Skip to main content
Top
Published in: International Urogynecology Journal 10/2015

01-10-2015 | Original Article

Three-dimensional analysis of implanted magnetic-resonance-visible meshes

Authors: Nikhil Sindhwani, Andrew Feola, Frederik De Keyzer, Filip Claus, Geertje Callewaert, Iva Urbankova, Sebastien Ourselin, Jan D’hooge, Jan Deprest

Published in: International Urogynecology Journal | Issue 10/2015

Login to get access

Abstract

Objective

Our primary objective was to develop relevant algorithms for quantification of mesh position and 3D shape in magnetic resonance (MR) images.

Methods

In this proof-of-principle study, one patient with severe anterior vaginal wall prolapse was implanted with an MR-visible mesh. High-resolution MR images of the pelvis were acquired 6 weeks and 8 months postsurgery. 3D models were created using semiautomatic segmentation techniques. Conformational changes were recorded quantitatively using part-comparison analysis. An ellipticity measure is proposed to record longitudinal conformational changes in the mesh arms. The surface that is the effective reinforcement provided by the mesh is calculated using a novel methodology. The area of this surface is the effective support area (ESA).

Results

MR-visible mesh was clearly outlined in the images, which allowed us to longitudinally quantify mesh configuration between 6 weeks and 8 months after implantation. No significant changes were found in mesh position, effective support area, conformation of the mesh’s main body, and arm length during the period of observation. Ellipticity profiles show longitudinal conformational changes in posterior arms.

Conclusions

This paper proposes novel methodologies for a systematic 3D assessment of the position and morphology of MR-visible meshes. A novel semiautomatic tool was developed to calculate the effective area of support provided by the mesh, a potentially clinically important parameter.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smith FJ, Holman CDJ, Moorin RE, Tsokos N (2010) Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol 116:1096–100CrossRefPubMed Smith FJ, Holman CDJ, Moorin RE, Tsokos N (2010) Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol 116:1096–100CrossRefPubMed
2.
go back to reference Jakus SM, Shapiro A, Hall CD (2008) Biologic and synthetic graft use in pelvic surgery: a review. Obstet Gynecol Surv 63:253–66CrossRefPubMed Jakus SM, Shapiro A, Hall CD (2008) Biologic and synthetic graft use in pelvic surgery: a review. Obstet Gynecol Surv 63:253–66CrossRefPubMed
3.
go back to reference Yurteri-Kaplan LA, Gutman RE (2012) The use of biological materials in urogynecologic reconstruction: a systematic review. Plast Reconstr Surg 130:242S–53SCrossRefPubMed Yurteri-Kaplan LA, Gutman RE (2012) The use of biological materials in urogynecologic reconstruction: a systematic review. Plast Reconstr Surg 130:242S–53SCrossRefPubMed
4.
go back to reference Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG (2011) Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J 22:789–98CrossRefPubMed Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG (2011) Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J 22:789–98CrossRefPubMed
5.
go back to reference Klosterhalfen B, Klinge U, Schumpelick BHV (2000) Klinik und forschung pathologie traditioneller chirurgischer netze zur hernienreparation nach langzeitimplantation im menschen. Chirurg 71:43–51PubMed Klosterhalfen B, Klinge U, Schumpelick BHV (2000) Klinik und forschung pathologie traditioneller chirurgischer netze zur hernienreparation nach langzeitimplantation im menschen. Chirurg 71:43–51PubMed
6.
go back to reference Jacquetin B, Cosson M (2009) Complications of vaginal mesh: our experience. Int Urogynecol J Pelvic Floor Dysfunct 20:893–96CrossRefPubMed Jacquetin B, Cosson M (2009) Complications of vaginal mesh: our experience. Int Urogynecol J Pelvic Floor Dysfunct 20:893–96CrossRefPubMed
7.
go back to reference Mangera A, Bullock AJ, Chapple CR, Macneil S (2012) Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? a systematic review. Neurourol Urodyn 31:13–21CrossRefPubMed Mangera A, Bullock AJ, Chapple CR, Macneil S (2012) Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? a systematic review. Neurourol Urodyn 31:13–21CrossRefPubMed
8.
go back to reference Klosterhalfen B, Hermanns B, Rosch R, Junge K (2003) Biological response to mesh. Eur Surg 35:16–21CrossRef Klosterhalfen B, Hermanns B, Rosch R, Junge K (2003) Biological response to mesh. Eur Surg 35:16–21CrossRef
9.
go back to reference Smajda S, Vanormelingen L, Vandewalle G, Ombelet W, de Jonge E, Hinoul P (2005) Translevator posterior intravaginal slingplasty: anatomical landmarks and safety margins. Int Urogynecol J Pelvic Floor Dysfunct 16:364–8CrossRefPubMed Smajda S, Vanormelingen L, Vandewalle G, Ombelet W, de Jonge E, Hinoul P (2005) Translevator posterior intravaginal slingplasty: anatomical landmarks and safety margins. Int Urogynecol J Pelvic Floor Dysfunct 16:364–8CrossRefPubMed
10.
go back to reference Hinoul P, Vanormelingen L, Roovers JP, de Jonge E, Smajda S (2007) Anatomical variability in the trajectory of the inside-out transobturator vaginal tape technique (TVT-O). Int Urogynecol J Pelvic Floor Dysfunct 18:1201–6CrossRefPubMed Hinoul P, Vanormelingen L, Roovers JP, de Jonge E, Smajda S (2007) Anatomical variability in the trajectory of the inside-out transobturator vaginal tape technique (TVT-O). Int Urogynecol J Pelvic Floor Dysfunct 18:1201–6CrossRefPubMed
11.
go back to reference Svabík K, Martan A, Masata J, El-Haddad R, Hubka P, Pavlikova M (2011) Ultrasound appearances after mesh implantation–evidence of mesh contraction or folding? Int Urogynecol J 22:529–33CrossRefPubMed Svabík K, Martan A, Masata J, El-Haddad R, Hubka P, Pavlikova M (2011) Ultrasound appearances after mesh implantation–evidence of mesh contraction or folding? Int Urogynecol J 22:529–33CrossRefPubMed
12.
go back to reference Palma P, Riccetto C, Fraga R, Miyaoka R, Prando A (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36:209–17CrossRefPubMed Palma P, Riccetto C, Fraga R, Miyaoka R, Prando A (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36:209–17CrossRefPubMed
13.
go back to reference Schoenmaeckers EJP, van der Valk SBA, van den Hout HW, Raymakers JFTJ, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23:1620–3CrossRefPubMed Schoenmaeckers EJP, van der Valk SBA, van den Hout HW, Raymakers JFTJ, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23:1620–3CrossRefPubMed
14.
go back to reference Kuehnert N, Kraemer NA, Otto J, Donker HCW, Slabu I, Baumann M et al (2011) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–75PubMedCentralCrossRefPubMed Kuehnert N, Kraemer NA, Otto J, Donker HCW, Slabu I, Baumann M et al (2011) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–75PubMedCentralCrossRefPubMed
15.
go back to reference Sandaite I, Claus F, Müllen A, De Ridder D, Deprest J (2011) Experimental MRI-contrast imaging of suture and mesh materials with -containing polivinylidenefluoride polymers designed for pelvic floor surgery. Neurourol Urodyn:1114–15 Sandaite I, Claus F, Müllen A, De Ridder D, Deprest J (2011) Experimental MRI-contrast imaging of suture and mesh materials with -containing polivinylidenefluoride polymers designed for pelvic floor surgery. Neurourol Urodyn:1114–15
16.
go back to reference Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–93CrossRefPubMed Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–93CrossRefPubMed
17.
go back to reference Sommer T, Friis-Andersen H (2013) DynaMesh® in the repair of laparoscopic ventral hernia: a prospective trial. Hernia 17–5:613–8CrossRef Sommer T, Friis-Andersen H (2013) DynaMesh® in the repair of laparoscopic ventral hernia: a prospective trial. Hernia 17–5:613–8CrossRef
18.
go back to reference Gerullis H, Klosterhalfen B, Borós M, Lammers B, Eimer C, Georgas E et al (2013) IDEAL in meshes for prolapse, urinary incontinence, and hernia repair. Surg Innov 20–5:502–8CrossRef Gerullis H, Klosterhalfen B, Borós M, Lammers B, Eimer C, Georgas E et al (2013) IDEAL in meshes for prolapse, urinary incontinence, and hernia repair. Surg Innov 20–5:502–8CrossRef
19.
go back to reference Alizai PH, Schmid S, Otto J, Klink CD, Roeth A, Nolting J et al (2014) Biomechanical analyses of prosthetic mesh repair in a hiatal hernia model. J Biomed Mater Res Part B 00B:000–000 Alizai PH, Schmid S, Otto J, Klink CD, Roeth A, Nolting J et al (2014) Biomechanical analyses of prosthetic mesh repair in a hiatal hernia model. J Biomed Mater Res Part B 00B:000–000
20.
go back to reference Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–38CrossRefPubMed Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–38CrossRefPubMed
21.
go back to reference Kraemer NA, Donker HCW, Otto J, Hodenius M, Sénégas J, Slabu I et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45–8:477–483CrossRef Kraemer NA, Donker HCW, Otto J, Hodenius M, Sénégas J, Slabu I et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45–8:477–483CrossRef
22.
go back to reference Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 59–3:2088–97CrossRef Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 59–3:2088–97CrossRef
23.
go back to reference Kraemer NA, Donker HCW, Kuehnert N, Otto J, Schrading S, Krombach GA et al (2013) In vivo visualization of polymer-based mesh implants using conventional magnetic resonance imaging and positive-contrast susceptibility imaging. Invest Radiol 48–4:200–5 Kraemer NA, Donker HCW, Kuehnert N, Otto J, Schrading S, Krombach GA et al (2013) In vivo visualization of polymer-based mesh implants using conventional magnetic resonance imaging and positive-contrast susceptibility imaging. Invest Radiol 48–4:200–5
24.
go back to reference Endo M, Feola A, Sindhwani N, Manodoro S, Vlacil J, Engels AC et al (2014) Mesh Contraction: In-vivo Documentation of Changes in Apparent Surface Area Utilizing Magnetic Resonance Image Visible Meshes in the Rabbit Abdominal Wall Model. Int Urogynecology J Endo M, Feola A, Sindhwani N, Manodoro S, Vlacil J, Engels AC et al (2014) Mesh Contraction: In-vivo Documentation of Changes in Apparent Surface Area Utilizing Magnetic Resonance Image Visible Meshes in the Rabbit Abdominal Wall Model. Int Urogynecology J
Metadata
Title
Three-dimensional analysis of implanted magnetic-resonance-visible meshes
Authors
Nikhil Sindhwani
Andrew Feola
Frederik De Keyzer
Filip Claus
Geertje Callewaert
Iva Urbankova
Sebastien Ourselin
Jan D’hooge
Jan Deprest
Publication date
01-10-2015
Publisher
Springer London
Published in
International Urogynecology Journal / Issue 10/2015
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-015-2681-1

Other articles of this Issue 10/2015

International Urogynecology Journal 10/2015 Go to the issue

Urogynecology Digest

Urogynecology Digest