Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2019

01-06-2019 | Review Article

The Complexity and Fractal Geometry of Nuclear Medicine Images

Authors: Fabio Grizzi, Angelo Castello, Dorina Qehajaj, Carlo Russo, Egesta Lopci

Published in: Molecular Imaging and Biology | Issue 3/2019

Login to get access

Abstract

Irregularity in shape and behavior is the main feature of every anatomical system, including human organs, tissues, cells, and sub-cellular entities. It has been shown that this property cannot be quantified by means of the classical Euclidean geometry, which is only able to describe regular geometrical objects. In contrast, fractal geometry has been widely applied in several scientific fields. This rapid growth has also produced substantial insights in the biomedical imaging. Consequently, particular attention has been given to the identification of pathognomonic patterns of “shape” in anatomical entities and their changes from natural to pathological states. Despite the advantages of fractal mathematics and several studies demonstrating its applicability to oncological research, many researchers and clinicians remain unaware of its potential. Therefore, this review aims to summarize the complexity and fractal geometry of nuclear medicine images.
Literature
1.
go back to reference Kane EA, Higham TE (2015) Complex systems are more than the sum of their parts: using integration to understand performance, biomechanics, and diversity. Integr Comp Biol 55:146–165CrossRef Kane EA, Higham TE (2015) Complex systems are more than the sum of their parts: using integration to understand performance, biomechanics, and diversity. Integr Comp Biol 55:146–165CrossRef
2.
go back to reference Grizzi F, Chiriva-Internati M (2005) The complexity of anatomical systems. Theor Biol Med Model 19:2–26 Grizzi F, Chiriva-Internati M (2005) The complexity of anatomical systems. Theor Biol Med Model 19:2–26
3.
go back to reference Simon AH (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482 Simon AH (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482
4.
go back to reference Di Ieva A, Grizzi F, Jelinek H et al (2014) Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist 20:403–417CrossRef Di Ieva A, Grizzi F, Jelinek H et al (2014) Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist 20:403–417CrossRef
5.
go back to reference Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26CrossRef Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26CrossRef
6.
go back to reference Sargut G, McGrath RG (2011) Learning to live with complexity. Harv Bus Rev 89(68–76):136 Sargut G, McGrath RG (2011) Learning to live with complexity. Harv Bus Rev 89(68–76):136
7.
8.
go back to reference Losa GA (2002) Fractal morphometry of cell complexity. Riv Biol 95:239–258PubMed Losa GA (2002) Fractal morphometry of cell complexity. Riv Biol 95:239–258PubMed
9.
go back to reference Bianciardi G (2015) Differential diagnosis. Shape and function, fractal tools in the pathology lab. Nonlinear Dynamics Psychol Life Sci 19:437–464PubMed Bianciardi G (2015) Differential diagnosis. Shape and function, fractal tools in the pathology lab. Nonlinear Dynamics Psychol Life Sci 19:437–464PubMed
10.
go back to reference Losa GA, Nonnenmacher TF (1996) Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol 9:174–182PubMed Losa GA, Nonnenmacher TF (1996) Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol 9:174–182PubMed
11.
go back to reference Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R (2015) Lung cancer—a fractal viewpoint. Nat Rev Clin Oncol 12:664–675CrossRef Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R (2015) Lung cancer—a fractal viewpoint. Nat Rev Clin Oncol 12:664–675CrossRef
12.
go back to reference Di Ieva A, Esteban FJ, Grizzi F et al (2015) Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist 21:30–43CrossRef Di Ieva A, Esteban FJ, Grizzi F et al (2015) Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist 21:30–43CrossRef
13.
go back to reference Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS, Kim SI (2006) Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp 27:994–1003CrossRef Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS, Kim SI (2006) Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp 27:994–1003CrossRef
14.
go back to reference Gadde SG, Anegondi N, Bhanushali D et al (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57:246–252CrossRef Gadde SG, Anegondi N, Bhanushali D et al (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57:246–252CrossRef
15.
go back to reference Noujaim SF, Berenfeld O, Kalifa J, Cerrone M, Nanthakumar K, Atienza F, Moreno J, Mironov S, Jalife J (2007) Universal scaling law of electrical turbulence in the mammalian heart. Proc Natl Acad Sci U S A 104:20985–20989CrossRef Noujaim SF, Berenfeld O, Kalifa J, Cerrone M, Nanthakumar K, Atienza F, Moreno J, Mironov S, Jalife J (2007) Universal scaling law of electrical turbulence in the mammalian heart. Proc Natl Acad Sci U S A 104:20985–20989CrossRef
16.
go back to reference Goldberger AL (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol Sci 6:87–91PubMed Goldberger AL (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol Sci 6:87–91PubMed
17.
go back to reference Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638CrossRef Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638CrossRef
18.
go back to reference Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40:8783–8792CrossRef Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40:8783–8792CrossRef
19.
go back to reference Glenny RW, Robertson HT, Yamashiro S, Bassingthwaighte JB (1991) Applications of fractal analysis to physiology. J Appl Physiol 70:2351–2367CrossRef Glenny RW, Robertson HT, Yamashiro S, Bassingthwaighte JB (1991) Applications of fractal analysis to physiology. J Appl Physiol 70:2351–2367CrossRef
20.
go back to reference Liebovitch LS, Todorov AT (1996) Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit Rev Neurobiol 10:169–187CrossRef Liebovitch LS, Todorov AT (1996) Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit Rev Neurobiol 10:169–187CrossRef
21.
go back to reference West BJ (2010) Fractal physiology and the fractional calculus: a perspective. Front Physiol 14:1–12 West BJ (2010) Fractal physiology and the fractional calculus: a perspective. Front Physiol 14:1–12
23.
go back to reference Smith TG Jr, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136CrossRef Smith TG Jr, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136CrossRef
24.
go back to reference Grizzi F, Russo C, Colombo P et al (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 8:5–14 Grizzi F, Russo C, Colombo P et al (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 8:5–14
25.
go back to reference Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos, Solitons Fractals 6:171–201CrossRef Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos, Solitons Fractals 6:171–201CrossRef
26.
go back to reference Grizzi F, Colombo P, Taverna G, Chiriva-Internati M, Cobos E, Graziotti P, Muzzio PC, Dioguardi N (2007) Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohistochem Mol Morphol 15:134–139CrossRef Grizzi F, Colombo P, Taverna G, Chiriva-Internati M, Cobos E, Graziotti P, Muzzio PC, Dioguardi N (2007) Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohistochem Mol Morphol 15:134–139CrossRef
27.
go back to reference Captur G, Karperien AL, Li C et al (2015) Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 7:17–80 Captur G, Karperien AL, Li C et al (2015) Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 7:17–80
28.
go back to reference Lorthois S, Cassot F (2010) Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol 262:614–633CrossRef Lorthois S, Cassot F (2010) Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol 262:614–633CrossRef
29.
go back to reference Moal F, Chappard D, Wang J et al (2002) Fractal dimension can distinguish models and pharmacologic changes in liver fibrosis in rats. Hepatology 36:840–849CrossRef Moal F, Chappard D, Wang J et al (2002) Fractal dimension can distinguish models and pharmacologic changes in liver fibrosis in rats. Hepatology 36:840–849CrossRef
30.
go back to reference Rajkovic K, Bacic G, Ristanovic D, Milosevic NT (2014) Mathematical model of neuronal morphology: prenatal development of the human dentate nucleus. Biomed Res Int 2014:812351CrossRef Rajkovic K, Bacic G, Ristanovic D, Milosevic NT (2014) Mathematical model of neuronal morphology: prenatal development of the human dentate nucleus. Biomed Res Int 2014:812351CrossRef
31.
go back to reference Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology using modified box-counting method. Neurosci Res 84:64–67CrossRef Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology using modified box-counting method. Neurosci Res 84:64–67CrossRef
32.
go back to reference Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology of rotated neuronal pictures: the modified box counting method. Theor Biol Forum 107:109–121PubMed Ristanovic D, Stefanovic BD, Puskas N (2014) Fractal analysis of dendrite morphology of rotated neuronal pictures: the modified box counting method. Theor Biol Forum 107:109–121PubMed
33.
go back to reference Tambasco M, Magliocco AM (2008) Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol 39:740–746CrossRef Tambasco M, Magliocco AM (2008) Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol 39:740–746CrossRef
34.
go back to reference Liebovitch LS, Toth TI (1990) Fractal activity in cell membrane ion channels. Ann N Y Acad Sci 591:375–391CrossRef Liebovitch LS, Toth TI (1990) Fractal activity in cell membrane ion channels. Ann N Y Acad Sci 591:375–391CrossRef
35.
go back to reference Dioguardi N, Grizzi F, Fiamengo B, Russo C (2008) Metrically measuring liver biopsy: a chronic hepatitis B and C computer-aided morphologic description. World J Gastroenterol 14:7335–7344CrossRef Dioguardi N, Grizzi F, Fiamengo B, Russo C (2008) Metrically measuring liver biopsy: a chronic hepatitis B and C computer-aided morphologic description. World J Gastroenterol 14:7335–7344CrossRef
36.
go back to reference Grizzi F, Russo C, Franceschini B, di Rocco M, Torri V, Morenghi E, Fassati LR, Dioguardi N (2006) Sampling variability of computer-aided fractal-corrected measures of liver fibrosis in needle biopsy specimens. World J Gastroenterol 12:7660–7665CrossRef Grizzi F, Russo C, Franceschini B, di Rocco M, Torri V, Morenghi E, Fassati LR, Dioguardi N (2006) Sampling variability of computer-aided fractal-corrected measures of liver fibrosis in needle biopsy specimens. World J Gastroenterol 12:7660–7665CrossRef
37.
go back to reference Dioguardi N, Grizzi F, Franceschini B, Bossi P, Russo C (2006) Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Hurst’s exponent. World J Gastroenterol 12:2187–2194CrossRef Dioguardi N, Grizzi F, Franceschini B, Bossi P, Russo C (2006) Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Hurst’s exponent. World J Gastroenterol 12:2187–2194CrossRef
38.
go back to reference Dioguardi N, Franceschini B, Aletti G, Russo C, Grizzi F (2003) Fractal dimension rectified meter for quantification of liver fibrosis and other irregular microscopic objects. Anal Quant Cytol Histol 25:312–320PubMed Dioguardi N, Franceschini B, Aletti G, Russo C, Grizzi F (2003) Fractal dimension rectified meter for quantification of liver fibrosis and other irregular microscopic objects. Anal Quant Cytol Histol 25:312–320PubMed
39.
go back to reference Dioguardi N, Grizzi F, Bossi P, Roncalli M (1999) Fractal and spectral dimension analysis of liver fibrosis in needle biopsy specimens. Anal Quant Cytol Histol 21:262–266PubMed Dioguardi N, Grizzi F, Bossi P, Roncalli M (1999) Fractal and spectral dimension analysis of liver fibrosis in needle biopsy specimens. Anal Quant Cytol Histol 21:262–266PubMed
40.
go back to reference Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108:547–551PubMed Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108:547–551PubMed
41.
go back to reference Kikuchi A, Kozuma S, Yasugi T, Taketani Y (2004) Fractal analysis of surface growth patterns in endometrioid endometrial adenocarcinoma. Gynecol Obstet Investig 58:61–67CrossRef Kikuchi A, Kozuma S, Yasugi T, Taketani Y (2004) Fractal analysis of surface growth patterns in endometrioid endometrial adenocarcinoma. Gynecol Obstet Investig 58:61–67CrossRef
42.
go back to reference Lee LH, Tambasco M, Otsuka S, Wright A, Klimowicz A, Petrillo S, Morris D, Magliocco A, Bebb DG (2014) Digital differentiation of non-small cell carcinomas of the lung by the fractal dimension of their epithelial architecture. Micron 67:125–131CrossRef Lee LH, Tambasco M, Otsuka S, Wright A, Klimowicz A, Petrillo S, Morris D, Magliocco A, Bebb DG (2014) Digital differentiation of non-small cell carcinomas of the lung by the fractal dimension of their epithelial architecture. Micron 67:125–131CrossRef
43.
go back to reference Vasiljevic J, Reljin B, Sopta J, Mijucic V, Tulic G, Reljin I (2012) Application of multifractal analysis on microscopic images in the classification of metastatic bone disease. Biomed Microdevices 14:541–548CrossRef Vasiljevic J, Reljin B, Sopta J, Mijucic V, Tulic G, Reljin I (2012) Application of multifractal analysis on microscopic images in the classification of metastatic bone disease. Biomed Microdevices 14:541–548CrossRef
44.
go back to reference Di Ieva A, Grizzi F, Tschabitscher M et al (2010) Correlation of microvascular fractal dimension with positron emission tomography [11C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80:267–273CrossRef Di Ieva A, Grizzi F, Tschabitscher M et al (2010) Correlation of microvascular fractal dimension with positron emission tomography [11C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80:267–273CrossRef
45.
go back to reference Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13:719–735CrossRef Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13:719–735CrossRef
46.
go back to reference Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 29:1109–1113CrossRef Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 29:1109–1113CrossRef
47.
go back to reference Misteli T (2010) Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2(8):a000794CrossRef Misteli T (2010) Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2(8):a000794CrossRef
48.
go back to reference Irinopoulou T, Rigaut JP, Benson MC (1993) Toward objective prognostic grading of prostatic carcinoma using image analysis. Anal Quant Cytol Histol 15:341–344PubMed Irinopoulou T, Rigaut JP, Benson MC (1993) Toward objective prognostic grading of prostatic carcinoma using image analysis. Anal Quant Cytol Histol 15:341–344PubMed
49.
go back to reference Streba CT, Pirici D, Vere CC, Mogoantă L, Comănescu V, Rogoveanu I (2011) Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Romanian J Morphol Embryol 52:845–854 Streba CT, Pirici D, Vere CC, Mogoantă L, Comănescu V, Rogoveanu I (2011) Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Romanian J Morphol Embryol 52:845–854
50.
go back to reference Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648PubMed Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648PubMed
51.
go back to reference Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP, Schwartz LH, Zucca E, Fisher RI, Trotman J, Hoekstra OS, Hicks RJ, O'Doherty MJ, Hustinx R, Biggi A, Cheson BD (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058CrossRef Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP, Schwartz LH, Zucca E, Fisher RI, Trotman J, Hoekstra OS, Hicks RJ, O'Doherty MJ, Hustinx R, Biggi A, Cheson BD (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058CrossRef
52.
go back to reference Dimitrakopoulou-Strauss A (2015) PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol 11:1083–1091CrossRef Dimitrakopoulou-Strauss A (2015) PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol 11:1083–1091CrossRef
53.
go back to reference Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJJ, Devill WLJM (2001) Systematic review of the diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91:1530–1542CrossRef Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJJ, Devill WLJM (2001) Systematic review of the diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91:1530–1542CrossRef
54.
go back to reference Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, Guimaraes AR, Filice R, Zhang Z, Sullivan DC, QIBA Terminology Working Group (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24:9–26CrossRef Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, Guimaraes AR, Filice R, Zhang Z, Sullivan DC, QIBA Terminology Working Group (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24:9–26CrossRef
55.
go back to reference Michallek F, Dewey M (2014) Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol 24:60–69CrossRef Michallek F, Dewey M (2014) Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol 24:60–69CrossRef
56.
go back to reference Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, Koizumi M, Sasaki M (2014) FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol 83:715–719CrossRef Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, Koizumi M, Sasaki M (2014) FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol 83:715–719CrossRef
57.
go back to reference Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Mäcke HR, Haberkorn U, Strauss LG (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using 68Ga-DOTATOC PET and comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 33:823–830CrossRef Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Mäcke HR, Haberkorn U, Strauss LG (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using 68Ga-DOTATOC PET and comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 33:823–830CrossRef
58.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med 42:248–256PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med 42:248–256PubMed
59.
go back to reference Breki CM, Dimitrakopoulou-Strauss A, Hassel J, Theoharis T, Sachpekidis C, Pan L, Provata A (2016) Fractal and multifractal analysis of PET/CT images of metastatic melanoma before and after treatment with ipilimumab. EJNMMI Res 6:61CrossRef Breki CM, Dimitrakopoulou-Strauss A, Hassel J, Theoharis T, Sachpekidis C, Pan L, Provata A (2016) Fractal and multifractal analysis of PET/CT images of metastatic melanoma before and after treatment with ipilimumab. EJNMMI Res 6:61CrossRef
60.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42:713–720PubMed Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42:713–720PubMed
61.
go back to reference Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG (2009) Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hell J Nucl Med 12:223–228PubMed Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG (2009) Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hell J Nucl Med 12:223–228PubMed
62.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Rühl A, Irngartinger G, Stremmel W, Rudi J (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45:1480–1487PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Rühl A, Irngartinger G, Stremmel W, Rudi J (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45:1480–1487PubMed
63.
go back to reference Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A (2006) Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:1115–1122CrossRef Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A (2006) Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:1115–1122CrossRef
64.
go back to reference Sachpekidis C, Kopka K, Eder M et al (2016) 68Ga-PSMA-11 dynamic PET/CT imaging in primary prostate cancer. Clin Nucl Med 41:e473–e479CrossRef Sachpekidis C, Kopka K, Eder M et al (2016) 68Ga-PSMA-11 dynamic PET/CT imaging in primary prostate cancer. Clin Nucl Med 41:e473–e479CrossRef
66.
go back to reference Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, Dimitrakopoulou-Strauss A (2017) Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging 44:50–62CrossRef Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, Dimitrakopoulou-Strauss A (2017) Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging 44:50–62CrossRef
67.
go back to reference Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34:576–584CrossRef Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34:576–584CrossRef
68.
go back to reference Ben Bouallegue F, Tabaa YA, Kafrouni M et al (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619CrossRef Ben Bouallegue F, Tabaa YA, Kafrouni M et al (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619CrossRef
69.
go back to reference Tochigi T, Shuto K, Kono T, Ohira G, Tohma T, Gunji H, Hayano K, Narushima K, Fujishiro T, Hanaoka T, Akutsu Y, Okazumi S, Matsubara H (2017) Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Dig Surg 34:186–191CrossRef Tochigi T, Shuto K, Kono T, Ohira G, Tohma T, Gunji H, Hayano K, Narushima K, Fujishiro T, Hanaoka T, Akutsu Y, Okazumi S, Matsubara H (2017) Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Dig Surg 34:186–191CrossRef
70.
go back to reference Lopci E, Grizzi F, Russo C, Toschi L, Grassi I, Cicoria G, Lodi F, Mattioli S, Fanti S (2017) Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT: a pilot study on semiquantitative and computer-aided fractal geometry analysis. Nucl Med Commun 38:340–346CrossRef Lopci E, Grizzi F, Russo C, Toschi L, Grassi I, Cicoria G, Lodi F, Mattioli S, Fanti S (2017) Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT: a pilot study on semiquantitative and computer-aided fractal geometry analysis. Nucl Med Commun 38:340–346CrossRef
71.
go back to reference Kuikka JT, Tiihonen J, Karhu J et al (1997) Fractal analysis of striatal dopamine re-uptake sites. Eur J Nucl Med Mol Imaging 24:1085–1090 Kuikka JT, Tiihonen J, Karhu J et al (1997) Fractal analysis of striatal dopamine re-uptake sites. Eur J Nucl Med Mol Imaging 24:1085–1090
72.
go back to reference Kuikka JT, Hartikainen P (2000) Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 39:37–42CrossRef Kuikka JT, Hartikainen P (2000) Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 39:37–42CrossRef
73.
go back to reference Lee JS, Lee DS, Park KS, Chung JK, Lee MC (2004) Changes in the heterogeneity of cerebral glucose metabolism with healthy aging: quantitative assessment by fractal analysis. J Neuroimaging 14:350–356CrossRef Lee JS, Lee DS, Park KS, Chung JK, Lee MC (2004) Changes in the heterogeneity of cerebral glucose metabolism with healthy aging: quantitative assessment by fractal analysis. J Neuroimaging 14:350–356CrossRef
74.
go back to reference Venegas JG, Galletti GG (2000) Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow. J Appl Physiol 88:1365–1373CrossRef Venegas JG, Galletti GG (2000) Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow. J Appl Physiol 88:1365–1373CrossRef
75.
go back to reference Kalliokoski KK, Kuusela TA, Nuutila P, Tolvanen T, Oikonen V, Teräs M, Takala TES, Knuuti J (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med Mol Imaging 28:450–456CrossRef Kalliokoski KK, Kuusela TA, Nuutila P, Tolvanen T, Oikonen V, Teräs M, Takala TES, Knuuti J (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med Mol Imaging 28:450–456CrossRef
76.
go back to reference Kalliokoski KK, Kuusela TA, Laaksonen MS, Knuuti J, Nuutila P (2003) Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men. J Physiol 546:529–535CrossRef Kalliokoski KK, Kuusela TA, Laaksonen MS, Knuuti J, Nuutila P (2003) Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men. J Physiol 546:529–535CrossRef
Metadata
Title
The Complexity and Fractal Geometry of Nuclear Medicine Images
Authors
Fabio Grizzi
Angelo Castello
Dorina Qehajaj
Carlo Russo
Egesta Lopci
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1236-5

Other articles of this Issue 3/2019

Molecular Imaging and Biology 3/2019 Go to the issue