić M. The role of keratinocyte-expressed podoplanin in skin carcinogenesis and wound healing. 2020.
20.
go back to reference Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost. 2017;15(2):219–29.PubMedCrossRef Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost. 2017;15(2):219–29.PubMedCrossRef
21.
go back to reference Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS ONE. 2012;7(7):e41845.PubMedPubMedCentralCrossRef Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS ONE. 2012;7(7):e41845.PubMedPubMedCentralCrossRef
22.
go back to reference Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid Tumors. Chem Rev. 2021;121(3):1746–803.PubMedPubMedCentralCrossRef Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid Tumors. Chem Rev. 2021;121(3):1746–803.PubMedPubMedCentralCrossRef
23.
go back to reference Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.PubMedCrossRef Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.PubMedCrossRef
24.
go back to reference Obermann WMJ, Brockhaus K, Eble JA. Platelets, constant and cooperative companions of sessile and disseminating tumor cells, crucially contribute to the tumor microenvironment. Front Cell Dev Biol. 2021;9:674553.PubMedPubMedCentralCrossRef Obermann WMJ, Brockhaus K, Eble JA. Platelets, constant and cooperative companions of sessile and disseminating tumor cells, crucially contribute to the tumor microenvironment. Front Cell Dev Biol. 2021;9:674553.PubMedPubMedCentralCrossRef
25.
go back to reference Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Front Oncol. 2021;11:665534.PubMedPubMedCentralCrossRef Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Front Oncol. 2021;11:665534.PubMedPubMedCentralCrossRef
26.
go back to reference Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.PubMedPubMedCentralCrossRef Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.PubMedPubMedCentralCrossRef
27.
go back to reference Hu L, Zhang P, Sun W, Zhou L, Chu Q, Chen Y. PDPN is a prognostic biomarker and correlated with immune infiltrating in gastric cancer. Medicine (Baltimore). 2020;99(19):e19957.PubMedCrossRef Hu L, Zhang P, Sun W, Zhou L, Chu Q, Chen Y. PDPN is a prognostic biomarker and correlated with immune infiltrating in gastric cancer. Medicine (Baltimore). 2020;99(19):e19957.PubMedCrossRef
28.
go back to reference Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol. 2020;57(3):678–96.PubMedPubMedCentralCrossRef Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol. 2020;57(3):678–96.PubMedPubMedCentralCrossRef
29.
go back to reference Jaroszewicz W, Morcinek-Orlowska J, Pierzynowska K, Gaffke L, Wegrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2022;46(2):fuab052.PubMedCrossRef Jaroszewicz W, Morcinek-Orlowska J, Pierzynowska K, Gaffke L, Wegrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2022;46(2):fuab052.PubMedCrossRef
30.
go back to reference Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett. 2022;27(1):33.PubMedPubMedCentralCrossRef Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett. 2022;27(1):33.PubMedPubMedCentralCrossRef
31.
go back to reference Zhang G, Li C, Quartararo AJ, Loas A, Pentelute BL. Automated affinity selection for rapid discovery of peptide binders. Chem Sci. 2021;12(32):10817–24.PubMedPubMedCentralCrossRef Zhang G, Li C, Quartararo AJ, Loas A, Pentelute BL. Automated affinity selection for rapid discovery of peptide binders. Chem Sci. 2021;12(32):10817–24.PubMedPubMedCentralCrossRef
33.
go back to reference Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release. 2018;292:141–62.PubMedCrossRef Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release. 2018;292:141–62.PubMedCrossRef
34.
go back to reference Matsuo AL, Tanaka AS, Juliano MA, Rodrigues EG, Travassos LR. A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity. J Mol Med (Berl). 2010;88(12):1255–64.PubMedCrossRef Matsuo AL, Tanaka AS, Juliano MA, Rodrigues EG, Travassos LR. A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity. J Mol Med (Berl). 2010;88(12):1255–64.PubMedCrossRef
35.
go back to reference Deng T, Hou Y, Lin G, Feng C, Liu K, Chen W, Wei W, Huang L, Dai X. A Novel Fibromodulin antagonist peptide RP4 Exerts Antitumor Effects on Colorectal Cancer. Pharmaceutics. 2023;15(3):944.PubMedPubMedCentralCrossRef Deng T, Hou Y, Lin G, Feng C, Liu K, Chen W, Wei W, Huang L, Dai X. A Novel Fibromodulin antagonist peptide RP4 Exerts Antitumor Effects on Colorectal Cancer. Pharmaceutics. 2023;15(3):944.PubMedPubMedCentralCrossRef
36.
go back to reference Wang K, Dai X, Yu A, Feng C, Liu K, Huang L. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Cancer Res. 2022;41(1):289.PubMedPubMedCentralCrossRef Wang K, Dai X, Yu A, Feng C, Liu K, Huang L. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Cancer Res. 2022;41(1):289.PubMedPubMedCentralCrossRef
37.
go back to reference Yang S, Sun S, Xu W, Yu B, Wang G, Wang H. Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway. Mol Med Rep. 2020;21(4):1819–32.PubMedPubMedCentral Yang S, Sun S, Xu W, Yu B, Wang G, Wang H. Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway. Mol Med Rep. 2020;21(4):1819–32.PubMedPubMedCentral
39.
go back to reference Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.PubMedPubMedCentralCrossRef Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.PubMedPubMedCentralCrossRef
40.
go back to reference Liu X, Cao Y, Lv K, Gu Y, Jin K, He X, Fang H, Fei Y, Shi M, Lin C, Liu H, Li H, He H, Xu J, Li R, Zhang H. Tumor-infiltrating podoplanin(+) cells in gastric cancer: clinical outcomes and association with immune contexture. Oncoimmunology. 2020;9(1):1845038.PubMedPubMedCentralCrossRef Liu X, Cao Y, Lv K, Gu Y, Jin K, He X, Fang H, Fei Y, Shi M, Lin C, Liu H, Li H, He H, Xu J, Li R, Zhang H. Tumor-infiltrating podoplanin(+) cells in gastric cancer: clinical outcomes and association with immune contexture. Oncoimmunology. 2020;9(1):1845038.PubMedPubMedCentralCrossRef
41.
go back to reference Watanabe N, Kidokoro M, Tanaka M, Inoue S, Tsuji T, Akatuska H, Okada C, Iida Y, Okada Y, Suzuki Y, Sato T, Yahata T, Hirayama N, Nakagawa Y, Inokuchi S. Podoplanin is indispensable for cell motility and platelet-induced epithelial-to-mesenchymal transition-related gene expression in esophagus squamous carcinoma TE11A cells. Cancer Cell Int. 2020;20(1):1–22.CrossRef Watanabe N, Kidokoro M, Tanaka M, Inoue S, Tsuji T, Akatuska H, Okada C, Iida Y, Okada Y, Suzuki Y, Sato T, Yahata T, Hirayama N, Nakagawa Y, Inokuchi S. Podoplanin is indispensable for cell motility and platelet-induced epithelial-to-mesenchymal transition-related gene expression in esophagus squamous carcinoma TE11A cells. Cancer Cell Int. 2020;20(1):1–22.CrossRef
43.
go back to reference Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration and suppress invasiveness, migration, and proliferation of melanoma cells. bioRxiv. 2022;11:483949. Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration and suppress invasiveness, migration, and proliferation of melanoma cells. bioRxiv. 2022;11:483949.
44.
go back to reference Pond KW, Doubrovinski K, Thorne CA. Wnt/beta-catenin Signaling in Tissue Self-Organization. Genes (Basel). 2020;11(8):939.PubMedCrossRef Pond KW, Doubrovinski K, Thorne CA. Wnt/beta-catenin Signaling in Tissue Self-Organization. Genes (Basel). 2020;11(8):939.PubMedCrossRef
45.
go back to reference de Winde CM, Makris S, Millward L, Rebordinos JC, Benjamin AC, Martínez VG, Acton SE. Podoplanin function is switched by partner proteins on fibroblastic reticular cells. 2019. p. 793141. de Winde CM, Makris S, Millward L, Rebordinos JC, Benjamin AC, Martínez VG, Acton SE. Podoplanin function is switched by partner proteins on fibroblastic reticular cells. 2019. p. 793141.
46.
go back to reference Ding Y, Shen S, Lino AC, et al. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 2008;14(2):162–9.PubMedCrossRef Ding Y, Shen S, Lino AC, et al. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 2008;14(2):162–9.PubMedCrossRef
47.
go back to reference Manicassamy S, Reizis B, Ravindran R, et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329(5993):849–53.PubMedPubMedCentralCrossRef Manicassamy S, Reizis B, Ravindran R, et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329(5993):849–53.PubMedPubMedCentralCrossRef
48.
go back to reference Luke JJ, Bao R, Spranger S, et al. Correlation of WNT/β-catenin pathway activation with immune exclusion across most human cancers. 2016. p. 3004–3004. Luke JJ, Bao R, Spranger S, et al. Correlation of WNT/β-catenin pathway activation with immune exclusion across most human cancers. 2016. p. 3004–3004.
49.
go back to reference Wang P, Zhang X, Sun N, Zhao Z, He J. Comprehensive Analysis of the Tumor Microenvironment in Cutaneous Melanoma associated with Immune Infiltration. J Cancer. 2020;11(13):3858–70.PubMedPubMedCentralCrossRef Wang P, Zhang X, Sun N, Zhao Z, He J. Comprehensive Analysis of the Tumor Microenvironment in Cutaneous Melanoma associated with Immune Infiltration. J Cancer. 2020;11(13):3858–70.PubMedPubMedCentralCrossRef
50.
go back to reference Caraban BM, Matei E, Cozaru GC, Aschie M, Deacu M, Enciu M, Baltatescu GI, Chisoi A, Dobrin N, Petcu L, Gheorghe E, Hangan LT, Rosu MC, Orasanu CI, Nicolau AA. PD-L1, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes (TILs) Expression Profiles in Melanoma Tumor Microenvironment Cells. J Pers Med. 2023;13(2):221.PubMedPubMedCentralCrossRef Caraban BM, Matei E, Cozaru GC, Aschie M, Deacu M, Enciu M, Baltatescu GI, Chisoi A, Dobrin N, Petcu L, Gheorghe E, Hangan LT, Rosu MC, Orasanu CI, Nicolau AA. PD-L1, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes (TILs) Expression Profiles in Melanoma Tumor Microenvironment Cells. J Pers Med. 2023;13(2):221.PubMedPubMedCentralCrossRef
52.
go back to reference Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.PubMedCrossRef Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.PubMedCrossRef
53.
go back to reference Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, Moch H, Detmar M. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol. 2010;177(2):1004–16.PubMedPubMedCentralCrossRef Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, Moch H, Detmar M. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol. 2010;177(2):1004–16.PubMedPubMedCentralCrossRef
54.
56.
go back to reference Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H, Wang L. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11(6):2892–916.PubMedPubMedCentralCrossRef Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H, Wang L. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11(6):2892–916.PubMedPubMedCentralCrossRef
57.
go back to reference Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC, Qin HY. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9(8):793.PubMedPubMedCentralCrossRef Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC, Qin HY. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9(8):793.PubMedPubMedCentralCrossRef
Metadata
Title
A novel PDPN antagonist peptide CY12-RP2 inhibits melanoma growth via Wnt/β-catenin and modulates the immune cells
Authors
Chunyan Feng
Albert Yu
Zhongfu Wang
Kun Wang
Jiawei Chen
Yaojiong Wu
Ting Deng
Huaqing Chen
Yibo Hou
Shaohua Ma
Xiaoyong Dai
Laiqiang Huang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02910-y

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine