Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Glioblastoma | Review

Taming microglia: the promise of engineered microglia in treating neurological diseases

Authors: Echo Yongqi Luo, Rio Ryohichi Sugimura

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Microglia, the CNS-resident immune cells, are implicated in many neurological diseases. Nearly one in six of the world’s population suffers from neurological disorders, encompassing neurodegenerative and neuroautoimmune diseases, most with dysregulated neuroinflammation involved. Activated microglia become phagocytotic and secret various immune molecules, which are mediators of the brain immune microenvironment. Given their ability to penetrate through the blood–brain barrier in the neuroinflammatory context and their close interaction with neurons and other glial cells, microglia are potential therapeutic delivery vehicles and modulators of neuronal activity. Re-engineering microglia to treat neurological diseases is, thus, increasingly gaining attention. By altering gene expression, re-programmed microglia can be utilized to deliver therapeutics to targeted sites and control neuroinflammation in various neuroinflammatory diseases. This review addresses the current development in microglial engineering, including genetic targeting and therapeutic modulation. Furthermore, we discuss limitations to the genetic engineering techniques and models used to test the functionality of re-engineered microglia, including cell culture and animal models. Finally, we will discuss future directions for the application of engineered microglia in treating neurological diseases.

Graphical Abstract

Literature
1.
go back to reference Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775–87.PubMedCrossRef Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775–87.PubMedCrossRef
2.
go back to reference Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, Dragunow M. PU.1 expression in microglia. J Neuroimmunol. 2000;104(2):109–15.PubMedCrossRef Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, Dragunow M. PU.1 expression in microglia. J Neuroimmunol. 2000;104(2):109–15.PubMedCrossRef
3.
go back to reference Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:3215.PubMedPubMedCentralCrossRef Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:3215.PubMedPubMedCentralCrossRef
4.
go back to reference Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Scheiwe C, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566(7744):388–92.PubMedCrossRef Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Scheiwe C, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566(7744):388–92.PubMedCrossRef
5.
go back to reference Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30(5):1271–81.PubMedCrossRef Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30(5):1271–81.PubMedCrossRef
7.
go back to reference Franco-Bocanegra DK, Gourari Y, McAuley C, Chatelet DS, Johnston DA, Nicoll JAR, Boche D. Microglial morphology in Alzheimer’s disease and after A beta immunotherapy. Sci Rep. 2021;11(1):15955.PubMedPubMedCentralCrossRef Franco-Bocanegra DK, Gourari Y, McAuley C, Chatelet DS, Johnston DA, Nicoll JAR, Boche D. Microglial morphology in Alzheimer’s disease and after A beta immunotherapy. Sci Rep. 2021;11(1):15955.PubMedPubMedCentralCrossRef
8.
go back to reference Hayes GM, Woodroofe MN, Cuzner ML. Microglia are the major cell type expressing MHC class-II in human white matter. J Neurol Sci. 1987;80(1):25–37.PubMedCrossRef Hayes GM, Woodroofe MN, Cuzner ML. Microglia are the major cell type expressing MHC class-II in human white matter. J Neurol Sci. 1987;80(1):25–37.PubMedCrossRef
9.
go back to reference Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci. 2019;22(7):1046.PubMedPubMedCentralCrossRef Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci. 2019;22(7):1046.PubMedPubMedCentralCrossRef
11.
go back to reference Magnus T, Chan A, Grauer O, Toyka KV, Gold R. Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol. 2001;167(9):5004–10.PubMedCrossRef Magnus T, Chan A, Grauer O, Toyka KV, Gold R. Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol. 2001;167(9):5004–10.PubMedCrossRef
12.
go back to reference Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.PubMedCrossRef Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.PubMedCrossRef
13.
go back to reference Schafer DP, Lehrman EK, Stevens B. The, “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia. 2013;61(1):24–36.PubMedCrossRef Schafer DP, Lehrman EK, Stevens B. The, “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia. 2013;61(1):24–36.PubMedCrossRef
14.
go back to reference Wang C, Yue HM, Hu ZC, Shen YW, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367(6478):688.PubMedCrossRef Wang C, Yue HM, Hu ZC, Shen YW, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367(6478):688.PubMedCrossRef
15.
go back to reference Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 2013;36(4):209–17.PubMedCrossRef Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 2013;36(4):209–17.PubMedCrossRef
17.
go back to reference Recasens M, Almolda B, Perez-Clausell J, Campbell IL, Gonzalez B, Castellano B. Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J Neuroinflamm. 2021;18(1):1.CrossRef Recasens M, Almolda B, Perez-Clausell J, Campbell IL, Gonzalez B, Castellano B. Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J Neuroinflamm. 2021;18(1):1.CrossRef
18.
go back to reference Kraft AD, McPherson CA, Harry GJ. Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology. 2009;30(5):785–93.PubMedPubMedCentralCrossRef Kraft AD, McPherson CA, Harry GJ. Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology. 2009;30(5):785–93.PubMedPubMedCentralCrossRef
19.
go back to reference Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87(1):10–20.PubMedCrossRef Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87(1):10–20.PubMedCrossRef
20.
go back to reference Tejera D, Heneka MT. Microglia in neurodegenerative disorders. In: Garaschuk O, Verkhratsky A, editors. Microglia: methods and protocols. Methods in molecular biology. New York: Springer; 2019. p. 57–67.CrossRef Tejera D, Heneka MT. Microglia in neurodegenerative disorders. In: Garaschuk O, Verkhratsky A, editors. Microglia: methods and protocols. Methods in molecular biology. New York: Springer; 2019. p. 57–67.CrossRef
21.
go back to reference Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflamm. 2014;11(1):48.CrossRef Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflamm. 2014;11(1):48.CrossRef
22.
go back to reference Maphis N, Xu GX, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738–55.PubMedPubMedCentralCrossRef Maphis N, Xu GX, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738–55.PubMedPubMedCentralCrossRef
23.
go back to reference Chu FN, Shi MC, Zheng C, Shen DH, Zhu J, Zheng XY, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.PubMedCrossRef Chu FN, Shi MC, Zheng C, Shen DH, Zhu J, Zheng XY, Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.PubMedCrossRef
24.
go back to reference Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.PubMedPubMedCentralCrossRef Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.PubMedPubMedCentralCrossRef
25.
go back to reference Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12.PubMedCrossRef Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12.PubMedCrossRef
27.
go back to reference Maas SLN, Abels ER, Van De Haar LL, Zhang X, Morsett L, Sil S, et al. Glioblastoma hijacks microglial gene expression to support tumor growth. J Neuroinflamm. 2020;17(1):1.CrossRef Maas SLN, Abels ER, Van De Haar LL, Zhang X, Morsett L, Sil S, et al. Glioblastoma hijacks microglial gene expression to support tumor growth. J Neuroinflamm. 2020;17(1):1.CrossRef
28.
go back to reference Geribaldi-Doldan N, Fernandez-Ponce C, Quiroz RN, Sanchez-Gomar I, Escorcia LG, Velasquez EP, Quiroz EN. The role of microglia in glioblastoma. Front Oncol. 2021;10:603495.PubMedPubMedCentralCrossRef Geribaldi-Doldan N, Fernandez-Ponce C, Quiroz RN, Sanchez-Gomar I, Escorcia LG, Velasquez EP, Quiroz EN. The role of microglia in glioblastoma. Front Oncol. 2021;10:603495.PubMedPubMedCentralCrossRef
29.
go back to reference Matias D, Balca-Silva J, da Graca GC, Wanjiru CM, Macharia LW, Nascimento CP, et al. Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci. 2018;12:235.PubMedPubMedCentralCrossRef Matias D, Balca-Silva J, da Graca GC, Wanjiru CM, Macharia LW, Nascimento CP, et al. Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci. 2018;12:235.PubMedPubMedCentralCrossRef
30.
go back to reference Garofalo S, Porzia A, Mainiero F, Di Angelantonio S, Cortese B, Basilico B, et al. Environmental stimuli shape microglial plasticity in glioma. Elife. 2017;6: e33415.PubMedPubMedCentralCrossRef Garofalo S, Porzia A, Mainiero F, Di Angelantonio S, Cortese B, Basilico B, et al. Environmental stimuli shape microglial plasticity in glioma. Elife. 2017;6: e33415.PubMedPubMedCentralCrossRef
31.
go back to reference Mormino A, Bernardini G, Cocozza G, Corbi N, Passananti C, Santoni A, et al. Enriched environment cues suggest a new strategy to counteract glioma: engineered rAAV2-IL-15 microglia modulate the tumor microenvironment. Front Immunol. 2021;12:730128.PubMedPubMedCentralCrossRef Mormino A, Bernardini G, Cocozza G, Corbi N, Passananti C, Santoni A, et al. Enriched environment cues suggest a new strategy to counteract glioma: engineered rAAV2-IL-15 microglia modulate the tumor microenvironment. Front Immunol. 2021;12:730128.PubMedPubMedCentralCrossRef
32.
go back to reference Su W, Kang J, Sopher B, Gillespie J, Aloi MS, Odom GL, et al. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J Neurochem. 2016;136:49–62.PubMedCrossRef Su W, Kang J, Sopher B, Gillespie J, Aloi MS, Odom GL, et al. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J Neurochem. 2016;136:49–62.PubMedCrossRef
33.
go back to reference Zhang HW, Yang B, Mu X, Ahmed SS, Su Q, He R, et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther. 2011;19(8):1440–8.PubMedPubMedCentralCrossRef Zhang HW, Yang B, Mu X, Ahmed SS, Su Q, He R, et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther. 2011;19(8):1440–8.PubMedPubMedCentralCrossRef
34.
go back to reference Rosario AM, Cruz PE, Ceballos-Diaz C, Strickland MR, Siemienski Z, Pardo M, et al. Microglia-specific targeting by novel capsid- modified AAV6 vectors. Mol Ther Methods Clin Dev. 2016;3:16026.PubMedPubMedCentralCrossRef Rosario AM, Cruz PE, Ceballos-Diaz C, Strickland MR, Siemienski Z, Pardo M, et al. Microglia-specific targeting by novel capsid- modified AAV6 vectors. Mol Ther Methods Clin Dev. 2016;3:16026.PubMedPubMedCentralCrossRef
35.
go back to reference Ye Z, Ai X, Yang K, Yang Z, Fei F, Liao X, et al. Targeting microglial metabolic rewiring synergizes with immune-checkpoint blockade therapy for glioblastoma. Cancer Discov. 2023;13(4):974–1001.PubMedPubMedCentralCrossRef Ye Z, Ai X, Yang K, Yang Z, Fei F, Liao X, et al. Targeting microglial metabolic rewiring synergizes with immune-checkpoint blockade therapy for glioblastoma. Cancer Discov. 2023;13(4):974–1001.PubMedPubMedCentralCrossRef
36.
go back to reference Guo L, Zhang XC, Wei RX, Li GJ, Sun BZ, Zhang HB, et al. Engineering microglia as intraoperative optical imaging agent vehicles potentially for fluorescence-guided surgery in gliomas. Biomater Sci. 2020;8(4):1117–26.PubMedCrossRef Guo L, Zhang XC, Wei RX, Li GJ, Sun BZ, Zhang HB, et al. Engineering microglia as intraoperative optical imaging agent vehicles potentially for fluorescence-guided surgery in gliomas. Biomater Sci. 2020;8(4):1117–26.PubMedCrossRef
37.
go back to reference Du YT, Yang ZZ, Sun Q, Lin M, Wang RD, Peng YW, et al. Engineered microglia potentiate the action of drugs against glioma through extracellular vesicles and tunneling nanotubes. Adv Healthc Mater. 2021;10(9):2002200.CrossRef Du YT, Yang ZZ, Sun Q, Lin M, Wang RD, Peng YW, et al. Engineered microglia potentiate the action of drugs against glioma through extracellular vesicles and tunneling nanotubes. Adv Healthc Mater. 2021;10(9):2002200.CrossRef
38.
go back to reference Bhattacherjee A, Daskhan GC, Bains A, Watson AES, Eskandari-Sedighi G, St Laurent CD, et al. Increasing phagocytosis of micoglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release. 2021;338:680–93.PubMedCrossRef Bhattacherjee A, Daskhan GC, Bains A, Watson AES, Eskandari-Sedighi G, St Laurent CD, et al. Increasing phagocytosis of micoglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release. 2021;338:680–93.PubMedCrossRef
39.
go back to reference Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol. 2021;60(10):1369–82.PubMedCrossRef Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol. 2021;60(10):1369–82.PubMedCrossRef
40.
go back to reference Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. 2020;324:113121.PubMedCrossRef Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. 2020;324:113121.PubMedCrossRef
41.
go back to reference Tang M, Zhao S, Liu JX, Liu X, Guo YX, Wang GY, Wang XL. Paclitaxel induces cognitive impairment via necroptosis, decreased synaptic plasticity and M1 polarisation of microglia. Pharm Biol. 2022;60(1):1556–65.PubMedPubMedCentralCrossRef Tang M, Zhao S, Liu JX, Liu X, Guo YX, Wang GY, Wang XL. Paclitaxel induces cognitive impairment via necroptosis, decreased synaptic plasticity and M1 polarisation of microglia. Pharm Biol. 2022;60(1):1556–65.PubMedPubMedCentralCrossRef
42.
go back to reference Gao XH, Li S, Ding F, Liu XL, Wu YJ, Li J, et al. A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy. Adv Mater. 2021;33(9):2006116.CrossRef Gao XH, Li S, Ding F, Liu XL, Wu YJ, Li J, et al. A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy. Adv Mater. 2021;33(9):2006116.CrossRef
43.
go back to reference Abels ER, Maas SLN, Nieland L, Wei ZY, Cheah PS, Tai E, et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep. 2019;28(12):3105.PubMedPubMedCentralCrossRef Abels ER, Maas SLN, Nieland L, Wei ZY, Cheah PS, Tai E, et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep. 2019;28(12):3105.PubMedPubMedCentralCrossRef
44.
go back to reference Guo YW, Hong WM, Wang XM, Zhang PY, Korner H, Tu JJ, Wei W. MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci. 2019;12:125.PubMedPubMedCentralCrossRef Guo YW, Hong WM, Wang XM, Zhang PY, Korner H, Tu JJ, Wei W. MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci. 2019;12:125.PubMedPubMedCentralCrossRef
45.
go back to reference Louw AM, Kolar MK, Novikova LN, Kingham PJ, Wiberg M, Kjems J, Novikov LN. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine. 2016;12(3):643–53.PubMedCrossRef Louw AM, Kolar MK, Novikova LN, Kingham PJ, Wiberg M, Kjems J, Novikov LN. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine. 2016;12(3):643–53.PubMedCrossRef
46.
48.
go back to reference Shao FJ, Wang XY, Wu HJ, Wu Q, Zhang JM. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci. 2022;14:825086.PubMedPubMedCentralCrossRef Shao FJ, Wang XY, Wu HJ, Wu Q, Zhang JM. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci. 2022;14:825086.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Plasschaert RN, DeAndrade MP, Hull F, Nguyen Q, Peterson T, Yan A, et al. High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Mol Ther. 2022;30(10):3209–25.PubMedPubMedCentralCrossRef Plasschaert RN, DeAndrade MP, Hull F, Nguyen Q, Peterson T, Yan A, et al. High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Mol Ther. 2022;30(10):3209–25.PubMedPubMedCentralCrossRef
51.
go back to reference Rocha EM, Smith GA, Park E, Cao HM, Brown E, Hayes MA, et al. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.PubMedCrossRef Rocha EM, Smith GA, Park E, Cao HM, Brown E, Hayes MA, et al. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.PubMedCrossRef
52.
go back to reference Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38(9):2341–58.PubMedPubMedCentralCrossRef Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38(9):2341–58.PubMedPubMedCentralCrossRef
53.
go back to reference Minami SS, Min SW, Krabbe G, Wang C, Zhou YG, Asgarov R, et al. Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med. 2014;20(10):1157–64.PubMedPubMedCentralCrossRef Minami SS, Min SW, Krabbe G, Wang C, Zhou YG, Asgarov R, et al. Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med. 2014;20(10):1157–64.PubMedPubMedCentralCrossRef
54.
go back to reference Hu XY, Das B, Hou HL, He WX, Yan RQ. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215(3):927–40.PubMedPubMedCentralCrossRef Hu XY, Das B, Hou HL, He WX, Yan RQ. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215(3):927–40.PubMedPubMedCentralCrossRef
55.
go back to reference Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem. 2014;130(1):4–28.PubMedPubMedCentralCrossRef Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem. 2014;130(1):4–28.PubMedPubMedCentralCrossRef
56.
go back to reference Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong JH, et al. BACE1 elevation engendered by GGA3 deletion increases beta-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener. 2018;13:1.PubMedPubMedCentralCrossRef Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong JH, et al. BACE1 elevation engendered by GGA3 deletion increases beta-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener. 2018;13:1.PubMedPubMedCentralCrossRef
57.
go back to reference Lombardo S, Chiacchiaretta M, Tarr A, Kim W, Cao TY, Sigal G, et al. BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Sci Rep. 2019;9:19877.PubMedPubMedCentralCrossRef Lombardo S, Chiacchiaretta M, Tarr A, Kim W, Cao TY, Sigal G, et al. BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Sci Rep. 2019;9:19877.PubMedPubMedCentralCrossRef
58.
go back to reference Wang HX, He Y, Sun ZL, Ren SY, Liu MX, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflamm. 2022;19(1):132.CrossRef Wang HX, He Y, Sun ZL, Ren SY, Liu MX, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflamm. 2022;19(1):132.CrossRef
59.
go back to reference Cosma NC, Usekes B, Otto LR, Gerike S, Heuser I, Regen F, Hellmann-Regen J. M1/M2 polarization in major depressive disorder: Disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95.PubMedCrossRef Cosma NC, Usekes B, Otto LR, Gerike S, Heuser I, Regen F, Hellmann-Regen J. M1/M2 polarization in major depressive disorder: Disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95.PubMedCrossRef
60.
go back to reference Zhang LJ, Zhang JQ, You ZL. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:306.PubMedPubMedCentralCrossRef Zhang LJ, Zhang JQ, You ZL. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:306.PubMedPubMedCentralCrossRef
61.
go back to reference Liu Y, Hu P, Zheng ZH, Zhong D, Xie WC, Tang ZB, et al. Photoresponsive vaccine-like CAR-M system with high-efficiency central immune regulation for inflammation-related depression. Adv Mater. 2022;34(11):2108525.CrossRef Liu Y, Hu P, Zheng ZH, Zhong D, Xie WC, Tang ZB, et al. Photoresponsive vaccine-like CAR-M system with high-efficiency central immune regulation for inflammation-related depression. Adv Mater. 2022;34(11):2108525.CrossRef
62.
63.
go back to reference Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947.PubMedPubMedCentralCrossRef Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947.PubMedPubMedCentralCrossRef
64.
go back to reference Gatto L, Di Nunno V, Franceschi E, Brandes AA. Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward. Immunotherapy. 2021;13(11):879–84.PubMedCrossRef Gatto L, Di Nunno V, Franceschi E, Brandes AA. Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward. Immunotherapy. 2021;13(11):879–84.PubMedCrossRef
65.
go back to reference Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, et al. Intracavity generation of glioma stem cell–specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med. 2022;14(656):eabn1128.PubMedCrossRef Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, et al. Intracavity generation of glioma stem cell–specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med. 2022;14(656):eabn1128.PubMedCrossRef
66.
go back to reference Rossari F, Birocchi F, Cusimano M, Ranghetti A, Orofino G, Sergi LS, et al. Interferon-alpha gene delivery by tumor-associated macrophages improves function and prevents exhaustion of B7-H3-redirected CAR T cells in glioblastoma. Hum Gene Therapy. 2021;32(19–20):A33-A. Rossari F, Birocchi F, Cusimano M, Ranghetti A, Orofino G, Sergi LS, et al. Interferon-alpha gene delivery by tumor-associated macrophages improves function and prevents exhaustion of B7-H3-redirected CAR T cells in glioblastoma. Hum Gene Therapy. 2021;32(19–20):A33-A.
67.
68.
go back to reference Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol. 2018;9:697.PubMedPubMedCentralCrossRef Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol. 2018;9:697.PubMedPubMedCentralCrossRef
69.
go back to reference Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P, et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat Commun. 2018;9(1):5206.PubMedPubMedCentralCrossRef Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P, et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat Commun. 2018;9(1):5206.PubMedPubMedCentralCrossRef
71.
go back to reference Luo C, Jian CD, Liao YH, Huang Q, Wu YJ, Liu XX, et al. The role of microglia in multiple sclerosis. Neuropsych Dis Treat. 2017;13:1661–7.CrossRef Luo C, Jian CD, Liao YH, Huang Q, Wu YJ, Liu XX, et al. The role of microglia in multiple sclerosis. Neuropsych Dis Treat. 2017;13:1661–7.CrossRef
72.
go back to reference Tzeng SF, Huang HY. Downregulation of inducible nitric oxide synthetase by neurotrophin-3 in microglia. J Cell Biochem. 2003;90(2):227–33.PubMedCrossRef Tzeng SF, Huang HY. Downregulation of inducible nitric oxide synthetase by neurotrophin-3 in microglia. J Cell Biochem. 2003;90(2):227–33.PubMedCrossRef
73.
go back to reference Elkabes S, DiCiccoBloom EM, Black IB. Brain microglia macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16(8):2508–21.PubMedPubMedCentralCrossRef Elkabes S, DiCiccoBloom EM, Black IB. Brain microglia macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16(8):2508–21.PubMedPubMedCentralCrossRef
74.
go back to reference Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA. 1998;95(10):5779–84.PubMedPubMedCentralCrossRef Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA. 1998;95(10):5779–84.PubMedPubMedCentralCrossRef
75.
go back to reference Beutner C, Lepperhof V, Dann A, Linnartz-Gerlach B, Litwak S, Napoli I, et al. Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis. Gene Ther. 2013;20(8):797–806.PubMedCrossRef Beutner C, Lepperhof V, Dann A, Linnartz-Gerlach B, Litwak S, Napoli I, et al. Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis. Gene Ther. 2013;20(8):797–806.PubMedCrossRef
76.
go back to reference Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci USA. 2005;102(52):19045–50.PubMedPubMedCentralCrossRef Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci USA. 2005;102(52):19045–50.PubMedPubMedCentralCrossRef
77.
go back to reference Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, et al. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol Ther. 2018;26(9):2107–18.PubMedPubMedCentralCrossRef Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, et al. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol Ther. 2018;26(9):2107–18.PubMedPubMedCentralCrossRef
78.
go back to reference Dolan MJ, Therrien M, Jereb S, Kamath T, Gazestani V, Atkeson T, et al. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro. Nat Immunol. 2023;24(8):1382–90.PubMedPubMedCentralCrossRef Dolan MJ, Therrien M, Jereb S, Kamath T, Gazestani V, Atkeson T, et al. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro. Nat Immunol. 2023;24(8):1382–90.PubMedPubMedCentralCrossRef
79.
go back to reference Dräger NM, Sattler SM, Huang CT-L, Teter OM, Leng K, Hashemi SH, et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci. 2022;25:1149.PubMedPubMedCentralCrossRef Dräger NM, Sattler SM, Huang CT-L, Teter OM, Leng K, Hashemi SH, et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci. 2022;25:1149.PubMedPubMedCentralCrossRef
81.
go back to reference Yu ZW, Sun DY, Feng JF, Tan WX, Fang X, Zhao M, et al. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci. 2015;35(16):6350–65.PubMedPubMedCentralCrossRef Yu ZW, Sun DY, Feng JF, Tan WX, Fang X, Zhao M, et al. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci. 2015;35(16):6350–65.PubMedPubMedCentralCrossRef
82.
go back to reference Grimaldi A, D’Alessandro G, Golia MT, Grossinger EM, Di Angelantonio S, Ragozzino D, et al. KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages. Cell Death Dis. 2016;7: e2174.PubMedPubMedCentralCrossRef Grimaldi A, D’Alessandro G, Golia MT, Grossinger EM, Di Angelantonio S, Ragozzino D, et al. KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages. Cell Death Dis. 2016;7: e2174.PubMedPubMedCentralCrossRef
83.
go back to reference Tóbon-Velasco JC, Cuevas E, Torres-Ramos MA. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets. 2014;13(9):1615–26.PubMedCrossRef Tóbon-Velasco JC, Cuevas E, Torres-Ramos MA. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets. 2014;13(9):1615–26.PubMedCrossRef
84.
go back to reference Deane RJ. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med Chem. 2012;4(7):915–25.PubMedCrossRef Deane RJ. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med Chem. 2012;4(7):915–25.PubMedCrossRef
85.
go back to reference Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Rabelo TK, Kunzler A, et al. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA–induced dopaminergic denervation. Sci Rep-Uk. 2017;7(1):8795.CrossRef Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Rabelo TK, Kunzler A, et al. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA–induced dopaminergic denervation. Sci Rep-Uk. 2017;7(1):8795.CrossRef
86.
go back to reference Teismann P, Sathe K, Bierhaus A, Leng L, Martin H, Bucala R, et al. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging. 2012;33:2478–90.PubMedPubMedCentralCrossRef Teismann P, Sathe K, Bierhaus A, Leng L, Martin H, Bucala R, et al. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging. 2012;33:2478–90.PubMedPubMedCentralCrossRef
87.
go back to reference Santos G, Barateiro A, Brites D, Fernandes A. S100B impairs oligodendrogenesis and myelin repair following demyelination through RAGE engagement. Front Cell Neurosci. 2020;14:279.PubMedPubMedCentralCrossRef Santos G, Barateiro A, Brites D, Fernandes A. S100B impairs oligodendrogenesis and myelin repair following demyelination through RAGE engagement. Front Cell Neurosci. 2020;14:279.PubMedPubMedCentralCrossRef
89.
go back to reference Xie X, Luo X, Liu N, Li X, Lou F, Zheng Y, Ren Y. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem. 2017;141(2):222–35.PubMedCrossRef Xie X, Luo X, Liu N, Li X, Lou F, Zheng Y, Ren Y. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem. 2017;141(2):222–35.PubMedCrossRef
90.
go back to reference Rabaneda-Lombarte N, Serratosa J, Bové J, Vila M, Saura J, Solà C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson’s disease. J Neuroinflammation. 2021;18(1):88.PubMedPubMedCentralCrossRef Rabaneda-Lombarte N, Serratosa J, Bové J, Vila M, Saura J, Solà C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson’s disease. J Neuroinflammation. 2021;18(1):88.PubMedPubMedCentralCrossRef
91.
go back to reference Rabaneda-Lombarte N, Vidal-Taboada JM, Valente T, Ezquerra M, Fernández-Santiago R, Martí MJ, et al. Altered expression of the immunoregulatory ligand-receptor pair CD200-CD200R1 in the brain of Parkinson’s disease patients. Npj Parkinsons Dis. 2022;8(1):27.PubMedPubMedCentralCrossRef Rabaneda-Lombarte N, Vidal-Taboada JM, Valente T, Ezquerra M, Fernández-Santiago R, Martí MJ, et al. Altered expression of the immunoregulatory ligand-receptor pair CD200-CD200R1 in the brain of Parkinson’s disease patients. Npj Parkinsons Dis. 2022;8(1):27.PubMedPubMedCentralCrossRef
92.
go back to reference Liu Y, Bando Y, Vargas-Lowy D, Elyaman W, Khoury SJ, Huang T, et al. CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. J Neurosci. 2010;30(6):2025–38.PubMedPubMedCentralCrossRef Liu Y, Bando Y, Vargas-Lowy D, Elyaman W, Khoury SJ, Huang T, et al. CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. J Neurosci. 2010;30(6):2025–38.PubMedPubMedCentralCrossRef
93.
go back to reference Wilkinson K, El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012: 489456.PubMedPubMedCentral Wilkinson K, El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012: 489456.PubMedPubMedCentral
94.
go back to reference Ulland TK, Colonna M. TREM2: a key player in microglial biology and Alzheimer disease. Nat Rev Neurol. 2018;14(11):667–75.PubMedCrossRef Ulland TK, Colonna M. TREM2: a key player in microglial biology and Alzheimer disease. Nat Rev Neurol. 2018;14(11):667–75.PubMedCrossRef
95.
go back to reference Peng Q, Malhotra S, Humphrey MB. Association of TREM2-DAP12 with DAP10 is required for the regulation of PI3K in macrophages (98.18). J Immunol. 2010;184(1 Supplement):98.18-98.18.CrossRef Peng Q, Malhotra S, Humphrey MB. Association of TREM2-DAP12 with DAP10 is required for the regulation of PI3K in macrophages (98.18). J Immunol. 2010;184(1 Supplement):98.18-98.18.CrossRef
96.
go back to reference Sayed FA, Kodama L, Fan L, Carling GK, Udeochu JC, Le D, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med. 2021;13(622):eabe3947.PubMedPubMedCentralCrossRef Sayed FA, Kodama L, Fan L, Carling GK, Udeochu JC, Le D, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med. 2021;13(622):eabe3947.PubMedPubMedCentralCrossRef
97.
go back to reference Huang Y, Happonen KE, Burrola PG, O’Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22(5):586–94.PubMedPubMedCentralCrossRef Huang Y, Happonen KE, Burrola PG, O’Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22(5):586–94.PubMedPubMedCentralCrossRef
98.
go back to reference Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621–39.PubMedCrossRef Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621–39.PubMedCrossRef
99.
go back to reference Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–9.PubMedCrossRef Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–9.PubMedCrossRef
100.
go back to reference Lauro C, Catalano M, Trettel F, Mainiero F, Ciotti MT, Eusebi F, Limatola C. The chemokine CX3CL1 reduces migration and increases adhesion of neurons with mechanisms dependent on the beta1 integrin subunit. J Immunol. 2006;177(11):7599–606.PubMedCrossRef Lauro C, Catalano M, Trettel F, Mainiero F, Ciotti MT, Eusebi F, Limatola C. The chemokine CX3CL1 reduces migration and increases adhesion of neurons with mechanisms dependent on the beta1 integrin subunit. J Immunol. 2006;177(11):7599–606.PubMedCrossRef
101.
go back to reference Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia. 2021;69(7):1619–36.PubMedCrossRef Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia. 2021;69(7):1619–36.PubMedCrossRef
102.
go back to reference Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100(1):120-34.e6.PubMedPubMedCentralCrossRef Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100(1):120-34.e6.PubMedPubMedCentralCrossRef
103.
go back to reference Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, et al. IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci. 2005;25(50):11495–503.PubMedPubMedCentralCrossRef Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, et al. IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci. 2005;25(50):11495–503.PubMedPubMedCentralCrossRef
104.
go back to reference Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 2013;4:1562.PubMedCrossRef Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 2013;4:1562.PubMedCrossRef
105.
go back to reference Choi I, Zhang YX, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released a-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11(1):1386.PubMedPubMedCentralCrossRef Choi I, Zhang YX, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released a-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11(1):1386.PubMedPubMedCentralCrossRef
106.
go back to reference Brelstaff JH, Mason M, Katsinelos T, McEwan WA, Ghetti B, Tolkovsky AM, Spillantini MG. Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv. 2021;7(43):eabg4980.PubMedPubMedCentralCrossRef Brelstaff JH, Mason M, Katsinelos T, McEwan WA, Ghetti B, Tolkovsky AM, Spillantini MG. Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv. 2021;7(43):eabg4980.PubMedPubMedCentralCrossRef
107.
go back to reference Chiu T-L, Wang M-J, Su C-C. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci. 2012;19(1):45.PubMedPubMedCentralCrossRef Chiu T-L, Wang M-J, Su C-C. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci. 2012;19(1):45.PubMedPubMedCentralCrossRef
108.
go back to reference McAlpine CS, Park J, Griciuc A, Kim E, Choi SH, Iwamoto Y, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595(7869):701–6.PubMedPubMedCentralCrossRef McAlpine CS, Park J, Griciuc A, Kim E, Choi SH, Iwamoto Y, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595(7869):701–6.PubMedPubMedCentralCrossRef
109.
go back to reference Baik SH, Kang S, Lee W, Choi H, Chung S, Kim J-I, Mook-Jung I. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019;30(3):493-507.e6.PubMedCrossRef Baik SH, Kang S, Lee W, Choi H, Chung S, Kim J-I, Mook-Jung I. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019;30(3):493-507.e6.PubMedCrossRef
110.
go back to reference Crehan H, Liu B, Kleinschmidt M, Rahfeld J-U, Le KX, Caldarone BJ, et al. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice. Alzheimers Res Ther. 2020;12(1):12.PubMedPubMedCentralCrossRef Crehan H, Liu B, Kleinschmidt M, Rahfeld J-U, Le KX, Caldarone BJ, et al. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice. Alzheimers Res Ther. 2020;12(1):12.PubMedPubMedCentralCrossRef
111.
go back to reference Reifschneider A, Robinson S, van Lengerich B, Gnörich J, Logan T, Heindl S, et al. Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. Embo J. 2022;41(4): e109108.PubMedPubMedCentralCrossRef Reifschneider A, Robinson S, van Lengerich B, Gnörich J, Logan T, Heindl S, et al. Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. Embo J. 2022;41(4): e109108.PubMedPubMedCentralCrossRef
112.
go back to reference Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol. 2015;77(1):75–99.PubMedCrossRef Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol. 2015;77(1):75–99.PubMedCrossRef
113.
go back to reference Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017;18(10):1801–16.PubMedPubMedCentralCrossRef Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017;18(10):1801–16.PubMedPubMedCentralCrossRef
114.
go back to reference Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112(9):2853–8.PubMedPubMedCentralCrossRef Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112(9):2853–8.PubMedPubMedCentralCrossRef
115.
go back to reference Fan Y, Li Y, Yang Y, Lin K, Lin Q, Luo S, et al. Chlorogenic acid prevents microglia-induced neuronal apoptosis and oxidative stress under hypoxia-ischemia environment by regulating the MIR497HG/miR-29b-3p/SIRT1 axis. Dis Markers. 2022;2022:1194742.PubMedPubMedCentralCrossRef Fan Y, Li Y, Yang Y, Lin K, Lin Q, Luo S, et al. Chlorogenic acid prevents microglia-induced neuronal apoptosis and oxidative stress under hypoxia-ischemia environment by regulating the MIR497HG/miR-29b-3p/SIRT1 axis. Dis Markers. 2022;2022:1194742.PubMedPubMedCentralCrossRef
116.
go back to reference Miles LA, Hermans SJ, Crespi GAN, Gooi JH, Doughty L, Nero TL, et al. Small molecule binding to alzheimer risk factor CD33 promotes Aβ phagocytosis. iScience. 2019;19:110–8.PubMedPubMedCentralCrossRef Miles LA, Hermans SJ, Crespi GAN, Gooi JH, Doughty L, Nero TL, et al. Small molecule binding to alzheimer risk factor CD33 promotes Aβ phagocytosis. iScience. 2019;19:110–8.PubMedPubMedCentralCrossRef
117.
118.
go back to reference Amantea D, Certo M, Petrelli F, Bagetta G. Neuroprotective properties of a macrolide antibiotic in a mouse model of middle cerebral artery occlusion: characterization of the immunomodulatory effects and validation of the efficacy of intravenous administration. Assay Drug Dev Technol. 2016;14(5):298–307.PubMedPubMedCentralCrossRef Amantea D, Certo M, Petrelli F, Bagetta G. Neuroprotective properties of a macrolide antibiotic in a mouse model of middle cerebral artery occlusion: characterization of the immunomodulatory effects and validation of the efficacy of intravenous administration. Assay Drug Dev Technol. 2016;14(5):298–307.PubMedPubMedCentralCrossRef
119.
go back to reference Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4): e1000371.PubMedPubMedCentralCrossRef Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4): e1000371.PubMedPubMedCentralCrossRef
120.
go back to reference Joseph A, Liao R, Zhang MY, Helmbrecht H, McKenna M, Filteau JR, Nance E. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med. 2020;5(3): e10175.PubMedPubMedCentralCrossRef Joseph A, Liao R, Zhang MY, Helmbrecht H, McKenna M, Filteau JR, Nance E. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med. 2020;5(3): e10175.PubMedPubMedCentralCrossRef
121.
go back to reference Yang CC, Gong SL, Chen XP, Wang MY, Zhang L, Zhang L, Hu CY. Analgecine regulates microglia polarization in ischemic stroke by inhibiting NF-rB through the TLR4 MyD88 pathway. Int Immunopharmacol. 2021;99:107930.PubMedCrossRef Yang CC, Gong SL, Chen XP, Wang MY, Zhang L, Zhang L, Hu CY. Analgecine regulates microglia polarization in ischemic stroke by inhibiting NF-rB through the TLR4 MyD88 pathway. Int Immunopharmacol. 2021;99:107930.PubMedCrossRef
122.
go back to reference Zhou JM, Gu SS, Mei WH, Zhou J, Wang ZZ, Xiao W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones. 2016;21(6):1037–53.PubMedPubMedCentralCrossRef Zhou JM, Gu SS, Mei WH, Zhou J, Wang ZZ, Xiao W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones. 2016;21(6):1037–53.PubMedPubMedCentralCrossRef
123.
go back to reference Manickavasagam D, Novak K, Oyewumi MO. Therapeutic delivery of simvastatin loaded in PLA-PEG polymersomes resulted in amplification of anti-inflammatory effects in activated microglia. Aaps J. 2018;20(1):1.CrossRef Manickavasagam D, Novak K, Oyewumi MO. Therapeutic delivery of simvastatin loaded in PLA-PEG polymersomes resulted in amplification of anti-inflammatory effects in activated microglia. Aaps J. 2018;20(1):1.CrossRef
124.
go back to reference Emmerich K, White DT, Kambhampati SP, Casado GL, Fu T-M, Chunawala Z, et al. Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina. Commun Biol. 2023;6(1):534.PubMedPubMedCentralCrossRef Emmerich K, White DT, Kambhampati SP, Casado GL, Fu T-M, Chunawala Z, et al. Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina. Commun Biol. 2023;6(1):534.PubMedPubMedCentralCrossRef
125.
go back to reference Wu WC, Tian J, Xiao D, Guo YX, Xiao Y, Wu XY, et al. Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. Nanoscale. 2022;14(6):2393–410.PubMedCrossRef Wu WC, Tian J, Xiao D, Guo YX, Xiao Y, Wu XY, et al. Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. Nanoscale. 2022;14(6):2393–410.PubMedCrossRef
126.
go back to reference Li X, Tian J, Zhang Y. Targeting CNS extracellular vesicles enhanced bryostatin-1 therapeutic effect on experimental autoimmune encephalomyelitis. Eur J Immunol. 2019;49:1832–3. Li X, Tian J, Zhang Y. Targeting CNS extracellular vesicles enhanced bryostatin-1 therapeutic effect on experimental autoimmune encephalomyelitis. Eur J Immunol. 2019;49:1832–3.
127.
go back to reference Van den Broek B, Wuyts C, Sisto A, Pintelon I, Timmermans JP, Somers V, et al. Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles. Cell Commun Signal. 2022;20(1):1. Van den Broek B, Wuyts C, Sisto A, Pintelon I, Timmermans JP, Somers V, et al. Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles. Cell Commun Signal. 2022;20(1):1.
128.
go back to reference Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflamm. 2016;13:1. Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflamm. 2016;13:1.
129.
130.
go back to reference Wang YL, Wang ZY, Wang Y, Li F, Jia JY, Song XW, et al. The gut-microglia connection: implications for central nervous system diseases. Front Immunol. 2018;9:2325.PubMedPubMedCentralCrossRef Wang YL, Wang ZY, Wang Y, Li F, Jia JY, Song XW, et al. The gut-microglia connection: implications for central nervous system diseases. Front Immunol. 2018;9:2325.PubMedPubMedCentralCrossRef
131.
go back to reference Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? Npj Parkinsons Dis. 2017;3:3.PubMedPubMedCentralCrossRef Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? Npj Parkinsons Dis. 2017;3:3.PubMedPubMedCentralCrossRef
132.
go back to reference Garcia-Dominguez I, Vesela K, Garcia-Revilla J, Carrillo-Jimenez A, Roca-Ceballos MA, Santiago M, et al. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front Cell Neurosci. 2018;12:398.PubMedPubMedCentralCrossRef Garcia-Dominguez I, Vesela K, Garcia-Revilla J, Carrillo-Jimenez A, Roca-Ceballos MA, Santiago M, et al. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front Cell Neurosci. 2018;12:398.PubMedPubMedCentralCrossRef
134.
go back to reference Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, et al. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation: involvement of the gut-brain axis. Pharmacol Res. 2021;172:105795.PubMedCrossRef Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, et al. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation: involvement of the gut-brain axis. Pharmacol Res. 2021;172:105795.PubMedCrossRef
135.
go back to reference Wu H, Wei J, Zhao XM, Liu Y, Chen ZH, Wei KH, et al. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson’s disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng Transl Med. 2022;8(5):e10351.PubMedPubMedCentralCrossRef Wu H, Wei J, Zhao XM, Liu Y, Chen ZH, Wei KH, et al. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson’s disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng Transl Med. 2022;8(5):e10351.PubMedPubMedCentralCrossRef
136.
go back to reference Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between alpha-synuclein and microglia in parkinson’s disease: recent developments. Neuroscience. 2015;302:47–58.PubMedCrossRef Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between alpha-synuclein and microglia in parkinson’s disease: recent developments. Neuroscience. 2015;302:47–58.PubMedCrossRef
137.
go back to reference Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.PubMedPubMedCentralCrossRef Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.PubMedPubMedCentralCrossRef
138.
go back to reference Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.PubMedCrossRef Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.PubMedCrossRef
139.
go back to reference Morganti JM, Riparip L-K, Rosi S. Call off the dog (ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS ONE. 2016;11(1): e0148001.PubMedPubMedCentralCrossRef Morganti JM, Riparip L-K, Rosi S. Call off the dog (ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS ONE. 2016;11(1): e0148001.PubMedPubMedCentralCrossRef
141.
go back to reference Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef
142.
go back to reference Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–40.PubMedPubMedCentralCrossRef Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–40.PubMedPubMedCentralCrossRef
143.
go back to reference Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35(15):5969–82.PubMedPubMedCentralCrossRef Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35(15):5969–82.PubMedPubMedCentralCrossRef
144.
go back to reference Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci. 2020;23(12):1496–508.PubMedCrossRef Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci. 2020;23(12):1496–508.PubMedCrossRef
146.
go back to reference Xu RJ, Boreland AJ, Li XX, Erickson C, Jin MM, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Rep. 2021;16(8):1923–37.CrossRef Xu RJ, Boreland AJ, Li XX, Erickson C, Jin MM, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Rep. 2021;16(8):1923–37.CrossRef
147.
go back to reference Sabate-Soler S, Nickels SL, Saraiva C, Berger E, Dubonyte U, Barmpa K, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia. 2022;70(7):1267–88.PubMedPubMedCentralCrossRef Sabate-Soler S, Nickels SL, Saraiva C, Berger E, Dubonyte U, Barmpa K, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia. 2022;70(7):1267–88.PubMedPubMedCentralCrossRef
148.
go back to reference Ormel PR, de Sa RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.PubMedPubMedCentralCrossRef Ormel PR, de Sa RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.PubMedPubMedCentralCrossRef
149.
go back to reference Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, et al. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med. 2022;220(3): e20220857.PubMedPubMedCentralCrossRef Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, et al. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med. 2022;220(3): e20220857.PubMedPubMedCentralCrossRef
151.
go back to reference Fairley LH, Wong JH, Barron AM. Mitochondrial regulation of microglial immunometabolism in Alzheimers disease. Front Immunol. 2021;12:257.CrossRef Fairley LH, Wong JH, Barron AM. Mitochondrial regulation of microglial immunometabolism in Alzheimers disease. Front Immunol. 2021;12:257.CrossRef
152.
go back to reference Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22(10):1635.PubMedPubMedCentralCrossRef Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22(10):1635.PubMedPubMedCentralCrossRef
Metadata
Title
Taming microglia: the promise of engineered microglia in treating neurological diseases
Authors
Echo Yongqi Luo
Rio Ryohichi Sugimura
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03015-9

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue