Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Targeted Therapy | Review

Aptamers as an approach to targeted cancer therapy

Authors: Fatemeh Mahmoudian, Azin Ahmari, Shiva Shabani, Bahman Sadeghi, Shohreh Fahimirad, Fahimeh Fattahi

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
3.
go back to reference Feng J, Li B, Ying J, Pan W, Liu C, Luo T, et al. Liquid biopsy: application in early diagnosis and monitoring of cancer. Small Struct. 2020;1(3):2000063.CrossRef Feng J, Li B, Ying J, Pan W, Liu C, Luo T, et al. Liquid biopsy: application in early diagnosis and monitoring of cancer. Small Struct. 2020;1(3):2000063.CrossRef
4.
go back to reference Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855–64.PubMed Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855–64.PubMed
5.
go back to reference He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol. 2023;238: 124173.PubMedCrossRef He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol. 2023;238: 124173.PubMedCrossRef
6.
go back to reference Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2(2):57–66. Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2(2):57–66.
7.
go back to reference Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: mechanisms, research progresses, challenges, and opportunities. J Cell Physiol. 2022;237(1):346–72.PubMedCrossRef Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: mechanisms, research progresses, challenges, and opportunities. J Cell Physiol. 2022;237(1):346–72.PubMedCrossRef
8.
go back to reference Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8.PubMedCrossRef Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8.PubMedCrossRef
9.
go back to reference Yadav P, Ambudkar SV, Rajendra PN. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol. 2022;20(1):1–35.CrossRef Yadav P, Ambudkar SV, Rajendra PN. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol. 2022;20(1):1–35.CrossRef
10.
go back to reference Lorscheider M, Gaudin A, Nakhle J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12(1):55–76.PubMedCrossRef Lorscheider M, Gaudin A, Nakhle J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12(1):55–76.PubMedCrossRef
11.
12.
go back to reference Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15.PubMedPubMedCentralCrossRef Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15.PubMedPubMedCentralCrossRef
13.
go back to reference Eriksson ESE, Joshi L, Billeter M, Eriksson LA. De novo tertiary structure prediction using RNA123—benchmarking and application to Macugen. J Mol Model. 2014;20(8):2389.PubMedCrossRef Eriksson ESE, Joshi L, Billeter M, Eriksson LA. De novo tertiary structure prediction using RNA123—benchmarking and application to Macugen. J Mol Model. 2014;20(8):2389.PubMedCrossRef
14.
go back to reference Mehta J, Van Dorst B, Rouah-Martin E, Herrebout W, Scippo M-L, Blust R, et al. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J Biotechnol. 2011;155(4):361–9.PubMedCrossRef Mehta J, Van Dorst B, Rouah-Martin E, Herrebout W, Scippo M-L, Blust R, et al. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J Biotechnol. 2011;155(4):361–9.PubMedCrossRef
15.
go back to reference Kong HY, Byun J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther. 2013;21(6):423.CrossRef Kong HY, Byun J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther. 2013;21(6):423.CrossRef
16.
go back to reference Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014;42(11):6861–75.PubMedPubMedCentralCrossRef Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014;42(11):6861–75.PubMedPubMedCentralCrossRef
17.
go back to reference Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci. 2023;14(19):4961–78.PubMedPubMedCentralCrossRef Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci. 2023;14(19):4961–78.PubMedPubMedCentralCrossRef
18.
go back to reference Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.PubMedCrossRef Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.PubMedCrossRef
21.
go back to reference Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555–83.PubMedCrossRef Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555–83.PubMedCrossRef
22.
go back to reference Constantinou A, Chen C, Deonarain M. Modulating the pharmacokinetics of therapeutic antibodies. Biotech Lett. 2010;32:609–22.CrossRef Constantinou A, Chen C, Deonarain M. Modulating the pharmacokinetics of therapeutic antibodies. Biotech Lett. 2010;32:609–22.CrossRef
23.
go back to reference Sharifi J, Khawli L, Hornick J, Epstein A. Improving monoclonal antibody pharmacokinetics via chemical modification. Q J Nucl Med Mol Imaging. 1998;42(4):242. Sharifi J, Khawli L, Hornick J, Epstein A. Improving monoclonal antibody pharmacokinetics via chemical modification. Q J Nucl Med Mol Imaging. 1998;42(4):242.
24.
go back to reference Stoltenburg R, Reinemann C, Strehlitz B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.PubMedCrossRef Stoltenburg R, Reinemann C, Strehlitz B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.PubMedCrossRef
25.
go back to reference Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng. 2020;14:1–13.PubMedPubMedCentralCrossRef Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng. 2020;14:1–13.PubMedPubMedCentralCrossRef
26.
go back to reference Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci. 2017;18(10):2142.PubMedPubMedCentralCrossRef Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci. 2017;18(10):2142.PubMedPubMedCentralCrossRef
27.
go back to reference Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and applications of in silico aptamer design and modeling. Int J Mol Sci. 2020;21(22):8420.PubMedPubMedCentralCrossRef Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and applications of in silico aptamer design and modeling. Int J Mol Sci. 2020;21(22):8420.PubMedPubMedCentralCrossRef
29.
go back to reference Li W, Bing T, Wang R, Jin S, Shangguan D, Chen H. Cell-SELEX-based selection of ssDNA aptamers for specifically targeting BRAF V600E-mutated melanoma. Analyst. 2022;147(1):187–95.ADSCrossRef Li W, Bing T, Wang R, Jin S, Shangguan D, Chen H. Cell-SELEX-based selection of ssDNA aptamers for specifically targeting BRAF V600E-mutated melanoma. Analyst. 2022;147(1):187–95.ADSCrossRef
30.
go back to reference Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, et al. Computational tools for aptamer identification and optimization. TrAC, Trends Anal Chem. 2022;157: 116767.CrossRef Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, et al. Computational tools for aptamer identification and optimization. TrAC, Trends Anal Chem. 2022;157: 116767.CrossRef
31.
go back to reference Zhang N, Chen Z, Liu D, Jiang H, Zhang Z-K, Lu A, et al. Structural biology for the molecular insight between aptamers and target proteins. Int J Mol Sci. 2021;22(8):4093.PubMedPubMedCentralCrossRef Zhang N, Chen Z, Liu D, Jiang H, Zhang Z-K, Lu A, et al. Structural biology for the molecular insight between aptamers and target proteins. Int J Mol Sci. 2021;22(8):4093.PubMedPubMedCentralCrossRef
32.
go back to reference Musafia B, Oren-Banaroya R, Noiman S. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS ONE. 2014;9(5): e97696.ADSPubMedPubMedCentralCrossRef Musafia B, Oren-Banaroya R, Noiman S. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS ONE. 2014;9(5): e97696.ADSPubMedPubMedCentralCrossRef
33.
go back to reference Li X, Chung LW, Li G. Multiscale simulations on spectral tuning and the photoisomerization mechanism in fluorescent RNA spinach. J Chem Theory Comput. 2016;12(11):5453–64.PubMedCrossRef Li X, Chung LW, Li G. Multiscale simulations on spectral tuning and the photoisomerization mechanism in fluorescent RNA spinach. J Chem Theory Comput. 2016;12(11):5453–64.PubMedCrossRef
34.
go back to reference Hoinka J, Przytycka T. AptaPLEX – a dedicated, multithreaded demultiplexer for HT-SELEX data. Methods. 2016;106:82–5.PubMedCrossRef Hoinka J, Przytycka T. AptaPLEX – a dedicated, multithreaded demultiplexer for HT-SELEX data. Methods. 2016;106:82–5.PubMedCrossRef
35.
go back to reference Hoinka J, Zotenko E, Friedman A, Sauna ZE, Przytycka TM. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers. Bioinformatics. 2012;28(12):i215–23.PubMedPubMedCentralCrossRef Hoinka J, Zotenko E, Friedman A, Sauna ZE, Przytycka TM. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers. Bioinformatics. 2012;28(12):i215–23.PubMedPubMedCentralCrossRef
36.
go back to reference Thiel WH, Giangrande PH. Analyzing HT-SELEX data with the Galaxy Project tools – a web based bioinformatics platform for biomedical research. Methods. 2016;97:3–10.PubMedCrossRef Thiel WH, Giangrande PH. Analyzing HT-SELEX data with the Galaxy Project tools – a web based bioinformatics platform for biomedical research. Methods. 2016;97:3–10.PubMedCrossRef
38.
go back to reference Shieh KR, Kratschmer C, Maier KE, Greally JM, Levy M, Golden A. AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX. Bioinformatics. 2020;36(9):2905–6.PubMedPubMedCentralCrossRef Shieh KR, Kratschmer C, Maier KE, Greally JM, Levy M, Golden A. AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX. Bioinformatics. 2020;36(9):2905–6.PubMedPubMedCentralCrossRef
40.
go back to reference Takayama A, Medina A, Pecic S, Mohapatra A, editors. Identification of Motifs in Aptamers Using MEME Analysis to aid design of Aptasensors. 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC); 2023 8–11 March 2023. Takayama A, Medina A, Pecic S, Mohapatra A, editors. Identification of Motifs in Aptamers Using MEME Analysis to aid design of Aptasensors. 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC); 2023 8–11 March 2023.
41.
go back to reference Jiang P, Meyer S, Hou Z, Propson NE, Soh HT, Thomson JA, et al. MPBind: a meta-motif-based statistical framework and pipeline to predict binding potential of SELEX-derived aptamers. Bioinformatics. 2014;30(18):2665–7.PubMedPubMedCentralCrossRef Jiang P, Meyer S, Hou Z, Propson NE, Soh HT, Thomson JA, et al. MPBind: a meta-motif-based statistical framework and pipeline to predict binding potential of SELEX-derived aptamers. Bioinformatics. 2014;30(18):2665–7.PubMedPubMedCentralCrossRef
42.
go back to reference Caroli J, Taccioli C, De La Fuente A, Serafini P, Bicciato S. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics. 2016;32(2):161–4.PubMedCrossRef Caroli J, Taccioli C, De La Fuente A, Serafini P, Bicciato S. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics. 2016;32(2):161–4.PubMedCrossRef
43.
go back to reference Caroli J, Forcato M, Bicciato S. APTANI2: update of aptamer selection through sequence-structure analysis. Bioinformatics. 2020;36(7):2266–8.PubMedCrossRef Caroli J, Forcato M, Bicciato S. APTANI2: update of aptamer selection through sequence-structure analysis. Bioinformatics. 2020;36(7):2266–8.PubMedCrossRef
45.
go back to reference Ishida R, Adachi T, Yokota A, Yoshihara H, Aoki K, Nakamura Y, et al. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 2020;48(14): e82.PubMedPubMedCentralCrossRef Ishida R, Adachi T, Yokota A, Yoshihara H, Aoki K, Nakamura Y, et al. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 2020;48(14): e82.PubMedPubMedCentralCrossRef
46.
go back to reference Alam KK, Chang JL, Burke DH. FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol Ther Nucleic Acids. 2015;4(3): e230.PubMedPubMedCentralCrossRef Alam KK, Chang JL, Burke DH. FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol Ther Nucleic Acids. 2015;4(3): e230.PubMedPubMedCentralCrossRef
47.
go back to reference Kramer ST, Gruenke PR, Alam KK, Xu D, Burke DH. FASTAptameR 2.0: a web tool for combinatorial sequence selections. Mol Ther Nucleic Acids. 2022;29:862–70.PubMedPubMedCentralCrossRef Kramer ST, Gruenke PR, Alam KK, Xu D, Burke DH. FASTAptameR 2.0: a web tool for combinatorial sequence selections. Mol Ther Nucleic Acids. 2022;29:862–70.PubMedPubMedCentralCrossRef
48.
go back to reference Song J, Zheng Y, Huang M, Wu L, Wang W, Zhu Z, et al. A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning. Anal Chem. 2019;92(4):3307–14.CrossRef Song J, Zheng Y, Huang M, Wu L, Wang W, Zhu Z, et al. A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning. Anal Chem. 2019;92(4):3307–14.CrossRef
49.
go back to reference Kato S, Ono T, Minagawa H, Horii K, Shiratori I, Waga I, et al. FSBC: fast string-based clustering for HT-SELEX data. BMC Bioinform. 2020;21(1):263.CrossRef Kato S, Ono T, Minagawa H, Horii K, Shiratori I, Waga I, et al. FSBC: fast string-based clustering for HT-SELEX data. BMC Bioinform. 2020;21(1):263.CrossRef
50.
go back to reference Hoinka J, Berezhnoy A, Dao P, Sauna ZE, Gilboa E, Przytycka TM. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res. 2015;43(12):5699–707.PubMedPubMedCentralCrossRef Hoinka J, Berezhnoy A, Dao P, Sauna ZE, Gilboa E, Przytycka TM. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res. 2015;43(12):5699–707.PubMedPubMedCentralCrossRef
51.
go back to reference Hoinka J, Berezhnoy A, Sauna ZE, Gilboa E, Przytycka TM, editors. Aptacluster–a method to cluster ht-selex aptamer pools and lessons from its application. Research in Computational Molecular Biology: 18th Annual International Conference, RECOMB 2014, Pittsburgh, PA, USA, April 2–5, 2014, Proceedings 18; 2014: Springer. Hoinka J, Berezhnoy A, Sauna ZE, Gilboa E, Przytycka TM, editors. Aptacluster–a method to cluster ht-selex aptamer pools and lessons from its application. Research in Computational Molecular Biology: 18th Annual International Conference, RECOMB 2014, Pittsburgh, PA, USA, April 2–5, 2014, Proceedings 18; 2014: Springer.
52.
go back to reference Dao P, Hoinka J, Takahashi M, Zhou J, Ho M, Wang Y, et al. AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments. Cell Syst. 2016;3(1):62–70.PubMedPubMedCentralCrossRef Dao P, Hoinka J, Takahashi M, Zhou J, Ho M, Wang Y, et al. AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments. Cell Syst. 2016;3(1):62–70.PubMedPubMedCentralCrossRef
53.
54.
go back to reference Hoinka J, Backofen R, Przytycka TM. AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol Ther Nucleic Acids. 2018;11:515–7.PubMedPubMedCentralCrossRef Hoinka J, Backofen R, Przytycka TM. AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol Ther Nucleic Acids. 2018;11:515–7.PubMedPubMedCentralCrossRef
56.
go back to reference Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, et al. Recent advances in age-related macular degeneration therapies. Molecules. 2022;27(16):5089.PubMedPubMedCentralCrossRef Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, et al. Recent advances in age-related macular degeneration therapies. Molecules. 2022;27(16):5089.PubMedPubMedCentralCrossRef
58.
go back to reference Moon B-H, Kim Y, Kim S-Y. Twenty years of anti-vascular endothelial growth factor therapeutics in neovascular age-related macular degeneration treatment. Int J Mol Sci. 2023;24(16):13004.PubMedPubMedCentralCrossRef Moon B-H, Kim Y, Kim S-Y. Twenty years of anti-vascular endothelial growth factor therapeutics in neovascular age-related macular degeneration treatment. Int J Mol Sci. 2023;24(16):13004.PubMedPubMedCentralCrossRef
59.
go back to reference Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother. 2023;24(17):1887–99.PubMedCrossRef Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother. 2023;24(17):1887–99.PubMedCrossRef
60.
go back to reference Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol. 2022;10: 972933.PubMedPubMedCentralCrossRef Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol. 2022;10: 972933.PubMedPubMedCentralCrossRef
61.
go back to reference Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of better aptamers: structured library approaches, selection methods, and chemical modifications. Angewandte Chemie International Edition. 2024:e202318665. Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of better aptamers: structured library approaches, selection methods, and chemical modifications. Angewandte Chemie International Edition. 2024:e202318665.
62.
go back to reference Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus P-T, Thuwajit C. Nucleolin-based targeting strategies in cancer treatment: focus on cancer immunotherapy. Int J Mol Med. 2023;52(3):1–14.CrossRef Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus P-T, Thuwajit C. Nucleolin-based targeting strategies in cancer treatment: focus on cancer immunotherapy. Int J Mol Med. 2023;52(3):1–14.CrossRef
63.
go back to reference Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnol. 2022;20(1):57.CrossRef Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnol. 2022;20(1):57.CrossRef
65.
go back to reference Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discovery. 2006;5(2):123–32.PubMedCrossRef Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discovery. 2006;5(2):123–32.PubMedCrossRef
67.
go back to reference Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5(1):23–42.PubMedPubMedCentralCrossRef Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5(1):23–42.PubMedPubMedCentralCrossRef
68.
go back to reference Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89.PubMedPubMedCentralCrossRef Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89.PubMedPubMedCentralCrossRef
69.
go back to reference Esfandiari A, Cassidy S, Webster RM. Bispecific antibodies in oncology. Nat Rev Drug Discov. 2022;21(6):411–2.PubMedCrossRef Esfandiari A, Cassidy S, Webster RM. Bispecific antibodies in oncology. Nat Rev Drug Discov. 2022;21(6):411–2.PubMedCrossRef
70.
72.
go back to reference Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009;10(5):862–8.PubMedPubMedCentralCrossRef Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009;10(5):862–8.PubMedPubMedCentralCrossRef
73.
74.
75.
go back to reference Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med. 2012;10:1–10.CrossRef Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med. 2012;10:1–10.CrossRef
76.
go back to reference Subramanian N, Raghunathan V, Kanwar JR, Kanwar RK, Elchuri SV, Khetan V, et al. Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol Vis. 2012;18:2783.PubMedPubMedCentral Subramanian N, Raghunathan V, Kanwar JR, Kanwar RK, Elchuri SV, Khetan V, et al. Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol Vis. 2012;18:2783.PubMedPubMedCentral
77.
go back to reference Ray P, Cheek MA, Sharaf ML, Li N, Ellington AD, Sullenger BA, et al. Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther. 2012;22(5):295–305.PubMedPubMedCentralCrossRef Ray P, Cheek MA, Sharaf ML, Li N, Ellington AD, Sullenger BA, et al. Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther. 2012;22(5):295–305.PubMedPubMedCentralCrossRef
78.
go back to reference Mahajan UM, Li Q, Alnatsha A, Maas J, Orth M, Maier SH, et al. Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology. 2021;161(3):996–1010.PubMedCrossRef Mahajan UM, Li Q, Alnatsha A, Maas J, Orth M, Maier SH, et al. Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology. 2021;161(3):996–1010.PubMedCrossRef
79.
go back to reference Xiang D, Shigdar S, Bean AG, Bruce M, Yang W, Mathesh M, et al. Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics. 2017;7(17):4071.PubMedPubMedCentralCrossRef Xiang D, Shigdar S, Bean AG, Bruce M, Yang W, Mathesh M, et al. Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics. 2017;7(17):4071.PubMedPubMedCentralCrossRef
80.
go back to reference Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D, et al. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal Chem. 2017;89(5):2844–51.PubMedCrossRef Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D, et al. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal Chem. 2017;89(5):2844–51.PubMedCrossRef
81.
go back to reference Ge MH, Zhu XH, Shao YM, Wang C, Huang P, Wang Y, et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer. Biomater Sci. 2021;9(4):1313–24.PubMedCrossRef Ge MH, Zhu XH, Shao YM, Wang C, Huang P, Wang Y, et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer. Biomater Sci. 2021;9(4):1313–24.PubMedCrossRef
82.
go back to reference Pusuluri A, Krishnan V, Lensch V, Sarode A, Bunyan E, Vogus DR, et al. Treating tumors at low drug doses using an aptamer-peptide synergistic drug conjugate. Angew Chem Int Ed Engl. 2019;58(5):1437–41.PubMedCrossRef Pusuluri A, Krishnan V, Lensch V, Sarode A, Bunyan E, Vogus DR, et al. Treating tumors at low drug doses using an aptamer-peptide synergistic drug conjugate. Angew Chem Int Ed Engl. 2019;58(5):1437–41.PubMedCrossRef
83.
go back to reference Wu X, Li F, Li Y, Yu Y, Liang C, Zhang B, et al. A PD-L1 aptamer selected by loss-gain cell-SELEX conjugated with paclitaxel for treating triple-negative breast cancer. Med Sci Monit. 2020;26:e925583–91.PubMedPubMedCentralCrossRef Wu X, Li F, Li Y, Yu Y, Liang C, Zhang B, et al. A PD-L1 aptamer selected by loss-gain cell-SELEX conjugated with paclitaxel for treating triple-negative breast cancer. Med Sci Monit. 2020;26:e925583–91.PubMedPubMedCentralCrossRef
84.
go back to reference Li F, Lu J, Liu J, Liang C, Wang M, Wang L, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun. 2017;8(1):1390.ADSPubMedPubMedCentralCrossRef Li F, Lu J, Liu J, Liang C, Wang M, Wang L, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun. 2017;8(1):1390.ADSPubMedPubMedCentralCrossRef
85.
go back to reference Zhao N, Pei S-N, Qi J, Zeng Z, Iyer SP, Lin P, et al. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia. Biomaterials. 2015;67:42–51.PubMedPubMedCentralCrossRef Zhao N, Pei S-N, Qi J, Zeng Z, Iyer SP, Lin P, et al. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia. Biomaterials. 2015;67:42–51.PubMedPubMedCentralCrossRef
86.
go back to reference Powell Gray B, Kelly L, Ahrens DP, Barry AP, Kratschmer C, Levy M, et al. Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci. 2018;115(18):4761–6.ADSPubMedPubMedCentralCrossRef Powell Gray B, Kelly L, Ahrens DP, Barry AP, Kratschmer C, Levy M, et al. Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci. 2018;115(18):4761–6.ADSPubMedPubMedCentralCrossRef
87.
go back to reference Zhang H, Jin C, Zhang L, Peng B, Zhang Y, Liu Y, et al. CD71-specific aptamer conjugated with monomethyl Auristatin E for the treatment of uveal melanoma. ACS Appl Mater Interfaces. 2022;14(1):32–40.PubMedCrossRef Zhang H, Jin C, Zhang L, Peng B, Zhang Y, Liu Y, et al. CD71-specific aptamer conjugated with monomethyl Auristatin E for the treatment of uveal melanoma. ACS Appl Mater Interfaces. 2022;14(1):32–40.PubMedCrossRef
88.
go back to reference Yoon S, Huang K-W, Reebye V, Spalding D, Przytycka TM, Wang Y, et al. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids. 2017;6:80–8.PubMedCrossRef Yoon S, Huang K-W, Reebye V, Spalding D, Przytycka TM, Wang Y, et al. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids. 2017;6:80–8.PubMedCrossRef
89.
go back to reference Jeong HY, Kim H, Lee M, Hong J, Lee JH, Kim J, et al. Development of HER2-specific aptamer-drug conjugate for breast cancer therapy. Int J Mol Sci. 2020;21(24):9764.PubMedPubMedCentralCrossRef Jeong HY, Kim H, Lee M, Hong J, Lee JH, Kim J, et al. Development of HER2-specific aptamer-drug conjugate for breast cancer therapy. Int J Mol Sci. 2020;21(24):9764.PubMedPubMedCentralCrossRef
90.
go back to reference Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, et al. Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci. 2019;7(3):938–50.PubMedCrossRef Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, et al. Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci. 2019;7(3):938–50.PubMedCrossRef
91.
go back to reference Dua P, Kim S, Lee D-K. Alppl2 aptamer-mediated targeted delivery of 5-fluoro-2′-deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 2015;25(4):180–7.PubMedCrossRef Dua P, Kim S, Lee D-K. Alppl2 aptamer-mediated targeted delivery of 5-fluoro-2′-deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 2015;25(4):180–7.PubMedCrossRef
92.
go back to reference Joshi M, Choi J-S, Park J-W, Doh K-O. Combination of doxorubicin with gemcitabine-incorporated GQuadruplex aptamer showed synergistic and selective anticancer effect in breast cancer cells. J Microbiol Biotechnol. 2019;29:1799.PubMedCrossRef Joshi M, Choi J-S, Park J-W, Doh K-O. Combination of doxorubicin with gemcitabine-incorporated GQuadruplex aptamer showed synergistic and selective anticancer effect in breast cancer cells. J Microbiol Biotechnol. 2019;29:1799.PubMedCrossRef
93.
go back to reference Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, et al. Gemcitabine-incorporated G-Quadruplex aptamer for targeted drug delivery into pancreas cancer. Mol Ther Nucleic Acids. 2018;12:543–53.PubMedPubMedCentralCrossRef Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, et al. Gemcitabine-incorporated G-Quadruplex aptamer for targeted drug delivery into pancreas cancer. Mol Ther Nucleic Acids. 2018;12:543–53.PubMedPubMedCentralCrossRef
94.
go back to reference Park JY, Chae JR, Cho YL, Kim Y, Lee D, Lee JK, et al. Targeted therapy of hepatocellular carcinoma using gemcitabine-incorporated GPC3 Aptamer. Pharmaceutics. 2020;12(10):985.PubMedPubMedCentralCrossRef Park JY, Chae JR, Cho YL, Kim Y, Lee D, Lee JK, et al. Targeted therapy of hepatocellular carcinoma using gemcitabine-incorporated GPC3 Aptamer. Pharmaceutics. 2020;12(10):985.PubMedPubMedCentralCrossRef
95.
go back to reference Qi J, Zeng Z, Chen Z, Nipper C, Liu X, Wan Q, et al. Aptamer-gemcitabine conjugates with enzymatically cleavable linker for targeted delivery and intracellular drug release in cancer cells. Pharmaceuticals. 2022;15(5):558.PubMedPubMedCentralCrossRef Qi J, Zeng Z, Chen Z, Nipper C, Liu X, Wan Q, et al. Aptamer-gemcitabine conjugates with enzymatically cleavable linker for targeted delivery and intracellular drug release in cancer cells. Pharmaceuticals. 2022;15(5):558.PubMedPubMedCentralCrossRef
96.
go back to reference Hong SS, Lee S, Lee SH, Kim S, Kim D, Park H, et al. Anticancer effect of locally applicable aptamer-conjugated gemcitabine-loaded atelocollagen patch in pancreatic cancer patient–derived xenograft models. Cancer Sci. 2022;113(5):1752–62.PubMedPubMedCentralCrossRef Hong SS, Lee S, Lee SH, Kim S, Kim D, Park H, et al. Anticancer effect of locally applicable aptamer-conjugated gemcitabine-loaded atelocollagen patch in pancreatic cancer patient–derived xenograft models. Cancer Sci. 2022;113(5):1752–62.PubMedPubMedCentralCrossRef
97.
go back to reference Wang C-Y, Lin B-L, Chen C-H. Targeted drug delivery using an aptamer against shared tumor-specific peptide antigen of MAGE-A3. Cancer Biol Ther. 2021;22(1):12–8.PubMedCrossRef Wang C-Y, Lin B-L, Chen C-H. Targeted drug delivery using an aptamer against shared tumor-specific peptide antigen of MAGE-A3. Cancer Biol Ther. 2021;22(1):12–8.PubMedCrossRef
98.
go back to reference Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, et al. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol. 2020;155:1420–31.PubMedCrossRef Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, et al. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol. 2020;155:1420–31.PubMedCrossRef
99.
go back to reference Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv. 2018;8(8):4249–58.ADSCrossRef Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv. 2018;8(8):4249–58.ADSCrossRef
100.
go back to reference Wei M, Shen X, Fan X, Li J, Bai J. PD-L1 aptamer-functionalized degradable hafnium oxide nanoparticles for near infrared-II diagnostic imaging and radiosensitization. Front Bioeng Biotechnol. 2023;11:1224339.PubMedPubMedCentralCrossRef Wei M, Shen X, Fan X, Li J, Bai J. PD-L1 aptamer-functionalized degradable hafnium oxide nanoparticles for near infrared-II diagnostic imaging and radiosensitization. Front Bioeng Biotechnol. 2023;11:1224339.PubMedPubMedCentralCrossRef
101.
go back to reference Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Flexible aptamer-based nucleolin-targeting cancer treatment modalities: a focus on immunotherapy, radiotherapy, and phototherapy. Trends Med Sci. 2021;1(3): e113991.CrossRef Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Flexible aptamer-based nucleolin-targeting cancer treatment modalities: a focus on immunotherapy, radiotherapy, and phototherapy. Trends Med Sci. 2021;1(3): e113991.CrossRef
102.
go back to reference Borbas KE, Ferreira CSM, Perkins A, Bruce JI, Missailidis S. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem. 2007;18(4):1205–12.PubMedCrossRef Borbas KE, Ferreira CSM, Perkins A, Bruce JI, Missailidis S. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem. 2007;18(4):1205–12.PubMedCrossRef
103.
go back to reference Li Q, Maier SH, Li P, Peterhansl J, Belka C, Mayerle J, et al. Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat Oncol. 2020;15(1):189.PubMedPubMedCentralCrossRef Li Q, Maier SH, Li P, Peterhansl J, Belka C, Mayerle J, et al. Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat Oncol. 2020;15(1):189.PubMedPubMedCentralCrossRef
104.
go back to reference Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13(20):2563–78.PubMedCrossRef Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13(20):2563–78.PubMedCrossRef
105.
go back to reference Alves LN, Missailidis S, Lage CA, De Almeida CEB. Anti-muc1 aptamer as carrier tool of the potential radiosensitizer 1, 10 phenanthroline in mcf-7 breast cancer cells. Anticancer Res. 2019;39(4):1859–67.PubMedCrossRef Alves LN, Missailidis S, Lage CA, De Almeida CEB. Anti-muc1 aptamer as carrier tool of the potential radiosensitizer 1, 10 phenanthroline in mcf-7 breast cancer cells. Anticancer Res. 2019;39(4):1859–67.PubMedCrossRef
106.
go back to reference Zhang X, Peng L, Liang Z, Kou Z, Chen Y, Shi G, et al. Effects of aptamer to U87-EGFRvIII cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol Ther Nucleic Acids. 2018;10:438–49.PubMedPubMedCentralCrossRef Zhang X, Peng L, Liang Z, Kou Z, Chen Y, Shi G, et al. Effects of aptamer to U87-EGFRvIII cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol Ther Nucleic Acids. 2018;10:438–49.PubMedPubMedCentralCrossRef
107.
go back to reference Vorobyeva MA, Dymova MA, Novopashina DS, Kuligina EV, Timoshenko VV, Kolesnikov IA, et al. Tumor cell-specific 2’-Fluoro RNA aptamer conjugated with closo-dodecaborate as a potential agent for boron neutron capture therapy. Int J Mol Sci. 2021;22(14):7326.PubMedPubMedCentralCrossRef Vorobyeva MA, Dymova MA, Novopashina DS, Kuligina EV, Timoshenko VV, Kolesnikov IA, et al. Tumor cell-specific 2’-Fluoro RNA aptamer conjugated with closo-dodecaborate as a potential agent for boron neutron capture therapy. Int J Mol Sci. 2021;22(14):7326.PubMedPubMedCentralCrossRef
108.
go back to reference Maimaitiyiming Y, Hong DF, Yang C, Naranmandura H. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol. 2019;145:797–810.PubMedCrossRef Maimaitiyiming Y, Hong DF, Yang C, Naranmandura H. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol. 2019;145:797–810.PubMedCrossRef
109.
go back to reference Liu W, De La Torre IG, Gutiérrez-Rivera MC, Wang B, Liu Y, Dai L, et al. Detection of autoantibodies to multiple tumor-associated antigens (TAAs) in the immunodiagnosis of breast cancer. Tumor Biol. 2015;36:1307–12.CrossRef Liu W, De La Torre IG, Gutiérrez-Rivera MC, Wang B, Liu Y, Dai L, et al. Detection of autoantibodies to multiple tumor-associated antigens (TAAs) in the immunodiagnosis of breast cancer. Tumor Biol. 2015;36:1307–12.CrossRef
111.
go back to reference Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250–61.CrossRef Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250–61.CrossRef
112.
go back to reference Ribatti D. From the discovery of monoclonal antibodies to their therapeutic application: an historical reappraisal. Immunol Lett. 2014;161(1):96–9.PubMedCrossRef Ribatti D. From the discovery of monoclonal antibodies to their therapeutic application: an historical reappraisal. Immunol Lett. 2014;161(1):96–9.PubMedCrossRef
113.
go back to reference Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. Semin Oncol Nurs. 2019;35: 150923.PubMedCrossRef Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. Semin Oncol Nurs. 2019;35: 150923.PubMedCrossRef
114.
go back to reference Li X, Li Z, Yu H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem Commun. 2020;56(93):14653–6.CrossRef Li X, Li Z, Yu H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem Commun. 2020;56(93):14653–6.CrossRef
115.
go back to reference Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, et al. Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano. 2019;13(11):12301–21.PubMedPubMedCentralCrossRef Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, et al. Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano. 2019;13(11):12301–21.PubMedPubMedCentralCrossRef
116.
go back to reference Haßel S, Mayer G. Aptamers as therapeutic agents: has the initial euphoria subsided? Mol Diagn Ther. 2019;23:301–9.PubMedCrossRef Haßel S, Mayer G. Aptamers as therapeutic agents: has the initial euphoria subsided? Mol Diagn Ther. 2019;23:301–9.PubMedCrossRef
117.
go back to reference Soldevilla M, Villanueva H, Pastor F. Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res. 2016;2016:1–12.CrossRef Soldevilla M, Villanueva H, Pastor F. Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res. 2016;2016:1–12.CrossRef
118.
119.
go back to reference Gilboa E, McNamara J, Pastor F. Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res. 2013;19(5):1054–62.PubMedCrossRef Gilboa E, McNamara J, Pastor F. Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res. 2013;19(5):1054–62.PubMedCrossRef
121.
go back to reference Khedri M, Rafatpanah H, Abnous K, Ramezani P, Ramezani M. Cancer immunotherapy via nucleic acid aptamers. Int Immunopharmacol. 2015;29(2):926–36.PubMedCrossRef Khedri M, Rafatpanah H, Abnous K, Ramezani P, Ramezani M. Cancer immunotherapy via nucleic acid aptamers. Int Immunopharmacol. 2015;29(2):926–36.PubMedCrossRef
122.
go back to reference Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001;7(10):1118–22.PubMedCrossRef Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001;7(10):1118–22.PubMedCrossRef
123.
go back to reference Berezhnoy A, Stewart CA, Mcnamara JO II, Thiel W, Giangrande P, Trinchieri G, et al. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 2012;20(6):1242–50.PubMedPubMedCentralCrossRef Berezhnoy A, Stewart CA, Mcnamara JO II, Thiel W, Giangrande P, Trinchieri G, et al. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 2012;20(6):1242–50.PubMedPubMedCentralCrossRef
124.
go back to reference Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Can Res. 2003;63(21):7483–9. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Can Res. 2003;63(21):7483–9.
125.
go back to reference Huang B-T, Lai W-Y, Chang Y-C, Wang J-W, Yeh S-D, Lin EP-Y, et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids. 2017;8:520–8.PubMedPubMedCentralCrossRef Huang B-T, Lai W-Y, Chang Y-C, Wang J-W, Yeh S-D, Lin EP-Y, et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids. 2017;8:520–8.PubMedPubMedCentralCrossRef
126.
go back to reference Herrmann A, Priceman SJ, Kujawski M, Xin H, Cherryholmes GA, Zhang W, et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Investig. 2014;124(7):2977–87.PubMedPubMedCentralCrossRef Herrmann A, Priceman SJ, Kujawski M, Xin H, Cherryholmes GA, Zhang W, et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Investig. 2014;124(7):2977–87.PubMedPubMedCentralCrossRef
127.
go back to reference Prodeus A, Abdul-Wahid A, Fischer NW, Huang EH, Cydzik M, Gariépy J. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids. 2015;4: e237.PubMedPubMedCentralCrossRef Prodeus A, Abdul-Wahid A, Fischer NW, Huang EH, Cydzik M, Gariépy J. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids. 2015;4: e237.PubMedPubMedCentralCrossRef
128.
go back to reference Lai W-Y, Huang B-T, Wang J-W, Lin P-Y, Yang P-C. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids. 2016;5: e397.PubMedCrossRef Lai W-Y, Huang B-T, Wang J-W, Lin P-Y, Yang P-C. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids. 2016;5: e397.PubMedCrossRef
129.
130.
go back to reference Gefen T, Castro I, Muharemagic D, Puplampu-Dove Y, Patel S, Gilboa E. A TIM-3 oligonucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice. Mol Ther. 2017;25(10):2280–8.PubMedPubMedCentralCrossRef Gefen T, Castro I, Muharemagic D, Puplampu-Dove Y, Patel S, Gilboa E. A TIM-3 oligonucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice. Mol Ther. 2017;25(10):2280–8.PubMedPubMedCentralCrossRef
131.
go back to reference Soldevilla MM, Hervas S, Villanueva H, Lozano T, Rabal O, Oyarzabal J, et al. Identification of LAG3 high affinity aptamers by HT-SELEX and conserved motif accumulation (CMA). PLoS ONE. 2017;12(9): e0185169.PubMedPubMedCentralCrossRef Soldevilla MM, Hervas S, Villanueva H, Lozano T, Rabal O, Oyarzabal J, et al. Identification of LAG3 high affinity aptamers by HT-SELEX and conserved motif accumulation (CMA). PLoS ONE. 2017;12(9): e0185169.PubMedPubMedCentralCrossRef
132.
go back to reference McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, et al. Multivalent 4–1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Investig. 2008;118(1):376–86.PubMedCrossRef McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, et al. Multivalent 4–1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Investig. 2008;118(1):376–86.PubMedCrossRef
133.
go back to reference Schrand B, Berezhnoy A, Brenneman R, Williams A, Levay A, Kong L-Y, et al. Targeting 4–1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy stroma-targeted 4–1BB costimulation. Cancer Immunol Res. 2014;2(9):867–77.PubMedPubMedCentralCrossRef Schrand B, Berezhnoy A, Brenneman R, Williams A, Levay A, Kong L-Y, et al. Targeting 4–1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy stroma-targeted 4–1BB costimulation. Cancer Immunol Res. 2014;2(9):867–77.PubMedPubMedCentralCrossRef
134.
go back to reference Pratico ED, Sullenger BA, Nair SK. Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic Acid Ther. 2013;23(1):35–43.PubMedPubMedCentralCrossRef Pratico ED, Sullenger BA, Nair SK. Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic Acid Ther. 2013;23(1):35–43.PubMedPubMedCentralCrossRef
135.
go back to reference Soldevilla MM, Villanueva H, Bendandi M, Inoges S, de Cerio AL-D, Pastor F. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.PubMedCrossRef Soldevilla MM, Villanueva H, Bendandi M, Inoges S, de Cerio AL-D, Pastor F. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.PubMedCrossRef
136.
go back to reference Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, De Cerio AL, et al. CD28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids. 2013;2: e98.PubMedPubMedCentralCrossRef Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, De Cerio AL, et al. CD28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids. 2013;2: e98.PubMedPubMedCentralCrossRef
137.
go back to reference Bai C, Gao S, Hu S, Liu X, Li H, Dong J, et al. Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol Ther Oncolytics. 2020;17:9–20.PubMedPubMedCentralCrossRef Bai C, Gao S, Hu S, Liu X, Li H, Dong J, et al. Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol Ther Oncolytics. 2020;17:9–20.PubMedPubMedCentralCrossRef
138.
go back to reference Takahashi M, Hashimoto Y, Nakamura Y. Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model. Mol Ther Nucleic Acids. 2022;29:969–78.PubMedPubMedCentralCrossRef Takahashi M, Hashimoto Y, Nakamura Y. Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model. Mol Ther Nucleic Acids. 2022;29:969–78.PubMedPubMedCentralCrossRef
139.
go back to reference Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):1–40.CrossRef Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):1–40.CrossRef
140.
go back to reference Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.PubMedCrossRef Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.PubMedCrossRef
141.
142.
go back to reference Liu P, Ga L, Aodeng G, Wang Y, Ai J. Aptamer-drug conjugates: new probes for imaging and targeted therapy. Biosens Bioelectron X. 2022;10: 100126. Liu P, Ga L, Aodeng G, Wang Y, Ai J. Aptamer-drug conjugates: new probes for imaging and targeted therapy. Biosens Bioelectron X. 2022;10: 100126.
143.
go back to reference Mahmoudian F, Akbariqomi M, Heidari R, Ghahremani MH, Roshan N, Adabi M, et al. Designing a fluorescence padlock probe-based biosensor and colorimetric assay for the detection of G12D KRAS mutation. Biomark Med. 2021;15(18):1741–54.PubMedCrossRef Mahmoudian F, Akbariqomi M, Heidari R, Ghahremani MH, Roshan N, Adabi M, et al. Designing a fluorescence padlock probe-based biosensor and colorimetric assay for the detection of G12D KRAS mutation. Biomark Med. 2021;15(18):1741–54.PubMedCrossRef
144.
go back to reference Aljohani MM, Cialla-May D, Popp J, Chinnappan R, Al-Kattan K, Zourob M. Aptamers: potential diagnostic and therapeutic agents for blood diseases. Molecules. 2022;27(2):383.PubMedPubMedCentralCrossRef Aljohani MM, Cialla-May D, Popp J, Chinnappan R, Al-Kattan K, Zourob M. Aptamers: potential diagnostic and therapeutic agents for blood diseases. Molecules. 2022;27(2):383.PubMedPubMedCentralCrossRef
145.
go back to reference Liu M, Wang L, Lo Y, Shiu SC-C, Kinghorn AB, Tanner JA. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells. 2022;11(1):159.PubMedPubMedCentralCrossRef Liu M, Wang L, Lo Y, Shiu SC-C, Kinghorn AB, Tanner JA. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells. 2022;11(1):159.PubMedPubMedCentralCrossRef
146.
go back to reference Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, et al. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm. 2023;646: 123448.PubMedCrossRef Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, et al. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm. 2023;646: 123448.PubMedCrossRef
147.
go back to reference Zavareh HS, Pourmadadi M, Moradi A, Yazdian F, Omidi M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol. 2020;165:1422–30.PubMedCrossRef Zavareh HS, Pourmadadi M, Moradi A, Yazdian F, Omidi M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol. 2020;165:1422–30.PubMedCrossRef
148.
go back to reference Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.PubMedCrossRef Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.PubMedCrossRef
149.
go back to reference Jalalian SH, Taghdisi SM, Shahidi Hamedani N, Kalat SA, Lavaee P, Zandkarimi M, et al. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci. 2013;50(2):191–7.PubMedCrossRef Jalalian SH, Taghdisi SM, Shahidi Hamedani N, Kalat SA, Lavaee P, Zandkarimi M, et al. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci. 2013;50(2):191–7.PubMedCrossRef
150.
go back to reference Moosavian SA, Abnous K, Akhtari J, Arabi L, Gholamzade Dewin A, Jafari M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(8):2054–65.PubMed Moosavian SA, Abnous K, Akhtari J, Arabi L, Gholamzade Dewin A, Jafari M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(8):2054–65.PubMed
151.
go back to reference Sayari E, Dinarvand M, Amini M, Azhdarzadeh M, Mollarazi E, Ghasemi Z, et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm. 2014;473(1–2):304–15.PubMedCrossRef Sayari E, Dinarvand M, Amini M, Azhdarzadeh M, Mollarazi E, Ghasemi Z, et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm. 2014;473(1–2):304–15.PubMedCrossRef
152.
go back to reference Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH, et al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. Int J Pharm. 2015;494(1):430–44.PubMedCrossRef Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH, et al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. Int J Pharm. 2015;494(1):430–44.PubMedCrossRef
153.
go back to reference Ghasemi Z, Dinarvand R, Mottaghitalab F, Esfandyari-Manesh M, Sayari E, Atyabi F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohyd Polym. 2015;121:190–8.CrossRef Ghasemi Z, Dinarvand R, Mottaghitalab F, Esfandyari-Manesh M, Sayari E, Atyabi F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohyd Polym. 2015;121:190–8.CrossRef
154.
go back to reference Esfandyari-Manesh M, Mohammadi A, Atyabi F, Nabavi SM, Ebrahimi SM, Shahmoradi E, et al. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Int J Pharm. 2016;515(1):607–15.PubMedCrossRef Esfandyari-Manesh M, Mohammadi A, Atyabi F, Nabavi SM, Ebrahimi SM, Shahmoradi E, et al. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Int J Pharm. 2016;515(1):607–15.PubMedCrossRef
155.
go back to reference Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett. 2018;416:87–93.PubMedCrossRef Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett. 2018;416:87–93.PubMedCrossRef
156.
go back to reference Abnous K, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Yazdian-Robati R, et al. A novel aptamer-based DNA diamond nanostructure for in vivo targeted delivery of epirubicin to cancer cells. RSC Adv. 2017;7(25):15181–8.ADSCrossRef Abnous K, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Yazdian-Robati R, et al. A novel aptamer-based DNA diamond nanostructure for in vivo targeted delivery of epirubicin to cancer cells. RSC Adv. 2017;7(25):15181–8.ADSCrossRef
157.
go back to reference Guo X, Zhuang Q, Ji T, Zhang Y, Li C, Wang Y, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohyd Polym. 2018;195:311–20.CrossRef Guo X, Zhuang Q, Ji T, Zhang Y, Li C, Wang Y, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohyd Polym. 2018;195:311–20.CrossRef
158.
go back to reference Alijani H, Noori A, Faridi N, Bathaie SZ, Mousavi MF. Aptamer-functionalized Fe3O4@MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. J Solid State Chem. 2020;292: 121680.CrossRef Alijani H, Noori A, Faridi N, Bathaie SZ, Mousavi MF. Aptamer-functionalized Fe3O4@MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. J Solid State Chem. 2020;292: 121680.CrossRef
159.
go back to reference Zhang H-J, Zhao X, Chen L-J, Yang C-X, Yan X-P. Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug delivery. Talanta. 2020;219: 121209.PubMedCrossRef Zhang H-J, Zhao X, Chen L-J, Yang C-X, Yan X-P. Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug delivery. Talanta. 2020;219: 121209.PubMedCrossRef
160.
go back to reference Rață DM, Cadinoiu AN, Atanase LI, Bacaita SE, Mihalache C, Daraba O-M, et al. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater Sci Eng, C. 2019;103: 109828.CrossRef Rață DM, Cadinoiu AN, Atanase LI, Bacaita SE, Mihalache C, Daraba O-M, et al. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater Sci Eng, C. 2019;103: 109828.CrossRef
161.
go back to reference Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res. 2020;22(1):5.CrossRef Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res. 2020;22(1):5.CrossRef
162.
go back to reference Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, et al. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohyd Polym. 2020;245: 116407.CrossRef Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, et al. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohyd Polym. 2020;245: 116407.CrossRef
163.
go back to reference Rata DM, Cadinoiu AN, Atanase LI, Popa M, Mihai C-T, Solcan C, et al. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil - an innovative concept for the skin cancer therapy. Mater Sci Eng, C. 2021;119: 111591.CrossRef Rata DM, Cadinoiu AN, Atanase LI, Popa M, Mihai C-T, Solcan C, et al. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil - an innovative concept for the skin cancer therapy. Mater Sci Eng, C. 2021;119: 111591.CrossRef
164.
go back to reference Wu J, Song C, Jiang C, Shen X, Qiao Q, Hu Y. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm. 2013;10(10):3555–63.PubMedCrossRef Wu J, Song C, Jiang C, Shen X, Qiao Q, Hu Y. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm. 2013;10(10):3555–63.PubMedCrossRef
165.
go back to reference Yu Z, Li X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomed. 2020;15:6737–48.CrossRef Yu Z, Li X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomed. 2020;15:6737–48.CrossRef
166.
go back to reference Baneshi M, Dadfarnia S, Shabani AMH, Sabbagh SK, Haghgoo S, Bardania H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm. 2019;564:145–52.PubMedCrossRef Baneshi M, Dadfarnia S, Shabani AMH, Sabbagh SK, Haghgoo S, Bardania H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm. 2019;564:145–52.PubMedCrossRef
167.
go back to reference Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-mediated inhibition of mitochondrial glutaminolysis to amplify oxidative stress for combination cancer therapy. Nano Lett. 2021;21(18):7569–78.ADSPubMedCrossRef Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-mediated inhibition of mitochondrial glutaminolysis to amplify oxidative stress for combination cancer therapy. Nano Lett. 2021;21(18):7569–78.ADSPubMedCrossRef
168.
go back to reference Xu L, He XY, Liu BY, Xu C, Ai SL, Zhuo RX, et al. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces. 2018;171:24–30.PubMedCrossRef Xu L, He XY, Liu BY, Xu C, Ai SL, Zhuo RX, et al. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces. 2018;171:24–30.PubMedCrossRef
169.
go back to reference Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohyd Polym. 2020;248: 116735.CrossRef Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohyd Polym. 2020;248: 116735.CrossRef
170.
go back to reference Duan T, Xu Z, Sun F, Wang Y, Zhang J, Luo C, et al. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother. 2019;117: 109121.PubMedCrossRef Duan T, Xu Z, Sun F, Wang Y, Zhang J, Luo C, et al. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother. 2019;117: 109121.PubMedCrossRef
171.
go back to reference Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7(15):2241–9.PubMedCrossRef Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7(15):2241–9.PubMedCrossRef
172.
go back to reference Niu W, Chen X, Tan W, Veige AS. N-Heterocyclic Carbene-Gold (I) complexes conjugated to a leukemia-specific DNA aptamer for targeted drug delivery. Angew Chem Int Ed. 2016;55(31):8889–93.CrossRef Niu W, Chen X, Tan W, Veige AS. N-Heterocyclic Carbene-Gold (I) complexes conjugated to a leukemia-specific DNA aptamer for targeted drug delivery. Angew Chem Int Ed. 2016;55(31):8889–93.CrossRef
173.
go back to reference Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28–35.PubMedCrossRef Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28–35.PubMedCrossRef
174.
go back to reference Zhao J, Li D, Ma J, Yang H, Chen W, Cao Y, et al. Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. Nanotechnology. 2021;32(14): 145102.ADSPubMedCrossRef Zhao J, Li D, Ma J, Yang H, Chen W, Cao Y, et al. Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. Nanotechnology. 2021;32(14): 145102.ADSPubMedCrossRef
175.
go back to reference Li D, Zhao J, Ma J, Yang H, Zhang X, Cao Y, et al. GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids Surf, B. 2022;211: 112330.CrossRef Li D, Zhao J, Ma J, Yang H, Zhang X, Cao Y, et al. GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids Surf, B. 2022;211: 112330.CrossRef
176.
go back to reference He XY, Ren XH, Peng Y, Zhang JP, Ai SL, Liu BY, et al. Aptamer/Peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-mediated cancer immunosuppression. Adv Mater. 2020;32(17): e2000208.PubMedCrossRef He XY, Ren XH, Peng Y, Zhang JP, Ai SL, Liu BY, et al. Aptamer/Peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-mediated cancer immunosuppression. Adv Mater. 2020;32(17): e2000208.PubMedCrossRef
177.
go back to reference Geng Z, Wang L, Liu K, Liu J, Tan W. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew Chem Int Ed Engl. 2021;60(28):15459–65.PubMedCrossRef Geng Z, Wang L, Liu K, Liu J, Tan W. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew Chem Int Ed Engl. 2021;60(28):15459–65.PubMedCrossRef
178.
go back to reference Yu L, Hu Y, Duan J, Yang X-D. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J Nanomater. 2015;2015: 316968.CrossRef Yu L, Hu Y, Duan J, Yang X-D. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J Nanomater. 2015;2015: 316968.CrossRef
179.
go back to reference Lai X, Yao F, An Y, Li X, Yang X-D. Novel nanotherapeutics for cancer immunotherapy by PD-L1-aptamer-functionalized and fexofenadine-loaded albumin nanoparticles. Molecules. 2023;28(6):2556.PubMedPubMedCentralCrossRef Lai X, Yao F, An Y, Li X, Yang X-D. Novel nanotherapeutics for cancer immunotherapy by PD-L1-aptamer-functionalized and fexofenadine-loaded albumin nanoparticles. Molecules. 2023;28(6):2556.PubMedPubMedCentralCrossRef
180.
go back to reference Li W, Li F, Li T, Zhang W, Li B, Liu K, et al. Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression. Front Chem. 2023;11:1167586.ADSPubMedPubMedCentralCrossRef Li W, Li F, Li T, Zhang W, Li B, Liu K, et al. Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression. Front Chem. 2023;11:1167586.ADSPubMedPubMedCentralCrossRef
181.
go back to reference Camorani S, Tortorella S, Agnello L, Spanu C, d’Argenio A, Nilo R, et al. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells. Pharmaceutics. 2022;14(10):2225.PubMedPubMedCentralCrossRef Camorani S, Tortorella S, Agnello L, Spanu C, d’Argenio A, Nilo R, et al. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells. Pharmaceutics. 2022;14(10):2225.PubMedPubMedCentralCrossRef
182.
go back to reference Chang R, Li T, Fu Y, Chen Z, He Y, Sun X, et al. A PD-L1 targeting nanotheranostic for effective photoacoustic imaging guided photothermal-immunotherapy of tumor. J Mater Chem B. 2023;11(35):8492–505.PubMedCrossRef Chang R, Li T, Fu Y, Chen Z, He Y, Sun X, et al. A PD-L1 targeting nanotheranostic for effective photoacoustic imaging guided photothermal-immunotherapy of tumor. J Mater Chem B. 2023;11(35):8492–505.PubMedCrossRef
183.
go back to reference Yao F, An Y, Lai X, Li X, Yu Z, Yang XD. Novel nanotherapeutics for cancer immunotherapy by CTLA-4 aptamer-functionalized albumin nanoparticle loaded with antihistamine. J Cancer Res Clin Oncol. 2023;149(10):7515–27.PubMedCrossRef Yao F, An Y, Lai X, Li X, Yu Z, Yang XD. Novel nanotherapeutics for cancer immunotherapy by CTLA-4 aptamer-functionalized albumin nanoparticle loaded with antihistamine. J Cancer Res Clin Oncol. 2023;149(10):7515–27.PubMedCrossRef
184.
go back to reference Liu YJ, Dou XQ, Wang F, Zhang J, Wang XL, Xu GL, et al. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment. J Drug Target. 2017;25(3):275–83.PubMedCrossRef Liu YJ, Dou XQ, Wang F, Zhang J, Wang XL, Xu GL, et al. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment. J Drug Target. 2017;25(3):275–83.PubMedCrossRef
185.
go back to reference Yang X, Zhao J, Duan S, Hou X, Li X, Hu Z, et al. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics. 2019;9(14):4066–83.PubMedPubMedCentralCrossRef Yang X, Zhao J, Duan S, Hou X, Li X, Hu Z, et al. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics. 2019;9(14):4066–83.PubMedPubMedCentralCrossRef
Metadata
Title
Aptamers as an approach to targeted cancer therapy
Authors
Fatemeh Mahmoudian
Azin Ahmari
Shiva Shabani
Bahman Sadeghi
Shohreh Fahimirad
Fahimeh Fattahi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03295-4

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine