Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Encephalitis | Research

Inhibition of NADPH oxidase 2 enhances resistance to viral neuroinflammation by facilitating M1-polarization of macrophages at the extraneural tissues

Authors: Jin Young Choi, Hee Won Byeon, Seong Ok Park, Erdenebileg Uyangaa, Koanhoi Kim, Seong Kug Eo

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies.

Methods

To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection.

Results

NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages.

Conclusion

In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.
Literature
2.
go back to reference Huber K, Jansen S, Leggewie M, Badusche M, Schmidt-Chanasit J, et al. Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol Res. 2014;113(9):3195–9.PubMedCrossRef Huber K, Jansen S, Leggewie M, Badusche M, Schmidt-Chanasit J, et al. Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol Res. 2014;113(9):3195–9.PubMedCrossRef
3.
go back to reference Ricklin ME, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, et al. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat Commun. 2016;7:10832.PubMedPubMedCentralCrossRef Ricklin ME, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, et al. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat Commun. 2016;7:10832.PubMedPubMedCentralCrossRef
4.
go back to reference Cf D. Japanese encephalitis: status of surveillance and immunization in Asia and the Western Pacific, 2012. Wkly Epidemiol Rec. 2013;88(34):357–64. Cf D. Japanese encephalitis: status of surveillance and immunization in Asia and the Western Pacific, 2012. Wkly Epidemiol Rec. 2013;88(34):357–64.
5.
go back to reference Centers for Disease Control and Prevention. West Nile Virus-Final cumulative maps and data for 1999–2016. 2018. Centers for Disease Control and Prevention. West Nile Virus-Final cumulative maps and data for 1999–2016. 2018.
6.
go back to reference Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, et al. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89(10):766–74.PubMedPubMedCentralCrossRef Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, et al. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89(10):766–74.PubMedPubMedCentralCrossRef
8.
go back to reference Kimura T, Sasaki M, Okumura M, Kim E, Sawa H. Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol. 2010;47(5):806–18.PubMedCrossRef Kimura T, Sasaki M, Okumura M, Kim E, Sawa H. Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol. 2010;47(5):806–18.PubMedCrossRef
9.
go back to reference Choi JY, Kim JH, Hossain FMA, Uyangaa E, Park SO, et al. Indispensable role of CX(3)CR1(+) dendritic cells in regulation of virus-induced neuroinflammation through rapid development of antiviral immunity in peripheral lymphoid tissues. Front Immunol. 2019;10:1467.PubMedPubMedCentralCrossRef Choi JY, Kim JH, Hossain FMA, Uyangaa E, Park SO, et al. Indispensable role of CX(3)CR1(+) dendritic cells in regulation of virus-induced neuroinflammation through rapid development of antiviral immunity in peripheral lymphoid tissues. Front Immunol. 2019;10:1467.PubMedPubMedCentralCrossRef
10.
go back to reference Saxena V, Mathur A, Krishnani N, Dhole TN. An insufficient anti-inflammatory cytokine response in mouse brain is associated with increased tissue pathology and viral load during Japanese encephalitis virus infection. Arch Virol. 2008;153(2):283–92.PubMedCrossRef Saxena V, Mathur A, Krishnani N, Dhole TN. An insufficient anti-inflammatory cytokine response in mouse brain is associated with increased tissue pathology and viral load during Japanese encephalitis virus infection. Arch Virol. 2008;153(2):283–92.PubMedCrossRef
11.
go back to reference Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL, et al. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol. 2010;91(Pt 4):1028–37.PubMedCrossRef Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL, et al. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol. 2010;91(Pt 4):1028–37.PubMedCrossRef
12.
go back to reference Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, et al. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55(5):483–96.PubMedCrossRef Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, et al. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55(5):483–96.PubMedCrossRef
13.
go back to reference Kim SB, Choi JY, Kim JH, Uyangaa E, Patil AM, et al. Amelioration of Japanese encephalitis by blockage of 4–1BB signaling is coupled to divergent enhancement of type I/II IFN responses and Ly-6C(hi) monocyte differentiation. J Neuroinflammation. 2015;12:216.PubMedPubMedCentralCrossRef Kim SB, Choi JY, Kim JH, Uyangaa E, Patil AM, et al. Amelioration of Japanese encephalitis by blockage of 4–1BB signaling is coupled to divergent enhancement of type I/II IFN responses and Ly-6C(hi) monocyte differentiation. J Neuroinflammation. 2015;12:216.PubMedPubMedCentralCrossRef
14.
go back to reference Kim SB, Choi JY, Uyangaa E, Patil AM, Hossain FM, et al. Blockage of indoleamine 2,3-dioxygenase regulates Japanese encephalitis via enhancement of type I/II IFN innate and adaptive T-cell responses. J Neuroinflammation. 2016;13(1):79.PubMedPubMedCentralCrossRef Kim SB, Choi JY, Uyangaa E, Patil AM, Hossain FM, et al. Blockage of indoleamine 2,3-dioxygenase regulates Japanese encephalitis via enhancement of type I/II IFN innate and adaptive T-cell responses. J Neuroinflammation. 2016;13(1):79.PubMedPubMedCentralCrossRef
16.
go back to reference Ashhurst TM, Vreden C, Munoz-Erazo L, Niewold P, Watabe K, et al. Antiviral macrophage responses in flavivirus encephalitis. Indian J Med Res. 2013;138(5):632–47.PubMedPubMedCentral Ashhurst TM, Vreden C, Munoz-Erazo L, Niewold P, Watabe K, et al. Antiviral macrophage responses in flavivirus encephalitis. Indian J Med Res. 2013;138(5):632–47.PubMedPubMedCentral
17.
go back to reference Terry RL, Getts DR, Deffrasnes C, van Vreden C, Campbell IL, et al. Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation. 2012;9:270.PubMedPubMedCentralCrossRef Terry RL, Getts DR, Deffrasnes C, van Vreden C, Campbell IL, et al. Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation. 2012;9:270.PubMedPubMedCentralCrossRef
18.
go back to reference Patil AM, Choi JY, Park SO, Uyangaa E, Kim B, et al. Type I IFN signaling limits hemorrhage-like disease after infection with Japanese encephalitis virus through modulating a prerequisite infection of CD11b(+)Ly-6C(+) monocytes. J Neuroinflammation. 2021;18(1):136.PubMedPubMedCentralCrossRef Patil AM, Choi JY, Park SO, Uyangaa E, Kim B, et al. Type I IFN signaling limits hemorrhage-like disease after infection with Japanese encephalitis virus through modulating a prerequisite infection of CD11b(+)Ly-6C(+) monocytes. J Neuroinflammation. 2021;18(1):136.PubMedPubMedCentralCrossRef
19.
go back to reference Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 2012;37(6):1076–90.PubMedCrossRef Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 2012;37(6):1076–90.PubMedCrossRef
20.
go back to reference Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation. 2017;14(1):238.PubMedPubMedCentralCrossRef Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation. 2017;14(1):238.PubMedPubMedCentralCrossRef
21.
go back to reference Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.PubMedCrossRef Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.PubMedCrossRef
22.
go back to reference Ashhurst TM, van Vreden C, Niewold P, King NJ. The plasticity of inflammatory monocyte responses to the inflamed central nervous system. Cell Immunol. 2014;291(1–2):49–57.PubMedPubMedCentralCrossRef Ashhurst TM, van Vreden C, Niewold P, King NJ. The plasticity of inflammatory monocyte responses to the inflamed central nervous system. Cell Immunol. 2014;291(1–2):49–57.PubMedPubMedCentralCrossRef
23.
go back to reference Walsh KP, Mills KH. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013;34(11):521–30.PubMedCrossRef Walsh KP, Mills KH. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013;34(11):521–30.PubMedCrossRef
24.
go back to reference Khan A, SinghHunter VKRL, Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol. 2019;106(2):275–82.PubMedCrossRef Khan A, SinghHunter VKRL, Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol. 2019;106(2):275–82.PubMedCrossRef
25.
26.
27.
go back to reference Nazmi A, Dutta K, Das S, Basu A. Japanese encephalitis virus-infected macrophages induce neuronal death. J Neuroimmune Pharmacol. 2011;6(3):420–33.PubMedCrossRef Nazmi A, Dutta K, Das S, Basu A. Japanese encephalitis virus-infected macrophages induce neuronal death. J Neuroimmune Pharmacol. 2011;6(3):420–33.PubMedCrossRef
28.
go back to reference Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, et al. Polarization of type 1 macrophages is associated with the severity of viral encephalitis caused by Japanese encephalitis virus and dengue virus. Cells. 2021;10(11):3181.PubMedPubMedCentralCrossRef Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, et al. Polarization of type 1 macrophages is associated with the severity of viral encephalitis caused by Japanese encephalitis virus and dengue virus. Cells. 2021;10(11):3181.PubMedPubMedCentralCrossRef
29.
go back to reference Kundu K, DuttaNazmi KA, Basu A. Japanese encephalitis virus infection modulates the expression of suppressors of cytokine signaling (SOCS) in macrophages: implications for the hosts’ innate immune response. Cell Immunol. 2013;285(1–2):100–10.PubMedCrossRef Kundu K, DuttaNazmi KA, Basu A. Japanese encephalitis virus infection modulates the expression of suppressors of cytokine signaling (SOCS) in macrophages: implications for the hosts’ innate immune response. Cell Immunol. 2013;285(1–2):100–10.PubMedCrossRef
30.
go back to reference Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, et al. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol. 2022;19(6):660–86.PubMedPubMedCentralCrossRef Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, et al. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol. 2022;19(6):660–86.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol. 2023;64:102795.PubMedPubMedCentralCrossRef Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol. 2023;64:102795.PubMedPubMedCentralCrossRef
33.
go back to reference Moriyama M, Nagai M, Maruzuru Y, Koshiba T, Kawaguchi Y, et al. Influenza virus-induced oxidized DNA activates inflammasomes. iScience. 2020;23(7):101270.PubMedPubMedCentralCrossRef Moriyama M, Nagai M, Maruzuru Y, Koshiba T, Kawaguchi Y, et al. Influenza virus-induced oxidized DNA activates inflammasomes. iScience. 2020;23(7):101270.PubMedPubMedCentralCrossRef
34.
go back to reference Vlahos R, Stambas J, Bozinovski S, Broughton BR, Drummond GR, et al. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 2011;7(2): e1001271.PubMedPubMedCentralCrossRef Vlahos R, Stambas J, Bozinovski S, Broughton BR, Drummond GR, et al. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 2011;7(2): e1001271.PubMedPubMedCentralCrossRef
35.
go back to reference Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 activation in COVID-19: possible implications for neurodegenerative diseases. Medicina (Kaunas). 2021;57(6):604.PubMedPubMedCentralCrossRef Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 activation in COVID-19: possible implications for neurodegenerative diseases. Medicina (Kaunas). 2021;57(6):604.PubMedPubMedCentralCrossRef
36.
go back to reference Zhang J, He L, Huang R, Alvarez JF, Yang DH, et al. Synergistic effect of elevated glucose levels with SARS-CoV-2 spike protein induced NOX-dependent ROS production in endothelial cells. Mol Biol Rep. 2023;50(7):6039–47.PubMedCrossRef Zhang J, He L, Huang R, Alvarez JF, Yang DH, et al. Synergistic effect of elevated glucose levels with SARS-CoV-2 spike protein induced NOX-dependent ROS production in endothelial cells. Mol Biol Rep. 2023;50(7):6039–47.PubMedCrossRef
37.
38.
39.
go back to reference Kwon BI, Kim TW, Shin K, Kim YH, Yuk CM, et al. Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy. 2017;72(2):252–65.PubMedCrossRef Kwon BI, Kim TW, Shin K, Kim YH, Yuk CM, et al. Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy. 2017;72(2):252–65.PubMedCrossRef
40.
go back to reference Choi JY, Kim JH, Patil AM, Kim SB, Uyangaa E, et al. Exacerbation of Japanese Encephalitis by CD11c(hi) dendritic cell ablation is associated with an imbalance in regulatory Foxp3(+) and IL-17(+)CD4(+) Th17 cells and in Ly-6C(hi) and Ly-6C(lo) monocytes. Immune Netw. 2017;17(3):192–200.PubMedPubMedCentralCrossRef Choi JY, Kim JH, Patil AM, Kim SB, Uyangaa E, et al. Exacerbation of Japanese Encephalitis by CD11c(hi) dendritic cell ablation is associated with an imbalance in regulatory Foxp3(+) and IL-17(+)CD4(+) Th17 cells and in Ly-6C(hi) and Ly-6C(lo) monocytes. Immune Netw. 2017;17(3):192–200.PubMedPubMedCentralCrossRef
41.
go back to reference Zhou D, Pei C, Liu Z, Yang K, Li Q, et al. Identification of a protective epitope in Japanese encephalitis virus NS1 protein. Antiviral Res. 2020;182:104930.PubMedCrossRef Zhou D, Pei C, Liu Z, Yang K, Li Q, et al. Identification of a protective epitope in Japanese encephalitis virus NS1 protein. Antiviral Res. 2020;182:104930.PubMedCrossRef
42.
go back to reference El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Does physical exercise improve or deteriorate treatment of multiple sclerosis with mitoxantrone? Experimental autoimmune encephalomyelitis study in rats. BMC Neurosci. 2022;23(1):11.PubMedPubMedCentralCrossRef El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Does physical exercise improve or deteriorate treatment of multiple sclerosis with mitoxantrone? Experimental autoimmune encephalomyelitis study in rats. BMC Neurosci. 2022;23(1):11.PubMedPubMedCentralCrossRef
43.
go back to reference Jo HA, Hyun SJ, Hyun YS, Lee YH, Kim SM, et al. Comprehensive analysis of Epstein-Barr Virus LMP2A-Specific CD8(+) and CD4(+) T cell responses restricted to each HLA class I and II allotype within an individual. Immune Netw. 2023;23(2): e17.PubMedCrossRef Jo HA, Hyun SJ, Hyun YS, Lee YH, Kim SM, et al. Comprehensive analysis of Epstein-Barr Virus LMP2A-Specific CD8(+) and CD4(+) T cell responses restricted to each HLA class I and II allotype within an individual. Immune Netw. 2023;23(2): e17.PubMedCrossRef
44.
go back to reference Mo Y, Kim Y, Bang JY, Jung J, Lee CG, et al. Mesenchymal stem cells attenuate asthmatic inflammation and airway remodeling by modulating macrophages/monocytes in the IL-13-overexpressing mouse model. Immune Netw. 2022;22(5): e40.PubMedPubMedCentralCrossRef Mo Y, Kim Y, Bang JY, Jung J, Lee CG, et al. Mesenchymal stem cells attenuate asthmatic inflammation and airway remodeling by modulating macrophages/monocytes in the IL-13-overexpressing mouse model. Immune Netw. 2022;22(5): e40.PubMedPubMedCentralCrossRef
45.
48.
go back to reference Getts DR, Terry RL, Getts MT, Muller M, Rana S, et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205(10):2319–37.PubMedPubMedCentralCrossRef Getts DR, Terry RL, Getts MT, Muller M, Rana S, et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205(10):2319–37.PubMedPubMedCentralCrossRef
49.
go back to reference Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol. 2010;84(23):12125–38.PubMedPubMedCentralCrossRef Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol. 2010;84(23):12125–38.PubMedPubMedCentralCrossRef
50.
go back to reference Ford AL, Foulcher E, Lemckert FA, Sedgwick JD. Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med. 1996;184(5):1737–45.PubMedCrossRef Ford AL, Foulcher E, Lemckert FA, Sedgwick JD. Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med. 1996;184(5):1737–45.PubMedCrossRef
51.
go back to reference Lannes N, Neuhaus V, Scolari B, Kharoubi-Hess S, Walch M, et al. Interactions of human microglia cells with Japanese encephalitis virus. Virol J. 2017;14(1):8.PubMedPubMedCentralCrossRef Lannes N, Neuhaus V, Scolari B, Kharoubi-Hess S, Walch M, et al. Interactions of human microglia cells with Japanese encephalitis virus. Virol J. 2017;14(1):8.PubMedPubMedCentralCrossRef
52.
go back to reference Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, et al. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog. 2014;10(9): e1004319.PubMedPubMedCentralCrossRef Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, et al. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog. 2014;10(9): e1004319.PubMedPubMedCentralCrossRef
55.
go back to reference Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–8.PubMedCrossRef Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–8.PubMedCrossRef
56.
go back to reference Cutolo M, Campitiello R, Gotelli E, Soldano S. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022;13:867260.PubMedPubMedCentralCrossRef Cutolo M, Campitiello R, Gotelli E, Soldano S. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022;13:867260.PubMedPubMedCentralCrossRef
57.
go back to reference Vilchis-Landeros MM, Matuz-Mares D, Vázquez-Meza H. Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes. 2020;8(11):1424.CrossRef Vilchis-Landeros MM, Matuz-Mares D, Vázquez-Meza H. Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes. 2020;8(11):1424.CrossRef
58.
go back to reference Hwang GH, Jeon YJ, Han HJ, Park SH, Baek KM, et al. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes. J Vet Sci. 2015;16(1):17–23.PubMedPubMedCentralCrossRef Hwang GH, Jeon YJ, Han HJ, Park SH, Baek KM, et al. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes. J Vet Sci. 2015;16(1):17–23.PubMedPubMedCentralCrossRef
59.
go back to reference Delanghe T, Huyghe J, Lee S, Priem D, Van Coillie S, et al. Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death Dis. 2021;12(7):699.PubMedPubMedCentralCrossRef Delanghe T, Huyghe J, Lee S, Priem D, Van Coillie S, et al. Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death Dis. 2021;12(7):699.PubMedPubMedCentralCrossRef
60.
go back to reference Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, et al. Reactive oxygen species induce antiviral innate immune response through IFN-lambda regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol. 2013;49(5):855–65.PubMedPubMedCentralCrossRef Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, et al. Reactive oxygen species induce antiviral innate immune response through IFN-lambda regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol. 2013;49(5):855–65.PubMedPubMedCentralCrossRef
61.
go back to reference Lang PA, Xu HC, Grusdat M, McIlwain DR, Pandyra AA, et al. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ. 2013;20(4):649–58.PubMedPubMedCentralCrossRef Lang PA, Xu HC, Grusdat M, McIlwain DR, Pandyra AA, et al. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ. 2013;20(4):649–58.PubMedPubMedCentralCrossRef
62.
go back to reference Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J Virol. 2015;89(5):2672–83.PubMedCrossRef Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J Virol. 2015;89(5):2672–83.PubMedCrossRef
63.
go back to reference To EE, Vlahos R, Luong R, Halls ML, Reading PC, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nat Commun. 2017;8(1):69.PubMedPubMedCentralCrossRef To EE, Vlahos R, Luong R, Halls ML, Reading PC, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nat Commun. 2017;8(1):69.PubMedPubMedCentralCrossRef
64.
go back to reference Vlahos R, Selemidis S. NADPH oxidases as novel pharmacologic targets against influenza A virus infection. Mol Pharmacol. 2014;86(6):747–59.PubMedCrossRef Vlahos R, Selemidis S. NADPH oxidases as novel pharmacologic targets against influenza A virus infection. Mol Pharmacol. 2014;86(6):747–59.PubMedCrossRef
65.
go back to reference Lee MS, Tseng YH, Chen YC, Kuo CH, Wang SL, et al. M2 macrophage subset decrement is an indicator of bleeding tendency in pediatric dengue disease. J Microbiol Immunol Infect. 2018;51(6):829–38.PubMedCrossRef Lee MS, Tseng YH, Chen YC, Kuo CH, Wang SL, et al. M2 macrophage subset decrement is an indicator of bleeding tendency in pediatric dengue disease. J Microbiol Immunol Infect. 2018;51(6):829–38.PubMedCrossRef
66.
go back to reference Liu L, Stokes JV, Tan W, Pruett SB. An optimized flow cytometry panel for classifying macrophage polarization. J Immunol Methods. 2022;511:113378.PubMedCrossRef Liu L, Stokes JV, Tan W, Pruett SB. An optimized flow cytometry panel for classifying macrophage polarization. J Immunol Methods. 2022;511:113378.PubMedCrossRef
68.
go back to reference Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, et al. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv. 2023;5(1):vdad035.PubMedPubMedCentral Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, et al. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv. 2023;5(1):vdad035.PubMedPubMedCentral
69.
go back to reference EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, et al. Safety and efficacy of butylated hydroxyanisole (BHA) as a feed additive for all animal species. EFSA J. 2018;16(3): e05215.PubMed EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, et al. Safety and efficacy of butylated hydroxyanisole (BHA) as a feed additive for all animal species. EFSA J. 2018;16(3): e05215.PubMed
70.
go back to reference Meitzler JL, Konate MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys. 2019;675:108076.PubMedCrossRef Meitzler JL, Konate MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys. 2019;675:108076.PubMedCrossRef
72.
go back to reference Kouki A, Ferjani W, Ghanem-Boughanmi N, Ben-Attia M, Dang PM, et al. The NADPH oxidase inhibitors apocynin and diphenyleneiodonium protect rats from LPS-induced pulmonary inflammation. Antioxidants (Basel). 2023;12(3):770.PubMedPubMedCentralCrossRef Kouki A, Ferjani W, Ghanem-Boughanmi N, Ben-Attia M, Dang PM, et al. The NADPH oxidase inhibitors apocynin and diphenyleneiodonium protect rats from LPS-induced pulmonary inflammation. Antioxidants (Basel). 2023;12(3):770.PubMedPubMedCentralCrossRef
Metadata
Title
Inhibition of NADPH oxidase 2 enhances resistance to viral neuroinflammation by facilitating M1-polarization of macrophages at the extraneural tissues
Authors
Jin Young Choi
Hee Won Byeon
Seong Ok Park
Erdenebileg Uyangaa
Koanhoi Kim
Seong Kug Eo
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03078-8

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue