Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Thrombocytopenia | Review

Genetic variants of Dabie bandavirus: classification and biological/clinical implications

Authors: Bingyan Liu, Jie Zhu, Tengfei He, Zhenhua Zhang

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus (DBV), a novel Bandavirus in the family Phenuiviridae. The first case of SFTS was reported in China, followed by cases in Japan, South Korea, Taiwan and Vietnam. With clinical manifestations including fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms, SFTS has a fatality rate of approximately 10%. In recent years, an increasing number of viral strains have been isolated and sequenced, and several research groups have attempted to classify the different genotypes of DBV. Additionally, accumulating evidence indicates certain correlations between the genetic makeup and biological/clinical manifestations of the virus. Here, we attempted to evaluate the genetic classification of different groups, align the genotypic nomenclature in different studies, summarize the distribution of different genotypes, and review the biological and clinical implications of DBV genetic variations.
Literature
1.
go back to reference Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.PubMedPubMedCentralCrossRef Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.PubMedPubMedCentralCrossRef
2.
go back to reference Li DX. Fever with thrombocytopenia associated with a novel bunyavirus in China. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011;25:81–4.PubMed Li DX. Fever with thrombocytopenia associated with a novel bunyavirus in China. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011;25:81–4.PubMed
3.
go back to reference Jiang XL, Zhang S, Jiang M, Bi ZQ, Liang MF, Ding SJ, Wang SW, Liu JY, Zhou SQ, Zhang XM, et al. A cluster of person-to-person transmission cases caused by SFTS virus in Penglai, China. Clin Microbiol Infect. 2015;21:274–9.PubMedCrossRef Jiang XL, Zhang S, Jiang M, Bi ZQ, Liang MF, Ding SJ, Wang SW, Liu JY, Zhou SQ, Zhang XM, et al. A cluster of person-to-person transmission cases caused by SFTS virus in Penglai, China. Clin Microbiol Infect. 2015;21:274–9.PubMedCrossRef
4.
go back to reference Ding S, Niu G, Xu X, Li J, Zhang X, Yin H, Zhang N, Jiang X, Wang S, Liang M, et al. Age is a critical risk factor for severe fever with thrombocytopenia syndrome. PLoS ONE. 2014;9: e111736.PubMedPubMedCentralCrossRef Ding S, Niu G, Xu X, Li J, Zhang X, Yin H, Zhang N, Jiang X, Wang S, Liang M, et al. Age is a critical risk factor for severe fever with thrombocytopenia syndrome. PLoS ONE. 2014;9: e111736.PubMedPubMedCentralCrossRef
6.
go back to reference Zhan J, Wang Q, Cheng J, Hu B, Li J, Zhan F, Song Y, Guo D. Current status of severe fever with thrombocytopenia syndrome in China. Virol Sin. 2017;32:51–62.PubMedPubMedCentralCrossRef Zhan J, Wang Q, Cheng J, Hu B, Li J, Zhan F, Song Y, Guo D. Current status of severe fever with thrombocytopenia syndrome in China. Virol Sin. 2017;32:51–62.PubMedPubMedCentralCrossRef
7.
go back to reference Casel MA, Park SJ, Choi YK. Severe fever with thrombocytopenia syndrome virus: emerging novel phlebovirus and their control strategy. Exp Mol Med. 2021;53:713–22.PubMedPubMedCentralCrossRef Casel MA, Park SJ, Choi YK. Severe fever with thrombocytopenia syndrome virus: emerging novel phlebovirus and their control strategy. Exp Mol Med. 2021;53:713–22.PubMedPubMedCentralCrossRef
8.
go back to reference Tran XC, Yun Y, Van An L, Kim SH, Thao NTP, Man PKC, Yoo JR, Heo ST, Cho NH, Lee KH. Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis. 2019;25:1029–31.PubMedPubMedCentralCrossRef Tran XC, Yun Y, Van An L, Kim SH, Thao NTP, Man PKC, Yoo JR, Heo ST, Cho NH, Lee KH. Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis. 2019;25:1029–31.PubMedPubMedCentralCrossRef
9.
go back to reference Ministry of Health P. Guideline for prevention and treatment of sever fever with thrombocytopenia syndrome (2010 vesrion). Chin J Clin Infect Dis 2010. Ministry of Health P. Guideline for prevention and treatment of sever fever with thrombocytopenia syndrome (2010 vesrion). Chin J Clin Infect Dis 2010.
10.
go back to reference Yun SM, Park SJ, Kim YI, Park SW, Yu MA, Kwon HI, Kim EH, Yu KM, Jeong HW, Ryou J, et al. Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight. 2020;5:e129531.PubMedPubMedCentralCrossRef Yun SM, Park SJ, Kim YI, Park SW, Yu MA, Kwon HI, Kim EH, Yu KM, Jeong HW, Ryou J, et al. Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight. 2020;5:e129531.PubMedPubMedCentralCrossRef
12.
go back to reference Li Z, Bao C, Hu J, Gao C, Zhang N, Xiang H, Cardona CJ, Xing Z. Susceptibility of spotted doves (Streptopelia chinensis) to experimental infection with the severe fever with thrombocytopenia syndrome phlebovirus. PLoS Negl Trop Dis. 2019;13: e0006982.PubMedPubMedCentralCrossRef Li Z, Bao C, Hu J, Gao C, Zhang N, Xiang H, Cardona CJ, Xing Z. Susceptibility of spotted doves (Streptopelia chinensis) to experimental infection with the severe fever with thrombocytopenia syndrome phlebovirus. PLoS Negl Trop Dis. 2019;13: e0006982.PubMedPubMedCentralCrossRef
13.
go back to reference Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013;87:4384–94.PubMedPubMedCentralCrossRef Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013;87:4384–94.PubMedPubMedCentralCrossRef
14.
go back to reference van Kooyk Y. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans. 2008;36:1478–81.PubMedCrossRef van Kooyk Y. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans. 2008;36:1478–81.PubMedCrossRef
15.
go back to reference Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol. 2014;88:237–48.PubMedPubMedCentralCrossRef Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol. 2014;88:237–48.PubMedPubMedCentralCrossRef
16.
go back to reference Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.PubMedPubMedCentralCrossRef Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.PubMedPubMedCentralCrossRef
17.
go back to reference Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, Popov V, Yu XJ, Garcia-Sastre A, Aguilar PV. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol. 2014;88:4572–85.PubMedPubMedCentralCrossRef Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, Popov V, Yu XJ, Garcia-Sastre A, Aguilar PV. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol. 2014;88:4572–85.PubMedPubMedCentralCrossRef
18.
go back to reference Kitagawa Y, Sakai M, Shimojima M, Saijo M, Itoh M, Gotoh B. Nonstructural protein of severe fever with thrombocytopenia syndrome phlebovirus targets STAT2 and not STAT1 to inhibit type I interferon-stimulated JAK-STAT signaling. Microbes Infect. 2018;20:360–8.PubMedCrossRef Kitagawa Y, Sakai M, Shimojima M, Saijo M, Itoh M, Gotoh B. Nonstructural protein of severe fever with thrombocytopenia syndrome phlebovirus targets STAT2 and not STAT1 to inhibit type I interferon-stimulated JAK-STAT signaling. Microbes Infect. 2018;20:360–8.PubMedCrossRef
19.
go back to reference Jin C, Song J, Han Y, Li C, Qiu P, Liang M. Inclusion bodies are formed in SFTSV-infected human macrophages. Bing Du Xue Bao. 2016;32:19–25.PubMed Jin C, Song J, Han Y, Li C, Qiu P, Liang M. Inclusion bodies are formed in SFTSV-infected human macrophages. Bing Du Xue Bao. 2016;32:19–25.PubMed
20.
go back to reference Walter CT, Bento DF, Alonso AG, Barr JN. Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. J Gen Virol. 2011;92:80–4.PubMedPubMedCentralCrossRef Walter CT, Bento DF, Alonso AG, Barr JN. Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. J Gen Virol. 2011;92:80–4.PubMedPubMedCentralCrossRef
22.
go back to reference Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;234:118–34.PubMedPubMedCentralCrossRef Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;234:118–34.PubMedPubMedCentralCrossRef
23.
go back to reference Poranen MM, Paatero AO, Tuma R, Bamford DH. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell. 2001;7:845–54.PubMedCrossRef Poranen MM, Paatero AO, Tuma R, Bamford DH. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell. 2001;7:845–54.PubMedCrossRef
24.
go back to reference Vogel D, Thorkelsson SR, Quemin ERJ, Meier K, Kouba T, Gogrefe N, Busch C, Reindl S, Gunther S, Cusack S, et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 2020;48:5749–65.PubMedPubMedCentralCrossRef Vogel D, Thorkelsson SR, Quemin ERJ, Meier K, Kouba T, Gogrefe N, Busch C, Reindl S, Gunther S, Cusack S, et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 2020;48:5749–65.PubMedPubMedCentralCrossRef
25.
go back to reference Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6: e1001101.PubMedPubMedCentralCrossRef Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6: e1001101.PubMedPubMedCentralCrossRef
26.
go back to reference Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Gunther S, Cusack S. Comparative structural and functional analysis of bunyavirus and arenavirus cap-snatching endonucleases. PLoS Pathog. 2016;12: e1005636.PubMedPubMedCentralCrossRef Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Gunther S, Cusack S. Comparative structural and functional analysis of bunyavirus and arenavirus cap-snatching endonucleases. PLoS Pathog. 2016;12: e1005636.PubMedPubMedCentralCrossRef
27.
go back to reference Jones R, Lessoued S, Meier K, Devignot S, Barata-Garcia S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res. 2019;47:10914–30.PubMedPubMedCentralCrossRef Jones R, Lessoued S, Meier K, Devignot S, Barata-Garcia S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res. 2019;47:10914–30.PubMedPubMedCentralCrossRef
28.
go back to reference Noda K, Tsuda Y, Kozawa F, Igarashi M, Shimizu K, Arikawa J, Yoshimatsu K. The polarity of an amino acid at position 1891 of severe fever with thrombocytopenia syndrome virus L protein is critical for the polymerase activity. Viruses. 2020;13:33.PubMedPubMedCentralCrossRef Noda K, Tsuda Y, Kozawa F, Igarashi M, Shimizu K, Arikawa J, Yoshimatsu K. The polarity of an amino acid at position 1891 of severe fever with thrombocytopenia syndrome virus L protein is critical for the polymerase activity. Viruses. 2020;13:33.PubMedPubMedCentralCrossRef
29.
go back to reference Gogrefe N, Reindl S, Gunther S, Rosenthal M. Structure of a functional cap-binding domain in Rift Valley fever virus L protein. PLoS Pathog. 2019;15: e1007829.PubMedPubMedCentralCrossRef Gogrefe N, Reindl S, Gunther S, Rosenthal M. Structure of a functional cap-binding domain in Rift Valley fever virus L protein. PLoS Pathog. 2019;15: e1007829.PubMedPubMedCentralCrossRef
30.
31.
go back to reference Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JS. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:3568–76.PubMedPubMedCentralCrossRef Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JS. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:3568–76.PubMedPubMedCentralCrossRef
32.
go back to reference Nishio S, Tsuda Y, Ito R, Shimizu K, Yoshimatsu K, Arikawa J. Establishment of subclones of the severe fever with thrombocytopenia syndrome virus YG1 strain selected using low pH-dependent cell fusion activity. Jpn J Infect Dis. 2017;70:388–93.PubMedCrossRef Nishio S, Tsuda Y, Ito R, Shimizu K, Yoshimatsu K, Arikawa J. Establishment of subclones of the severe fever with thrombocytopenia syndrome virus YG1 strain selected using low pH-dependent cell fusion activity. Jpn J Infect Dis. 2017;70:388–93.PubMedCrossRef
33.
go back to reference Tsuda Y, Igarashi M, Ito R, Nishio S, Shimizu K, Yoshimatsu K, Arikawa J. The amino acid at position 624 in the glycoprotein of SFTSV (severe fever with thrombocytopenia virus) plays a critical role in low-pH-dependent cell fusion activity. Biomed Res. 2017;38:89–97.PubMedCrossRef Tsuda Y, Igarashi M, Ito R, Nishio S, Shimizu K, Yoshimatsu K, Arikawa J. The amino acid at position 624 in the glycoprotein of SFTSV (severe fever with thrombocytopenia virus) plays a critical role in low-pH-dependent cell fusion activity. Biomed Res. 2017;38:89–97.PubMedCrossRef
34.
go back to reference Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004;427:313–9.PubMedCrossRef Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004;427:313–9.PubMedCrossRef
36.
go back to reference Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A. 2016;113:7154–9.PubMedPubMedCentralCrossRef Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A. 2016;113:7154–9.PubMedPubMedCentralCrossRef
37.
go back to reference Filone CM, Heise M, Doms RW, Bertolotti-Ciarlet A. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors. Virology. 2006;356:155–64.PubMedCrossRef Filone CM, Heise M, Doms RW, Bertolotti-Ciarlet A. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors. Virology. 2006;356:155–64.PubMedCrossRef
38.
go back to reference Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe. 2010;7:488–99.PubMedPubMedCentralCrossRef Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe. 2010;7:488–99.PubMedPubMedCentralCrossRef
39.
go back to reference Tani H, Kawachi K, Kimura M, Taniguchi S, Shimojima M, Fukushi S, Igarashi M, Morikawa S, Saijo M. Identification of the amino acid residue important for fusion of severe fever with thrombocytopenia syndrome virus glycoprotein. Virology. 2019;535:102–10.PubMedCrossRef Tani H, Kawachi K, Kimura M, Taniguchi S, Shimojima M, Fukushi S, Igarashi M, Morikawa S, Saijo M. Identification of the amino acid residue important for fusion of severe fever with thrombocytopenia syndrome virus glycoprotein. Virology. 2019;535:102–10.PubMedCrossRef
40.
go back to reference Brennan B, Li P, Zhang S, Li A, Liang M, Li D, Elliott RM. Reverse genetics system for severe fever with thrombocytopenia syndrome virus. J Virol. 2015;89:3026–37.PubMedCrossRef Brennan B, Li P, Zhang S, Li A, Liang M, Li D, Elliott RM. Reverse genetics system for severe fever with thrombocytopenia syndrome virus. J Virol. 2015;89:3026–37.PubMedCrossRef
41.
go back to reference Yun SM, Park SJ, Park SW, Choi W, Jeong HW, Choi YK, Lee WJ. Molecular genomic characterization of tick- and human-derived severe fever with thrombocytopenia syndrome virus isolates from South Korea. PLoS Negl Trop Dis. 2017;11: e0005893.PubMedPubMedCentralCrossRef Yun SM, Park SJ, Park SW, Choi W, Jeong HW, Choi YK, Lee WJ. Molecular genomic characterization of tick- and human-derived severe fever with thrombocytopenia syndrome virus isolates from South Korea. PLoS Negl Trop Dis. 2017;11: e0005893.PubMedPubMedCentralCrossRef
42.
go back to reference Liu JW, Zhao L, Luo LM, Liu MM, Sun Y, Su X, Yu XJ. Molecular evolution and spatial transmission of severe fever with thrombocytopenia syndrome virus based on complete genome sequences. PLoS ONE. 2016;11: e0151677.PubMedPubMedCentralCrossRef Liu JW, Zhao L, Luo LM, Liu MM, Sun Y, Su X, Yu XJ. Molecular evolution and spatial transmission of severe fever with thrombocytopenia syndrome virus based on complete genome sequences. PLoS ONE. 2016;11: e0151677.PubMedPubMedCentralCrossRef
43.
go back to reference Yun MR, Ryou J, Choi W, Lee JY, Park SW, Kim DW. Genetic diversity and evolutionary history of Korean isolates of severe fever with thrombocytopenia syndrome virus from 2013–2016. Arch Virol. 2020;165:2599–603.PubMedPubMedCentralCrossRef Yun MR, Ryou J, Choi W, Lee JY, Park SW, Kim DW. Genetic diversity and evolutionary history of Korean isolates of severe fever with thrombocytopenia syndrome virus from 2013–2016. Arch Virol. 2020;165:2599–603.PubMedPubMedCentralCrossRef
44.
go back to reference Liu L, Chen W, Yang Y, Jiang Y. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based on whole-genome sequences. Infect Genet Evol. 2016;39:55–63.PubMedCrossRef Liu L, Chen W, Yang Y, Jiang Y. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based on whole-genome sequences. Infect Genet Evol. 2016;39:55–63.PubMedCrossRef
45.
go back to reference Huang X, Liu L, Du Y, Wu W, Wang H, Su J, Tang X, Liu Q, Yang Y, Jiang Y, et al. The evolutionary history and spatiotemporal dynamics of the fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV) in China. PLoS Negl Trop Dis. 2014;8: e3237.PubMedPubMedCentralCrossRef Huang X, Liu L, Du Y, Wu W, Wang H, Su J, Tang X, Liu Q, Yang Y, Jiang Y, et al. The evolutionary history and spatiotemporal dynamics of the fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV) in China. PLoS Negl Trop Dis. 2014;8: e3237.PubMedPubMedCentralCrossRef
46.
go back to reference Fu Y, Li S, Zhang Z, Man S, Li X, Zhang W, Zhang C, Cheng X. Phylogeographic analysis of severe fever with thrombocytopenia syndrome virus from Zhoushan Islands, China: implication for transmission across the ocean. Sci Rep. 2016;6:19563.PubMedPubMedCentralCrossRef Fu Y, Li S, Zhang Z, Man S, Li X, Zhang W, Zhang C, Cheng X. Phylogeographic analysis of severe fever with thrombocytopenia syndrome virus from Zhoushan Islands, China: implication for transmission across the ocean. Sci Rep. 2016;6:19563.PubMedPubMedCentralCrossRef
47.
go back to reference Freire CC, Iamarino A, Soumare PO, Faye O, Sall AA, Zanotto PM. Reassortment and distinct evolutionary dynamics of Rift Valley fever virus genomic segments. Sci Rep. 2015;5:11353.PubMedPubMedCentralCrossRef Freire CC, Iamarino A, Soumare PO, Faye O, Sall AA, Zanotto PM. Reassortment and distinct evolutionary dynamics of Rift Valley fever virus genomic segments. Sci Rep. 2015;5:11353.PubMedPubMedCentralCrossRef
48.
49.
go back to reference Chen S. Molecular evolution of Crimean-Congo hemorrhagic fever virus based on complete genomes. J Gen Virol. 2013;94:843–50.PubMedCrossRef Chen S. Molecular evolution of Crimean-Congo hemorrhagic fever virus based on complete genomes. J Gen Virol. 2013;94:843–50.PubMedCrossRef
51.
go back to reference Saitou N, Nei M. Polymorphism and evolution of influenza A virus genes. Mol Biol Evol. 1986;3:57–74.PubMed Saitou N, Nei M. Polymorphism and evolution of influenza A virus genes. Mol Biol Evol. 1986;3:57–74.PubMed
52.
go back to reference Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209:816–27.PubMedCrossRef Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209:816–27.PubMedCrossRef
53.
go back to reference Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, Singh H, Suda Y, Shirabe K, Toda S, et al. Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis. 2015;212:889–98.PubMedCrossRef Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, Singh H, Suda Y, Shirabe K, Toda S, et al. Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis. 2015;212:889–98.PubMedCrossRef
54.
go back to reference Lv Q, Zhang H, Tian L, Zhang R, Zhang Z, Li J, Tong Y, Fan H, Carr MJ, Shi W. Novel sub-lineages, recombinants and reassortants of severe fever with thrombocytopenia syndrome virus. Ticks Tick Borne Dis. 2017;8:385–90.PubMedCrossRef Lv Q, Zhang H, Tian L, Zhang R, Zhang Z, Li J, Tong Y, Fan H, Carr MJ, Shi W. Novel sub-lineages, recombinants and reassortants of severe fever with thrombocytopenia syndrome virus. Ticks Tick Borne Dis. 2017;8:385–90.PubMedCrossRef
55.
go back to reference Li Z, Hu J, Cui L, Hong Y, Liu J, Li P, Guo X, Liu W, Wang X, Qi X, et al. Increased prevalence of severe fever with thrombocytopenia syndrome in Eastern China clustered with multiple genotypes and reasserted virus during 2010–2015. Sci Rep. 2017;7:6503.PubMedPubMedCentralCrossRef Li Z, Hu J, Cui L, Hong Y, Liu J, Li P, Guo X, Liu W, Wang X, Qi X, et al. Increased prevalence of severe fever with thrombocytopenia syndrome in Eastern China clustered with multiple genotypes and reasserted virus during 2010–2015. Sci Rep. 2017;7:6503.PubMedPubMedCentralCrossRef
56.
go back to reference Seo MG, Noh BE, Lee HS, Kim TK, Song BG, Lee HI. Nationwide temporal and geographical distribution of tick populations and phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in ticks in Korea, 2020. Microorganisms. 2021;9:1630.PubMedPubMedCentralCrossRef Seo MG, Noh BE, Lee HS, Kim TK, Song BG, Lee HI. Nationwide temporal and geographical distribution of tick populations and phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in ticks in Korea, 2020. Microorganisms. 2021;9:1630.PubMedPubMedCentralCrossRef
57.
go back to reference Lee J, Moon K, Kim M, Lee WG, Lee HI, Park JK, Kim YH. Seasonal distribution of Haemaphysalis longicornis (Acari: Ixodidae) and detection of SFTS virus in Gyeongbuk Province, Republic of Korea, 2018. Acta Trop. 2021;221: 106012.PubMedCrossRef Lee J, Moon K, Kim M, Lee WG, Lee HI, Park JK, Kim YH. Seasonal distribution of Haemaphysalis longicornis (Acari: Ixodidae) and detection of SFTS virus in Gyeongbuk Province, Republic of Korea, 2018. Acta Trop. 2021;221: 106012.PubMedCrossRef
58.
go back to reference Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Jeong H, Son K, Kim J, Choi Y, Kim WM, et al. Survey of severe fever with thrombocytopenia syndrome virus in wild boar in the Republic of Korea. Ticks Tick Borne Dis. 2021;12: 101813.PubMedCrossRef Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Jeong H, Son K, Kim J, Choi Y, Kim WM, et al. Survey of severe fever with thrombocytopenia syndrome virus in wild boar in the Republic of Korea. Ticks Tick Borne Dis. 2021;12: 101813.PubMedCrossRef
59.
go back to reference Ikemori R, Aoyama I, Sasaki T, Takabayashi H, Morisada K, Kinoshita M, Ikuta K, Yumisashi T, Motomura K. Two different strains of severe fever with thrombocytopenia syndrome virus (SFTSV) in North and South Osaka by phylogenetic analysis of evolutionary lineage: evidence for independent SFTSV transmission. Viruses. 2021;13:177.PubMedPubMedCentralCrossRef Ikemori R, Aoyama I, Sasaki T, Takabayashi H, Morisada K, Kinoshita M, Ikuta K, Yumisashi T, Motomura K. Two different strains of severe fever with thrombocytopenia syndrome virus (SFTSV) in North and South Osaka by phylogenetic analysis of evolutionary lineage: evidence for independent SFTSV transmission. Viruses. 2021;13:177.PubMedPubMedCentralCrossRef
60.
go back to reference Yun Y, Heo ST, Kim G, Hewson R, Kim H, Park D, Cho NH, Oh WS, Ryu SY, Kwon KT, et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am J Trop Med Hyg. 2015;93:468–74.PubMedPubMedCentralCrossRef Yun Y, Heo ST, Kim G, Hewson R, Kim H, Park D, Cho NH, Oh WS, Ryu SY, Kwon KT, et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am J Trop Med Hyg. 2015;93:468–74.PubMedPubMedCentralCrossRef
61.
go back to reference Lee HS, Kim J, Son K, Kim Y, Hwang J, Jeong H, Ahn TY, Jheong WH. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in Korean water deer (Hydropotes inermis argyropus) in the Republic of Korea. Ticks Tick Borne Dis. 2020;11: 101331.PubMedCrossRef Lee HS, Kim J, Son K, Kim Y, Hwang J, Jeong H, Ahn TY, Jheong WH. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in Korean water deer (Hydropotes inermis argyropus) in the Republic of Korea. Ticks Tick Borne Dis. 2020;11: 101331.PubMedCrossRef
62.
go back to reference Li JC, Wang YN, Zhao J, Li H, Liu W. A review on the epidemiology of severe fever with thrombocytopenia syndrome. Zhonghua Liu Xing Bing Xue Za Zhi. 2021;42:2226–33.PubMed Li JC, Wang YN, Zhao J, Li H, Liu W. A review on the epidemiology of severe fever with thrombocytopenia syndrome. Zhonghua Liu Xing Bing Xue Za Zhi. 2021;42:2226–33.PubMed
63.
go back to reference Liu K, Zhou H, Sun RX, Yao HW, Li Y, Wang LP, Di M, Li XL, Yang Y, Gray GC, et al. A national assessment of the epidemiology of severe fever with thrombocytopenia syndrome, China. Sci Rep. 2015;5:9679.PubMedPubMedCentralCrossRef Liu K, Zhou H, Sun RX, Yao HW, Li Y, Wang LP, Di M, Li XL, Yang Y, Gray GC, et al. A national assessment of the epidemiology of severe fever with thrombocytopenia syndrome, China. Sci Rep. 2015;5:9679.PubMedPubMedCentralCrossRef
64.
go back to reference Hu B, Cai K, Liu M, Li W, Xu J, Qiu F, Zhan J. Laboratory detection and molecular phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in Hubei Province, central China. Arch Virol. 2018;163:3243–54.PubMedCrossRef Hu B, Cai K, Liu M, Li W, Xu J, Qiu F, Zhan J. Laboratory detection and molecular phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in Hubei Province, central China. Arch Virol. 2018;163:3243–54.PubMedCrossRef
65.
66.
go back to reference Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, Macken C, Hata M, Gog J, Miller MA, Holmes EC. The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol. 2007;24:1811–20.PubMedCrossRef Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, Macken C, Hata M, Gog J, Miller MA, Holmes EC. The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol. 2007;24:1811–20.PubMedCrossRef
67.
go back to reference Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, St George K, Taylor J, Spiro DJ, Sengamalay NA, Ghedin E, et al. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 2008;4: e1000012.PubMedPubMedCentralCrossRef Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, St George K, Taylor J, Spiro DJ, Sengamalay NA, Ghedin E, et al. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 2008;4: e1000012.PubMedPubMedCentralCrossRef
68.
go back to reference Lam TT, Liu W, Bowden TA, Cui N, Zhuang L, Liu K, Zhang YY, Cao WC, Pybus OG. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics. 2013;5:1–10.PubMedPubMedCentralCrossRef Lam TT, Liu W, Bowden TA, Cui N, Zhuang L, Liu K, Zhang YY, Cao WC, Pybus OG. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics. 2013;5:1–10.PubMedPubMedCentralCrossRef
69.
go back to reference Zu Z, Lin H, Hu Y, Zheng X, Chen C, Zhao Y, He N. The genetic evolution and codon usage pattern of severe fever with thrombocytopenia syndrome virus. Infect Genet Evol. 2022;99: 105238.PubMedCrossRef Zu Z, Lin H, Hu Y, Zheng X, Chen C, Zhao Y, He N. The genetic evolution and codon usage pattern of severe fever with thrombocytopenia syndrome virus. Infect Genet Evol. 2022;99: 105238.PubMedCrossRef
70.
go back to reference Mindich L. Packaging, replication and recombination of the segmented genome of bacteriophage Phi6 and its relatives. Virus Res. 2004;101:83–92.PubMedCrossRef Mindich L. Packaging, replication and recombination of the segmented genome of bacteriophage Phi6 and its relatives. Virus Res. 2004;101:83–92.PubMedCrossRef
71.
go back to reference Lai MM. Genetic recombination in RNA viruses. Curr Top Microbiol Immunol. 1992;176:21–32.PubMed Lai MM. Genetic recombination in RNA viruses. Curr Top Microbiol Immunol. 1992;176:21–32.PubMed
72.
go back to reference Chen LJS, Zhe P, Chang L, Shaojian X, Hong H, Xiaoyan W, Jun L. Recombination and the mechanism of RNA viruses. China Anim Health Insp. 2021;8:P82–92. Chen LJS, Zhe P, Chang L, Shaojian X, Hong H, Xiaoyan W, Jun L. Recombination and the mechanism of RNA viruses. China Anim Health Insp. 2021;8:P82–92.
73.
go back to reference Boni MF, Smith GJ, Holmes EC, Vijaykrishna D. No evidence for intra-segment recombination of 2009 H1N1 influenza virus in swine. Gene. 2012;494:242–5.PubMedCrossRef Boni MF, Smith GJ, Holmes EC, Vijaykrishna D. No evidence for intra-segment recombination of 2009 H1N1 influenza virus in swine. Gene. 2012;494:242–5.PubMedCrossRef
74.
75.
go back to reference Plyusnin A, Kukkonen SK, Plyusnina A, Vapalahti O, Vaheri A. Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J. 2002;21:1497–503.PubMedPubMedCentralCrossRef Plyusnin A, Kukkonen SK, Plyusnina A, Vapalahti O, Vaheri A. Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J. 2002;21:1497–503.PubMedPubMedCentralCrossRef
76.
go back to reference He CQ, Ding NZ. Discovery of severe fever with thrombocytopenia syndrome bunyavirus strains originating from intragenic recombination. J Virol. 2012;86:12426–30.PubMedPubMedCentralCrossRef He CQ, Ding NZ. Discovery of severe fever with thrombocytopenia syndrome bunyavirus strains originating from intragenic recombination. J Virol. 2012;86:12426–30.PubMedPubMedCentralCrossRef
77.
go back to reference Yokomizo K, Tomozane M, Sano C, Ohta R. Clinical presentation and mortality of severe fever with thrombocytopenia syndrome in Japan: a systematic review of case reports. Int J Environ Res Public Health. 2022;19:2271.PubMedPubMedCentralCrossRef Yokomizo K, Tomozane M, Sano C, Ohta R. Clinical presentation and mortality of severe fever with thrombocytopenia syndrome in Japan: a systematic review of case reports. Int J Environ Res Public Health. 2022;19:2271.PubMedPubMedCentralCrossRef
78.
go back to reference Jiluo L. Epidemiological, clinical and viral evolutionary characteristics of important emerging infectious diseases (SFTS and COVID-19). Naval Medical University, 2020. Jiluo L. Epidemiological, clinical and viral evolutionary characteristics of important emerging infectious diseases (SFTS and COVID-19). Naval Medical University, 2020.
Metadata
Title
Genetic variants of Dabie bandavirus: classification and biological/clinical implications
Authors
Bingyan Liu
Jie Zhu
Tengfei He
Zhenhua Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02033-y

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.