Skip to main content
Top
Published in: European Radiology 1/2014

01-01-2014 | Computer Applications

Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

Authors: Florian Michallek, Marc Dewey

Published in: European Radiology | Issue 1/2014

Login to get access

Abstract

Objectives

To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application.

Methods

A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science.

Results

Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis.

Conclusions

Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting.

Key Points

Fractal analysis of perfusion images can be successfully performed.
Tumour, pulmonary, myocardial, renal, skeletal muscle and cerebral perfusion have already been examined.
Clinical applications of fractal analysis include tumour and brain perfusion assessment.
Fractal analysis is a suitable method for quantifying perfusion heterogeneity.
Fractal analysis requires further research concerning the development of clinical applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York
2.
go back to reference Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37:S52–S64PubMedCrossRef Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37:S52–S64PubMedCrossRef
3.
go back to reference Bassingthwaighte JB (1988) Physiological heterogeneity: fractals link determinism and randomness in structures and functions. News Physiol Sci 3:5–10PubMedCentralPubMed Bassingthwaighte JB (1988) Physiological heterogeneity: fractals link determinism and randomness in structures and functions. News Physiol Sci 3:5–10PubMedCentralPubMed
4.
go back to reference Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13:634–649PubMedCrossRef Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13:634–649PubMedCrossRef
5.
go back to reference Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100PubMedCentralPubMedCrossRef Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100PubMedCentralPubMedCrossRef
7.
go back to reference Craciunescu OI, Das SK, Clegg ST (1999) Dynamic contrast-enhanced MRI and fractal characteristics of percolation clusters in two-dimensional tumor blood perfusion. J Biomech Eng 121:480–486PubMedCrossRef Craciunescu OI, Das SK, Clegg ST (1999) Dynamic contrast-enhanced MRI and fractal characteristics of percolation clusters in two-dimensional tumor blood perfusion. J Biomech Eng 121:480–486PubMedCrossRef
8.
go back to reference Craciunescu OI, Das SK, Poulson JM, Samulski TV (2001) Three-dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans Biomed Eng 48:462–473PubMedCrossRef Craciunescu OI, Das SK, Poulson JM, Samulski TV (2001) Three-dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans Biomed Eng 48:462–473PubMedCrossRef
9.
go back to reference Fleischer AC, Donnelly EF, Grippo RJ, Black AS, Hallahan DE (2004) Quantification of tumor vascularity with contrast-enhanced sonography: correlation with magnetic resonance imaging and fluorodeoxyglucose autoradiography in an implanted tumor. J Ultrasound Med 23:37–41PubMed Fleischer AC, Donnelly EF, Grippo RJ, Black AS, Hallahan DE (2004) Quantification of tumor vascularity with contrast-enhanced sonography: correlation with magnetic resonance imaging and fluorodeoxyglucose autoradiography in an implanted tumor. J Ultrasound Med 23:37–41PubMed
10.
go back to reference Sanghera B, Banerjee D, Khan A et al (2012) Reproducibility of 2D and 3D fractal analysis techniques for the assessment of spatial heterogeneity of regional blood flow in rectal cancer. Radiology 263:865–873PubMedCrossRef Sanghera B, Banerjee D, Khan A et al (2012) Reproducibility of 2D and 3D fractal analysis techniques for the assessment of spatial heterogeneity of regional blood flow in rectal cancer. Radiology 263:865–873PubMedCrossRef
11.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42:248–256PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42:248–256PubMed
12.
go back to reference Wardlaw G, Wong R, Noseworthy MD (2008) Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping. Phys Med 24:87–91PubMedCrossRef Wardlaw G, Wong R, Noseworthy MD (2008) Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping. Phys Med 24:87–91PubMedCrossRef
13.
go back to reference Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S (2009) Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol 19:1358–1365PubMedCrossRef Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S (2009) Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol 19:1358–1365PubMedCrossRef
14.
go back to reference Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS (2012) Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics 52:508–520PubMedCrossRef Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS (2012) Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics 52:508–520PubMedCrossRef
15.
go back to reference Rose CJ, Mills S, O'Connor JP et al (2007) Quantifying heterogeneity in dynamic contrast-enhanced MRI parameter maps. Med Image Comput Comput Assist Interv 10:376–384PubMed Rose CJ, Mills S, O'Connor JP et al (2007) Quantifying heterogeneity in dynamic contrast-enhanced MRI parameter maps. Med Image Comput Comput Assist Interv 10:376–384PubMed
16.
go back to reference Alic L, van Vliet M, van Dijke CF, Eggermont AM, Veenland JF, Niessen WJ (2011) Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response? Phys Med Biol 56:1601–1616PubMedCrossRef Alic L, van Vliet M, van Dijke CF, Eggermont AM, Veenland JF, Niessen WJ (2011) Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response? Phys Med Biol 56:1601–1616PubMedCrossRef
17.
go back to reference O'Connor JP, Rose CJ, Jackson A et al (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 105:139–145PubMedCentralPubMedCrossRef O'Connor JP, Rose CJ, Jackson A et al (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 105:139–145PubMedCentralPubMedCrossRef
18.
go back to reference Al-Kadi OS, Watson D (2008) Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55:1822–1830PubMedCrossRef Al-Kadi OS, Watson D (2008) Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55:1822–1830PubMedCrossRef
19.
go back to reference Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499PubMedCrossRef Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499PubMedCrossRef
20.
go back to reference Levin DL, Buxton RB, Spiess JP, Arai T, Balouch J, Hopkins SR (2007) Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol 102:2064–2070PubMedCrossRef Levin DL, Buxton RB, Spiess JP, Arai T, Balouch J, Hopkins SR (2007) Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol 102:2064–2070PubMedCrossRef
21.
go back to reference Arai TJ, Henderson AC, Dubowitz DJ et al (2009) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1057–1064PubMedCentralPubMedCrossRef Arai TJ, Henderson AC, Dubowitz DJ et al (2009) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1057–1064PubMedCentralPubMedCrossRef
22.
go back to reference Arai TJ, Prisk GK, Holverda S et al (2011) Magnetic resonance imaging quantification of pulmonary perfusion using calibrated arterial spin labeling. J Vis Exp. doi:10.3791/2712 Arai TJ, Prisk GK, Holverda S et al (2011) Magnetic resonance imaging quantification of pulmonary perfusion using calibrated arterial spin labeling. J Vis Exp. doi:10.​3791/​2712
23.
go back to reference Venegas JG, Galletti GG (2000) Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow. J Appl Physiol 88:1365–1373PubMed Venegas JG, Galletti GG (2000) Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow. J Appl Physiol 88:1365–1373PubMed
24.
go back to reference Ritman EL (1998) Temporospatial heterogeneity of myocardial perfusion and blood volume in the porcine heart wall. Ann Biomed Eng 26:519–525PubMedCrossRef Ritman EL (1998) Temporospatial heterogeneity of myocardial perfusion and blood volume in the porcine heart wall. Ann Biomed Eng 26:519–525PubMedCrossRef
25.
go back to reference Viglione F, Lombardi M, Castellari M, Torheim G, Pelosi G (2000) Fractal analysis of myocardial perfusion evaluated in vivo by magnetic resonance imaging (conference abstract). Eur Heart J, XXII Congress of the European Society of Cardiology, Amsterdam 21:570 Viglione F, Lombardi M, Castellari M, Torheim G, Pelosi G (2000) Fractal analysis of myocardial perfusion evaluated in vivo by magnetic resonance imaging (conference abstract). Eur Heart J, XXII Congress of the European Society of Cardiology, Amsterdam 21:570
26.
go back to reference Bauer WR, Hiller KH, Galuppo P et al (2001) Fast high-resolution magnetic resonance imaging demonstrates fractality of myocardial perfusion in microscopic dimensions. Circ Res 88:340–346PubMedCrossRef Bauer WR, Hiller KH, Galuppo P et al (2001) Fast high-resolution magnetic resonance imaging demonstrates fractality of myocardial perfusion in microscopic dimensions. Circ Res 88:340–346PubMedCrossRef
27.
28.
go back to reference Kalliokoski KK, Kuusela TA, Nuutila P et al (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med 28:450–456PubMedCrossRef Kalliokoski KK, Kuusela TA, Nuutila P et al (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med 28:450–456PubMedCrossRef
29.
go back to reference Kalliokoski KK, Kuusela TA, Laaksonen MS, Knuuti J, Nuutila P (2003) Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men. J Physiol 546:529–535PubMedCentralPubMedCrossRef Kalliokoski KK, Kuusela TA, Laaksonen MS, Knuuti J, Nuutila P (2003) Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men. J Physiol 546:529–535PubMedCentralPubMedCrossRef
30.
go back to reference Charalampidis D, Pascotto M, Kerut EK, Lindner JR (2006) Anatomy and flow in normal and ischemic microvasculature based on a novel temporal fractal dimension analysis algorithm using contrast enhanced ultrasound. IEEE Trans Med Imaging 25:1079–1086PubMedCrossRef Charalampidis D, Pascotto M, Kerut EK, Lindner JR (2006) Anatomy and flow in normal and ischemic microvasculature based on a novel temporal fractal dimension analysis algorithm using contrast enhanced ultrasound. IEEE Trans Med Imaging 25:1079–1086PubMedCrossRef
31.
go back to reference Kuikka JT, Hartikainen P (2000) Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 39:37–42PubMed Kuikka JT, Hartikainen P (2000) Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 39:37–42PubMed
32.
go back to reference Warsi MA, Molloy W, Noseworthy MD (2012) Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease. MAGMA 25:335–344PubMedCrossRef Warsi MA, Molloy W, Noseworthy MD (2012) Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease. MAGMA 25:335–344PubMedCrossRef
33.
go back to reference Nagao M, Murase K, Kikuchi T et al (2001) Fractal analysis of cerebral blood flow distribution in Alzheimer's disease. J Nucl Med 42:1446–1450PubMed Nagao M, Murase K, Kikuchi T et al (2001) Fractal analysis of cerebral blood flow distribution in Alzheimer's disease. J Nucl Med 42:1446–1450PubMed
34.
go back to reference Nagao M, Sugawara Y, Ikeda M et al (2006) Heterogeneity of posterior limbic perfusion in very early Alzheimer's disease. Neurosci Res 55:285–291PubMedCrossRef Nagao M, Sugawara Y, Ikeda M et al (2006) Heterogeneity of posterior limbic perfusion in very early Alzheimer's disease. Neurosci Res 55:285–291PubMedCrossRef
35.
go back to reference Nagao M, Sugawara Y, Ikeda M et al (2004) Heterogeneity of cerebral blood flow in frontotemporal lobar degeneration and Alzheimer's disease. Eur J Nucl Med Mol Imaging 31:162–168PubMedCrossRef Nagao M, Sugawara Y, Ikeda M et al (2004) Heterogeneity of cerebral blood flow in frontotemporal lobar degeneration and Alzheimer's disease. Eur J Nucl Med Mol Imaging 31:162–168PubMedCrossRef
36.
go back to reference Yoshikawa T, Murase K, Oku N et al (2003) Quantification of the heterogeneity of cerebral blood flow in vascular dementia. J Neurol 250:194–200PubMedCrossRef Yoshikawa T, Murase K, Oku N et al (2003) Quantification of the heterogeneity of cerebral blood flow in vascular dementia. J Neurol 250:194–200PubMedCrossRef
37.
go back to reference Yoshikawa T, Murase K, Oku N et al (2003) Statistical image analysis of cerebral blood flow in vascular dementia with small-vessel disease. J Nucl Med 44:505–511PubMed Yoshikawa T, Murase K, Oku N et al (2003) Statistical image analysis of cerebral blood flow in vascular dementia with small-vessel disease. J Nucl Med 44:505–511PubMed
38.
go back to reference Yoshikawa T, Murase K, Oku N et al (2003) Heterogeneity of cerebral blood flow in Alzheimer disease and vascular dementia. AJNR Am J Neuroradiol 24:1341–1347PubMed Yoshikawa T, Murase K, Oku N et al (2003) Heterogeneity of cerebral blood flow in Alzheimer disease and vascular dementia. AJNR Am J Neuroradiol 24:1341–1347PubMed
39.
go back to reference Modzelewski R, Janvresse E, de la Rue T, Vera P (2012) Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images. EJNMMI Res 2:40PubMedCentralPubMedCrossRef Modzelewski R, Janvresse E, de la Rue T, Vera P (2012) Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images. EJNMMI Res 2:40PubMedCentralPubMedCrossRef
40.
go back to reference Mutch WA, Mandell DM, Fisher JA et al (2012) Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide. PLoS One 7:e47443PubMedCentralPubMedCrossRef Mutch WA, Mandell DM, Fisher JA et al (2012) Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide. PLoS One 7:e47443PubMedCentralPubMedCrossRef
41.
go back to reference Mustonen T, Koivisto T, Vanninen E, Vanninen R, Kuikka JT (2006) Cerebral perfusion heterogeneity and complexity in patients with acute subarachnoid haemorrhage. Nucl Med Commun 27:157–164PubMedCrossRef Mustonen T, Koivisto T, Vanninen E, Vanninen R, Kuikka JT (2006) Cerebral perfusion heterogeneity and complexity in patients with acute subarachnoid haemorrhage. Nucl Med Commun 27:157–164PubMedCrossRef
42.
go back to reference Kuikka JT (2002) Fractal analysis of cerebral blood flow distribution in Alzheimer's disease. J Nucl Med 43:1727–1728, author reply 1728PubMed Kuikka JT (2002) Fractal analysis of cerebral blood flow distribution in Alzheimer's disease. J Nucl Med 43:1727–1728, author reply 1728PubMed
43.
go back to reference Chung HW (2003) Fractal analysis of nuclear medicine images again: validity and interpretation of results from new analysis methods. J Nucl Med 44:316, author reply 317PubMed Chung HW (2003) Fractal analysis of nuclear medicine images again: validity and interpretation of results from new analysis methods. J Nucl Med 44:316, author reply 317PubMed
44.
go back to reference Chung HW (2003) Blood flow heterogeneity versus cerebral hypoperfusion revealed by fractal analysis on (99m)Tc-HMPAO SPECT. J Nucl Med 44:1874PubMed Chung HW (2003) Blood flow heterogeneity versus cerebral hypoperfusion revealed by fractal analysis on (99m)Tc-HMPAO SPECT. J Nucl Med 44:1874PubMed
45.
go back to reference Kuikka JT (2005) Heterogeneity of cerebral blood flow in dementia. Eur J Nucl Med Mol Imaging 32:516PubMedCrossRef Kuikka JT (2005) Heterogeneity of cerebral blood flow in dementia. Eur J Nucl Med Mol Imaging 32:516PubMedCrossRef
46.
go back to reference Lorthois S, Cassot F (2010) Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol 262:614–633PubMedCrossRef Lorthois S, Cassot F (2010) Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol 262:614–633PubMedCrossRef
47.
go back to reference Masters BR (2004) Fractal analysis of the vascular tree in the human retina. Annu Rev Biomed Eng 6:427–452PubMedCrossRef Masters BR (2004) Fractal analysis of the vascular tree in the human retina. Annu Rev Biomed Eng 6:427–452PubMedCrossRef
48.
go back to reference Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77:785.e711–785.e721 Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77:785.e711–785.e721
49.
go back to reference Glenny RW, Robertson HT (1990) Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J Appl Physiol 69:532–545PubMed Glenny RW, Robertson HT (1990) Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J Appl Physiol 69:532–545PubMed
52.
go back to reference Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef
Metadata
Title
Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review
Authors
Florian Michallek
Marc Dewey
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 1/2014
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-013-2977-9

Other articles of this Issue 1/2014

European Radiology 1/2014 Go to the issue