Skip to main content
Top
Published in: BMC Nephrology 1/2024

Open Access 01-12-2024 | Tacrolimus | Research

Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies

Authors: Ze Li, Xiaozhen Wang, Dandan Li, Sheng Cheng, Zhe Li, Heng Guo, Yiwen Dong, Yingming Zheng, Xingang Li

Published in: BMC Nephrology | Issue 1/2024

Login to get access

Abstract

Purpose

This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus.

Methods

Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose).

Results

The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43).

Conclusions

CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robinson BM, Akizawa T, Jager KJ, et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet. 2016;388(10041):294–306.PubMedPubMedCentralCrossRef Robinson BM, Akizawa T, Jager KJ, et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet. 2016;388(10041):294–306.PubMedPubMedCentralCrossRef
2.
go back to reference Jouve T, Noble J, Rostaing L, et al. Tailoring tacrolimus therapy in kidney transplantation. Expert Rev Clin Pharmacol. 2018;11(6):581–8.PubMedCrossRef Jouve T, Noble J, Rostaing L, et al. Tailoring tacrolimus therapy in kidney transplantation. Expert Rev Clin Pharmacol. 2018;11(6):581–8.PubMedCrossRef
3.
go back to reference Dheer D, Jyoti, Gupta PN, et al. Tacrolimus: an updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci. 2018;114:217–27.PubMedCrossRef Dheer D, Jyoti, Gupta PN, et al. Tacrolimus: an updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci. 2018;114:217–27.PubMedCrossRef
4.
go back to reference Ong SC, Gaston RS. Thirty years of tacrolimus in clinical practice. Transplantation. 2021;105(3):484–95.PubMedCrossRef Ong SC, Gaston RS. Thirty years of tacrolimus in clinical practice. Transplantation. 2021;105(3):484–95.PubMedCrossRef
5.
go back to reference Issa N, Kukla A, et al. Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am J Nephrol. 2013;37(6):602–12.PubMedCrossRef Issa N, Kukla A, et al. Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am J Nephrol. 2013;37(6):602–12.PubMedCrossRef
6.
go back to reference Vanhove T, Annaert P, Kuypers DRJ. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab Rev. 2016;48(1):88–112.PubMedCrossRef Vanhove T, Annaert P, Kuypers DRJ. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab Rev. 2016;48(1):88–112.PubMedCrossRef
7.
go back to reference Zhang X, Lin G, Tan L, et al. Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations. Biomed Pharmacother. 2018;102:107–14.PubMedCrossRef Zhang X, Lin G, Tan L, et al. Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations. Biomed Pharmacother. 2018;102:107–14.PubMedCrossRef
8.
go back to reference Khan AR, Raza A, Firasat S, et al. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20(4):553–62.PubMedCrossRef Khan AR, Raza A, Firasat S, et al. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20(4):553–62.PubMedCrossRef
9.
go back to reference Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of Tacrolimus in adult renal transplant recipients: a Meta-analysis. PLoS One. 2015;10(6):e0127995.PubMedPubMedCentralCrossRef Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of Tacrolimus in adult renal transplant recipients: a Meta-analysis. PLoS One. 2015;10(6):e0127995.PubMedPubMedCentralCrossRef
10.
go back to reference Peng W, Lin Y, Zhang H, et al. Effect of ABCB1 3435C > T genetic polymorphism on pharmacokinetic variables of Tacrolimus in adult renal transplant recipients: a systematic review and Meta-analysis. Clin Ther. 2020;42(10):2049–65.PubMedCrossRef Peng W, Lin Y, Zhang H, et al. Effect of ABCB1 3435C > T genetic polymorphism on pharmacokinetic variables of Tacrolimus in adult renal transplant recipients: a systematic review and Meta-analysis. Clin Ther. 2020;42(10):2049–65.PubMedCrossRef
11.
go back to reference Su L, Yin L, Yang J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews. Medicine (Baltimore). 2019;98(26):e16113.PubMedCrossRef Su L, Yin L, Yang J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews. Medicine (Baltimore). 2019;98(26):e16113.PubMedCrossRef
12.
go back to reference Li Z, Wang X, Li D, et al. The impact of ABCB1 SNPs on tacrolimus pharmacokinetics in liver or kidney transplant recipients: a meta-analysis. Curr Pharm Design. 2023;29(29):2323–35.CrossRef Li Z, Wang X, Li D, et al. The impact of ABCB1 SNPs on tacrolimus pharmacokinetics in liver or kidney transplant recipients: a meta-analysis. Curr Pharm Design. 2023;29(29):2323–35.CrossRef
13.
go back to reference Chaitali P. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol. 2011;72(6):948–57.CrossRef Chaitali P. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol. 2011;72(6):948–57.CrossRef
14.
go back to reference Lee DH, Lee H, Yoon HY, et al. Association of P450 oxidoreductase gene polymorphism with tacrolimus pharmacokinetics in renal transplant recipients: a systematic review and Meta-analysis. Pharmaceutics. 2022;14(2): 261.MathSciNetPubMedPubMedCentralCrossRef Lee DH, Lee H, Yoon HY, et al. Association of P450 oxidoreductase gene polymorphism with tacrolimus pharmacokinetics in renal transplant recipients: a systematic review and Meta-analysis. Pharmaceutics. 2022;14(2): 261.MathSciNetPubMedPubMedCentralCrossRef
15.
go back to reference Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology:a proposal for reporting. JAMA. 2000;283(15):2008–12.PubMedCrossRef Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology:a proposal for reporting. JAMA. 2000;283(15):2008–12.PubMedCrossRef
16.
go back to reference McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies the PRISMA-DTA Statement. JAMA. 2018;319(4):388–96.PubMedCrossRef McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies the PRISMA-DTA Statement. JAMA. 2018;319(4):388–96.PubMedCrossRef
17.
go back to reference Little J, Higgins JPT, Ioannidis JPA, et al. STrengthening the REporting of Genetic Association Studies (STREGA) - an extension of the STROBE Statement. PLoS Med. 2009;6(2):151–63.CrossRef Little J, Higgins JPT, Ioannidis JPA, et al. STrengthening the REporting of Genetic Association Studies (STREGA) - an extension of the STROBE Statement. PLoS Med. 2009;6(2):151–63.CrossRef
18.
go back to reference Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ Br Med J. 1997;315(7109):629–34.CrossRef Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ Br Med J. 1997;315(7109):629–34.CrossRef
19.
go back to reference Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;19(14):135.CrossRef Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;19(14):135.CrossRef
20.
go back to reference Kuypers DR, de Loor H, Naesens M, et al. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics. 2014;24(12):597–606.PubMedCrossRef Kuypers DR, de Loor H, Naesens M, et al. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics. 2014;24(12):597–606.PubMedCrossRef
21.
go back to reference Cheng F, Li Q, Wang J, et al. Genetic polymorphisms affecting Tacrolimus Metabolism and the relationship to post-transplant outcomes in kidney transplant recipients. Pharmgenomics Pers Med. 2021;14:1463–74.PubMedPubMedCentral Cheng F, Li Q, Wang J, et al. Genetic polymorphisms affecting Tacrolimus Metabolism and the relationship to post-transplant outcomes in kidney transplant recipients. Pharmgenomics Pers Med. 2021;14:1463–74.PubMedPubMedCentral
22.
go back to reference Bruckmueller H, Werk AN, Renders L, et al. Which genetic determinants should be considered for Tacrolimus Dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus. Ther Drug Monit. 2015;37(3):288–95.PubMedCrossRef Bruckmueller H, Werk AN, Renders L, et al. Which genetic determinants should be considered for Tacrolimus Dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus. Ther Drug Monit. 2015;37(3):288–95.PubMedCrossRef
23.
go back to reference Tavira B, Coto E, Diaz-Corte C, et al. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients. Pharmacogenet Genomics. 2013;23(8):445–8.PubMedCrossRef Tavira B, Coto E, Diaz-Corte C, et al. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients. Pharmacogenet Genomics. 2013;23(8):445–8.PubMedCrossRef
24.
go back to reference Madsen MJ, Bergmann TK, Brosen K, et al. The pharmacogenetics of Tacrolimus in Corticosteroid-Sparse Pediatric and adult kidney transplant recipients. Drugs R D. 2017;17(2):279–86.PubMedPubMedCentralCrossRef Madsen MJ, Bergmann TK, Brosen K, et al. The pharmacogenetics of Tacrolimus in Corticosteroid-Sparse Pediatric and adult kidney transplant recipients. Drugs R D. 2017;17(2):279–86.PubMedPubMedCentralCrossRef
25.
go back to reference Lunde I, Bremer S, Midtvedt K, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014;70(6):685–93.PubMedPubMedCentralCrossRef Lunde I, Bremer S, Midtvedt K, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014;70(6):685–93.PubMedPubMedCentralCrossRef
26.
go back to reference Liu S, Chen RX, Li J, et al. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients. Acta Pharmacol Sin. 2016;37(9):1251–8.PubMedPubMedCentralCrossRef Liu S, Chen RX, Li J, et al. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients. Acta Pharmacol Sin. 2016;37(9):1251–8.PubMedPubMedCentralCrossRef
27.
go back to reference Kurzawski M, Malinowski D, Dziewanowski K, et al. Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinetics and new-onset diabetes in kidney transplant recipients. Pharmacogenet Genomics. 2014;24(8):397–400.PubMedCrossRef Kurzawski M, Malinowski D, Dziewanowski K, et al. Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinetics and new-onset diabetes in kidney transplant recipients. Pharmacogenet Genomics. 2014;24(8):397–400.PubMedCrossRef
28.
go back to reference Kurzawski M, Dąbrowska J, Dziewanowski K, et al. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics. 2014;15(2):179–88.PubMedCrossRef Kurzawski M, Dąbrowska J, Dziewanowski K, et al. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics. 2014;15(2):179–88.PubMedCrossRef
29.
go back to reference Elens L, Bouamar R, Hesselink DA, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011;57(11):1574–83.PubMedCrossRef Elens L, Bouamar R, Hesselink DA, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011;57(11):1574–83.PubMedCrossRef
30.
go back to reference Vanhove T, Hasan M, Annaert P, et al. Pretransplant 4beta-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol. 2017;83(11):2406–15.PubMedPubMedCentralCrossRef Vanhove T, Hasan M, Annaert P, et al. Pretransplant 4beta-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol. 2017;83(11):2406–15.PubMedPubMedCentralCrossRef
31.
go back to reference de Jonge H, Elens L, de Loor H, et al. The CYP3A4*22 C > T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J. 2015;15(2):144–52.PubMedCrossRef de Jonge H, Elens L, de Loor H, et al. The CYP3A4*22 C > T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J. 2015;15(2):144–52.PubMedCrossRef
32.
go back to reference Elens L, Van Schaik RH, Panin N, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011;12(10):1383–96.PubMedCrossRef Elens L, Van Schaik RH, Panin N, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011;12(10):1383–96.PubMedCrossRef
33.
go back to reference Zhang JJ, Liu SB, Xue L, et al. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther. 2015;53(9):728–36.PubMedCrossRef Zhang JJ, Liu SB, Xue L, et al. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther. 2015;53(9):728–36.PubMedCrossRef
34.
go back to reference Li CJ, Li L, Lin L, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One. 2014;9(1):e86206.ADSPubMedPubMedCentralCrossRef Li CJ, Li L, Lin L, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One. 2014;9(1):e86206.ADSPubMedPubMedCentralCrossRef
35.
go back to reference Phupradit A, Vadcharavivad S, Ingsathit A, et al. Impact of POR and CYP3A5 polymorphisms on trough concentration to dose ratio of tacrolimus in the early post-operative period following kidney transplantation. Ther Drug Monit. 2018;40(5):549–57.PubMedCrossRef Phupradit A, Vadcharavivad S, Ingsathit A, et al. Impact of POR and CYP3A5 polymorphisms on trough concentration to dose ratio of tacrolimus in the early post-operative period following kidney transplantation. Ther Drug Monit. 2018;40(5):549–57.PubMedCrossRef
36.
go back to reference Elens L, Hesselink DA, Bouamar R, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit. 2014;36(1):71–9.PubMedCrossRef Elens L, Hesselink DA, Bouamar R, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit. 2014;36(1):71–9.PubMedCrossRef
37.
go back to reference Si S, Wang Z, Yang H, et al. Impact of single nucleotide polymorphisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenomics J. 2019;19(1):42–52.PubMedCrossRef Si S, Wang Z, Yang H, et al. Impact of single nucleotide polymorphisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenomics J. 2019;19(1):42–52.PubMedCrossRef
38.
go back to reference Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.PubMedCrossRef Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.PubMedCrossRef
39.
go back to reference Lu A. Multiplicity of mammalian microsomal cytochrome P-450. Pharmacol Rev. 1979;31(4):277–95.PubMed Lu A. Multiplicity of mammalian microsomal cytochrome P-450. Pharmacol Rev. 1979;31(4):277–95.PubMed
40.
go back to reference Shiraga T, Matsuda H, Nagase K, et al. Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog and human liver microsomes. Biochem Pharmacol. 1994;47(4):727–35.PubMedCrossRef Shiraga T, Matsuda H, Nagase K, et al. Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog and human liver microsomes. Biochem Pharmacol. 1994;47(4):727–35.PubMedCrossRef
41.
go back to reference Hubbard PA, Shen AL, Paschke R, et al. NADPH-Cytochrome P450 oxidoreductase. J Biol Chem. 2001;276(31):29163–70.PubMedCrossRef Hubbard PA, Shen AL, Paschke R, et al. NADPH-Cytochrome P450 oxidoreductase. J Biol Chem. 2001;276(31):29163–70.PubMedCrossRef
42.
go back to reference Hu RH, Lee PH, Tsai MK. Clinical influencing factors for daily dose, trough level, and relative clearance of tacrolimus in renal transplant recipients. Transpl Proc. 2000;32(7):1689–92.CrossRef Hu RH, Lee PH, Tsai MK. Clinical influencing factors for daily dose, trough level, and relative clearance of tacrolimus in renal transplant recipients. Transpl Proc. 2000;32(7):1689–92.CrossRef
43.
go back to reference Pou L. Influence of posttransplant time on dose and concentration of tacrolimus in liver transplant patients. Transpl Int. 1998;11(Suppl1):270–S271.CrossRef Pou L. Influence of posttransplant time on dose and concentration of tacrolimus in liver transplant patients. Transpl Int. 1998;11(Suppl1):270–S271.CrossRef
44.
go back to reference Undre NA, Schafer A. Factors affecting the pharmacokinetics of Tacrolimus in the First Year after renal transplantation. Transpl Proc. 1998;30(4):1261–3.CrossRef Undre NA, Schafer A. Factors affecting the pharmacokinetics of Tacrolimus in the First Year after renal transplantation. Transpl Proc. 1998;30(4):1261–3.CrossRef
45.
go back to reference Christiaans M, van Duijnhoven E, Beysens T, et al. Effect of breakfast on the oral bioavailability of tacrolimus and changes in pharmacokinetics at different times posttransplant in renal transplant recipients. Transpl Proc. 1998;30(4):1271–3.CrossRef Christiaans M, van Duijnhoven E, Beysens T, et al. Effect of breakfast on the oral bioavailability of tacrolimus and changes in pharmacokinetics at different times posttransplant in renal transplant recipients. Transpl Proc. 1998;30(4):1271–3.CrossRef
46.
go back to reference Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.PubMedCrossRef Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.PubMedCrossRef
47.
go back to reference Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. 2010;49(3):141–75.PubMedCrossRef Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. 2010;49(3):141–75.PubMedCrossRef
48.
go back to reference van Aert RCM, Wicherts JM, van Assen M. Publication bias examined in meta-analyses from psychology and medicine: a meta-meta-analysis. PLoS One. 2019;14(4):e0215052.PubMedPubMedCentralCrossRef van Aert RCM, Wicherts JM, van Assen M. Publication bias examined in meta-analyses from psychology and medicine: a meta-meta-analysis. PLoS One. 2019;14(4):e0215052.PubMedPubMedCentralCrossRef
49.
go back to reference Hoffmann SC, Stanley EM, Cox ED, et al. Ethnicity greatly influences cytokine gene polymorphism distribution. Am J Transplantation. 2015;2(6):560–7.CrossRef Hoffmann SC, Stanley EM, Cox ED, et al. Ethnicity greatly influences cytokine gene polymorphism distribution. Am J Transplantation. 2015;2(6):560–7.CrossRef
50.
go back to reference Wang D, Guo Y, Wrighton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.PubMedCrossRef Wang D, Guo Y, Wrighton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.PubMedCrossRef
51.
go back to reference Mulder TAM, van Eerden RAG, de With M, et al. CYP3A4(*)22 genotyping in clinical practice: ready for implementation? Front Genet. 2021;8(12):711943.CrossRef Mulder TAM, van Eerden RAG, de With M, et al. CYP3A4(*)22 genotyping in clinical practice: ready for implementation? Front Genet. 2021;8(12):711943.CrossRef
52.
go back to reference Grinyó JM. Steroid-sparing strategies in renal transplantation. Ejhp Pract. 2008;14(6):47–9. Grinyó JM. Steroid-sparing strategies in renal transplantation. Ejhp Pract. 2008;14(6):47–9.
53.
go back to reference Ponticelli C, Tarantino A, Montagnino G, et al. Use of steroids in renal transplantation. Transpl Proc. 1999;31(6):2210–1.CrossRef Ponticelli C, Tarantino A, Montagnino G, et al. Use of steroids in renal transplantation. Transpl Proc. 1999;31(6):2210–1.CrossRef
54.
go back to reference Kälble T, Lucan M, Nicita G, et al. EAu guidelines on renal transplantation. Eur Urol. 2005;47(2):156–66.PubMedCrossRef Kälble T, Lucan M, Nicita G, et al. EAu guidelines on renal transplantation. Eur Urol. 2005;47(2):156–66.PubMedCrossRef
55.
go back to reference Group E M M C S. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet. 1995;345(8961):1321–5.CrossRef Group E M M C S. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet. 1995;345(8961):1321–5.CrossRef
56.
go back to reference SOLLINGER,H. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation. 1995;60(3):225–32.PubMedCrossRef SOLLINGER,H. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation. 1995;60(3):225–32.PubMedCrossRef
57.
go back to reference Patel K, Borchardt RT. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61(7):1029–37.CrossRef Patel K, Borchardt RT. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61(7):1029–37.CrossRef
58.
go back to reference Behrend M, Grinyo J, Vanrenterghem Y, et al. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation. 1999;68(3):391–6.CrossRef Behrend M, Grinyo J, Vanrenterghem Y, et al. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation. 1999;68(3):391–6.CrossRef
59.
go back to reference Matas J. The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation. 1994;57(6):857–9.PubMedCrossRef Matas J. The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation. 1994;57(6):857–9.PubMedCrossRef
60.
go back to reference Lindholm A, Ohlman S, Albrechtsen D, et al. The impact of acute rejection episodes on long-term graft function and outcome in 1347 primary renal transplants treated by 3 cyclosporine regimens. Transplantation. 1993;56(2):307–15.PubMedCrossRef Lindholm A, Ohlman S, Albrechtsen D, et al. The impact of acute rejection episodes on long-term graft function and outcome in 1347 primary renal transplants treated by 3 cyclosporine regimens. Transplantation. 1993;56(2):307–15.PubMedCrossRef
61.
go back to reference Yin S, Song T, Li X, et al. Non-linear relationship between tacrolimus blood concentration and acute rejection after kidney transplantation: a systematic review and dose-response meta-analysis of cohort studies. Curr Pharm Des. 2019;25(21):2394–403.PubMedCrossRef Yin S, Song T, Li X, et al. Non-linear relationship between tacrolimus blood concentration and acute rejection after kidney transplantation: a systematic review and dose-response meta-analysis of cohort studies. Curr Pharm Des. 2019;25(21):2394–403.PubMedCrossRef
62.
go back to reference Jiang ZP, Wang YR, Xu P, et al. Meta-analysis of the effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol. 2008;103(5):433–44.PubMedCrossRef Jiang ZP, Wang YR, Xu P, et al. Meta-analysis of the effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol. 2008;103(5):433–44.PubMedCrossRef
63.
go back to reference Liu YY, Li C, Cui Z, et al. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: a meta-analysis. Gene. 2013;531(2):476–88.PubMedCrossRef Liu YY, Li C, Cui Z, et al. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: a meta-analysis. Gene. 2013;531(2):476–88.PubMedCrossRef
Metadata
Title
Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies
Authors
Ze Li
Xiaozhen Wang
Dandan Li
Sheng Cheng
Zhe Li
Heng Guo
Yiwen Dong
Yingming Zheng
Xingang Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2024
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-024-03467-4

Other articles of this Issue 1/2024

BMC Nephrology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.