Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Th1 cells contribute to retinal ganglion cell loss in glaucoma in a VCAM-1-dependent manner

Authors: Chong He, Kun Peng, Xiong Zhu, Zuo Wang, Wenbo Xiu, Gao Zhang, Yang Chen, Chaonan Sun, Xiao Xiao, Donghua Liu, An Li, Yanping Gao, Jinxia Wang, Ping Shuai, Yilian Chen, Ling Yu, Fang Lu

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Glaucoma is a complex neurodegenerative disorder characterized by the progressive loss of retinal ganglion cells (RGC) and optic nerve axons, leading to irreversible visual impairment. Despite its clinical significance, the underlying mechanisms of glaucoma pathogenesis remain poorly understood. In this study, we aimed to unravel the multifaceted nature of glaucoma by investigating the interaction between T cells and retinas. By utilizing clinical samples, murine glaucoma models, and T cell transfer models, we made several key findings. Firstly, we observed that CD4+ T cells from glaucoma patients displayed enhanced activation and a bias towards T helper (Th) 1 responses, which correlated with visual impairment. Secondly, we identified the infiltration of Th1 cells into the retina, where they targeted RGC and integrated into the pro-inflammatory glial network, contributing to progressive RGC loss. Thirdly, we discovered that circulating Th1 cells upregulated vascular cell adhesion protein 1 (VCAM-1) on retinal microvessels, facilitating their entry into the neural retina. Lastly, we found that Th1 cells underwent functional reprogramming before reaching the retina, acquiring a phenotype associated with lymphocyte migration and neurodegenerative diseases. Our study provides novel insights into the role of peripheral CD4+ T cells in glaucoma pathogenesis, shedding light on the mechanisms underlying their infiltration into the retina and offering potential avenues for innovative therapeutic interventions in this sight-threatening disease.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–79.PubMedCrossRef Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–79.PubMedCrossRef
2.
go back to reference McKinnon SJ, Goldberg LD, Peeples P, et al. Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008;14:S20–7.PubMed McKinnon SJ, Goldberg LD, Peeples P, et al. Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008;14:S20–7.PubMed
3.
go back to reference Walland MJ, Carassa RG, Goldberg I, et al. Failure of medical therapy despite normal intraocular pressure. Clin Exp Ophthalmol. 2006;34:827–36.PubMedCrossRef Walland MJ, Carassa RG, Goldberg I, et al. Failure of medical therapy despite normal intraocular pressure. Clin Exp Ophthalmol. 2006;34:827–36.PubMedCrossRef
4.
go back to reference Wei X, Cho KS, Thee EF, et al. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res. 2019;97:70–6.PubMedCrossRef Wei X, Cho KS, Thee EF, et al. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res. 2019;97:70–6.PubMedCrossRef
5.
go back to reference DeMaio A, Mehrotra S, Sambamurti K, et al. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflamm. 2022;19:251.CrossRef DeMaio A, Mehrotra S, Sambamurti K, et al. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflamm. 2022;19:251.CrossRef
6.
go back to reference Baudouin C, Kolko M, Melik-Parsadaniantz S, et al. Inflammation in Glaucoma: from the back to the front of the eye, and beyond. Prog Retin Eye Res. 2021;83: 100916.PubMedCrossRef Baudouin C, Kolko M, Melik-Parsadaniantz S, et al. Inflammation in Glaucoma: from the back to the front of the eye, and beyond. Prog Retin Eye Res. 2021;83: 100916.PubMedCrossRef
8.
go back to reference Rizzo MI, Greco A, De Virgilio A, et al. Glaucoma: recent advances in the involvement of autoimmunity. Immunol Res. 2017;65:207–17.PubMedCrossRef Rizzo MI, Greco A, De Virgilio A, et al. Glaucoma: recent advances in the involvement of autoimmunity. Immunol Res. 2017;65:207–17.PubMedCrossRef
10.
go back to reference Li S, Qiu Y, Yu J, et al. Association of systemic inflammation indices with visual field loss progression in patients with primary angle-closure glaucoma: potential biomarkers for 3P medical approaches. EPMA J. 2021;12:659–75.PubMedPubMedCentralCrossRef Li S, Qiu Y, Yu J, et al. Association of systemic inflammation indices with visual field loss progression in patients with primary angle-closure glaucoma: potential biomarkers for 3P medical approaches. EPMA J. 2021;12:659–75.PubMedPubMedCentralCrossRef
11.
go back to reference Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol. 2005;243:817–23.PubMedCrossRef Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol. 2005;243:817–23.PubMedCrossRef
12.
go back to reference Gramlich OW, Ding QJ, Zhu W, et al. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun. 2015;3:56.PubMedPubMedCentralCrossRef Gramlich OW, Ding QJ, Zhu W, et al. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun. 2015;3:56.PubMedPubMedCentralCrossRef
13.
go back to reference Yu L, Chen Y, Xu X, et al. Alterations in peripheral B cell subsets correlate with the disease severity of human glaucoma. J Inflamm Res. 2021;14:4827–38.PubMedPubMedCentralCrossRef Yu L, Chen Y, Xu X, et al. Alterations in peripheral B cell subsets correlate with the disease severity of human glaucoma. J Inflamm Res. 2021;14:4827–38.PubMedPubMedCentralCrossRef
14.
go back to reference He C, Zhang G, Fu J, et al. Clinical significance of albumin- and bilirubin-based biomarkers in glaucoma: a retrospective case-control study. Oxid Med Cell Longev. 2022;2022:8063651.PubMedPubMedCentralCrossRef He C, Zhang G, Fu J, et al. Clinical significance of albumin- and bilirubin-based biomarkers in glaucoma: a retrospective case-control study. Oxid Med Cell Longev. 2022;2022:8063651.PubMedPubMedCentralCrossRef
15.
go back to reference Flemming A. Bacteria-primed T cells identified as culprit in glaucoma. Nat Rev Immunol. 2018;18:603.PubMedCrossRef Flemming A. Bacteria-primed T cells identified as culprit in glaucoma. Nat Rev Immunol. 2018;18:603.PubMedCrossRef
16.
17.
go back to reference Guo C, Wu N, Niu X, et al. Comparison of T helper cell patterns in primary open-angle glaucoma and normal-pressure glaucoma. Med Sci Monit. 2018;24:1988–96.PubMedPubMedCentralCrossRef Guo C, Wu N, Niu X, et al. Comparison of T helper cell patterns in primary open-angle glaucoma and normal-pressure glaucoma. Med Sci Monit. 2018;24:1988–96.PubMedPubMedCentralCrossRef
18.
go back to reference Gramlich OW, Godwin CR, Heuss ND, et al. T and B lymphocyte deficiency in Rag1-/- mice reduces retinal ganglion cell loss in experimental glaucoma. Invest Ophthalmol Vis Sci. 2020;61:18.PubMedPubMedCentralCrossRef Gramlich OW, Godwin CR, Heuss ND, et al. T and B lymphocyte deficiency in Rag1-/- mice reduces retinal ganglion cell loss in experimental glaucoma. Invest Ophthalmol Vis Sci. 2020;61:18.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Yang J, Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol. 2001;131:421–6.PubMedCrossRef Yang J, Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol. 2001;131:421–6.PubMedCrossRef
21.
go back to reference Ren Y, Qi Y, Su X. Th17 cells in glaucoma patients promote Ig production in IL-17A and IL-21-dependent manner. Clin Exp Pharmacol Physiol. 2019;46:875–82.PubMedCrossRef Ren Y, Qi Y, Su X. Th17 cells in glaucoma patients promote Ig production in IL-17A and IL-21-dependent manner. Clin Exp Pharmacol Physiol. 2019;46:875–82.PubMedCrossRef
22.
go back to reference He C, Shi Y, Wu R, et al. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-alpha in IBD. Gut. 2016;65:1938–50.PubMedCrossRef He C, Shi Y, Wu R, et al. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-alpha in IBD. Gut. 2016;65:1938–50.PubMedCrossRef
23.
go back to reference Peng K, Xiao J, Wang J, et al. MAdCAM-1 mediates retinal neuron degeneration in experimental colitis through recruiting gut-homing CD4(+) T cells. Mucosal Immunol. 2021;14:152–63.PubMedCrossRef Peng K, Xiao J, Wang J, et al. MAdCAM-1 mediates retinal neuron degeneration in experimental colitis through recruiting gut-homing CD4(+) T cells. Mucosal Immunol. 2021;14:152–63.PubMedCrossRef
24.
go back to reference Qiao Y, Qin G, Yu L. The triblock copolymers hydrogel through intracameral injection may be a new potential ophthalmic drug delivery with antiscarring drugs after glaucoma filtration surgery. Med Hypotheses. 2013;80:23–5.PubMedCrossRef Qiao Y, Qin G, Yu L. The triblock copolymers hydrogel through intracameral injection may be a new potential ophthalmic drug delivery with antiscarring drugs after glaucoma filtration surgery. Med Hypotheses. 2013;80:23–5.PubMedCrossRef
25.
go back to reference He C, Xiu W, Chen Q, et al. Gut-licensed beta7(+) CD4(+) T cells contribute to progressive retinal ganglion cell damage in glaucoma. Sci Transl Med. 2023;15:eadg1656.PubMedCrossRef He C, Xiu W, Chen Q, et al. Gut-licensed beta7(+) CD4(+) T cells contribute to progressive retinal ganglion cell damage in glaucoma. Sci Transl Med. 2023;15:eadg1656.PubMedCrossRef
26.
go back to reference Sun M, He C, Chen L, et al. RORgammat represses IL-10 production in Th17 cells to maintain their pathogenicity in inducing intestinal inflammation. J Immunol. 2019;202:79–92.PubMedCrossRef Sun M, He C, Chen L, et al. RORgammat represses IL-10 production in Th17 cells to maintain their pathogenicity in inducing intestinal inflammation. J Immunol. 2019;202:79–92.PubMedCrossRef
28.
go back to reference Margeta MA, Yin Z, Madore C, et al. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity. 2022;55(1627–44): e7. Margeta MA, Yin Z, Madore C, et al. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity. 2022;55(1627–44): e7.
29.
go back to reference Groom JR, Richmond J, Murooka TT, et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity. 2012;37:1091–103.PubMedPubMedCentralCrossRef Groom JR, Richmond J, Murooka TT, et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity. 2012;37:1091–103.PubMedPubMedCentralCrossRef
30.
go back to reference Seitz R, Ohlmann A, Tamm ER. The role of Muller glia and microglia in glaucoma. Cell Tissue Res. 2013;353:339–45.PubMedCrossRef Seitz R, Ohlmann A, Tamm ER. The role of Muller glia and microglia in glaucoma. Cell Tissue Res. 2013;353:339–45.PubMedCrossRef
31.
go back to reference Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, et al. Neuroinflammation: microglia and T cells get ready to tango. Front Immunol. 2017;8:1905.PubMedCrossRef Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, et al. Neuroinflammation: microglia and T cells get ready to tango. Front Immunol. 2017;8:1905.PubMedCrossRef
33.
go back to reference Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.PubMedCrossRef Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.PubMedCrossRef
34.
35.
go back to reference Vajkoczy P, Laschinger M, Engelhardt B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest. 2001;108:557–65.PubMedPubMedCentralCrossRef Vajkoczy P, Laschinger M, Engelhardt B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest. 2001;108:557–65.PubMedPubMedCentralCrossRef
36.
go back to reference Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011;8:4.PubMedPubMedCentralCrossRef Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011;8:4.PubMedPubMedCentralCrossRef
37.
go back to reference Ramirez AI, de Hoz R, Salobrar-Garcia E, et al. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, parkinson, and glaucoma. Front Aging Neurosci. 2017;9:214.PubMedPubMedCentralCrossRef Ramirez AI, de Hoz R, Salobrar-Garcia E, et al. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, parkinson, and glaucoma. Front Aging Neurosci. 2017;9:214.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Brochard V, Combadiere B, Prigent A, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119:182–92.PubMed Brochard V, Combadiere B, Prigent A, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119:182–92.PubMed
40.
go back to reference Bernath AK, Murray TE, Shirley Yang S, et al. Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res. 2023;1807: 148315.PubMedCrossRef Bernath AK, Murray TE, Shirley Yang S, et al. Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res. 2023;1807: 148315.PubMedCrossRef
41.
go back to reference Meares GP, Qin H, Liu Y, et al. AMP-activated protein kinase restricts IFN-gamma signaling. J Immunol. 2013;190:372–80.PubMedCrossRef Meares GP, Qin H, Liu Y, et al. AMP-activated protein kinase restricts IFN-gamma signaling. J Immunol. 2013;190:372–80.PubMedCrossRef
42.
go back to reference Shen Q, Zhang R, Bhat NR. MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res. 2006;1086:9–16.PubMedCrossRef Shen Q, Zhang R, Bhat NR. MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res. 2006;1086:9–16.PubMedCrossRef
43.
go back to reference Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28:12085–96.PubMedPubMedCentralCrossRef Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28:12085–96.PubMedPubMedCentralCrossRef
44.
go back to reference Yang X, Luo C, Cai J, et al. Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci. 2011;52:8442–54.PubMedPubMedCentralCrossRef Yang X, Luo C, Cai J, et al. Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci. 2011;52:8442–54.PubMedPubMedCentralCrossRef
45.
go back to reference Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24:327–34.PubMedCrossRef Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24:327–34.PubMedCrossRef
47.
go back to reference Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33:579–89.PubMedCrossRef Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33:579–89.PubMedCrossRef
48.
go back to reference Kaur G, Sharma D, Bisen S, et al. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol. 2023;6:516.PubMedPubMedCentralCrossRef Kaur G, Sharma D, Bisen S, et al. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol. 2023;6:516.PubMedPubMedCentralCrossRef
49.
go back to reference Sonar SA, Shaikh S, Joshi N, et al. IFN-gamma promotes transendothelial migration of CD4(+) T cells across the blood-brain barrier. Immunol Cell Biol. 2017;95:843–53.PubMedCrossRef Sonar SA, Shaikh S, Joshi N, et al. IFN-gamma promotes transendothelial migration of CD4(+) T cells across the blood-brain barrier. Immunol Cell Biol. 2017;95:843–53.PubMedCrossRef
50.
go back to reference Schwab N, Schneider-Hohendorf T, Wiendl H. Therapeutic uses of anti-alpha4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int Immunol. 2015;27:47–53.PubMedCrossRef Schwab N, Schneider-Hohendorf T, Wiendl H. Therapeutic uses of anti-alpha4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int Immunol. 2015;27:47–53.PubMedCrossRef
51.
go back to reference Sabahi Z, Daei Sorkhabi A, Sarkesh A, et al. A systematic review of the safety and efficacy of monoclonal antibodies for progressive multiple sclerosis. Int Immunopharmacol. 2023;120: 110266.PubMedCrossRef Sabahi Z, Daei Sorkhabi A, Sarkesh A, et al. A systematic review of the safety and efficacy of monoclonal antibodies for progressive multiple sclerosis. Int Immunopharmacol. 2023;120: 110266.PubMedCrossRef
53.
go back to reference Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14:24–35.PubMedCrossRef Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14:24–35.PubMedCrossRef
54.
go back to reference Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRef Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRef
55.
go back to reference van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther. 2023;244: 108381.PubMedCrossRef van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther. 2023;244: 108381.PubMedCrossRef
56.
go back to reference Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther. 2023;246: 108432.PubMedCrossRef Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther. 2023;246: 108432.PubMedCrossRef
57.
go back to reference Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–18.PubMedCrossRef Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–18.PubMedCrossRef
Metadata
Title
Th1 cells contribute to retinal ganglion cell loss in glaucoma in a VCAM-1-dependent manner
Authors
Chong He
Kun Peng
Xiong Zhu
Zuo Wang
Wenbo Xiu
Gao Zhang
Yang Chen
Chaonan Sun
Xiao Xiao
Donghua Liu
An Li
Yanping Gao
Jinxia Wang
Ping Shuai
Yilian Chen
Ling Yu
Fang Lu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03035-5

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue