Skip to main content
Top
Published in: Clinical Pharmacokinetics 3/2010

01-03-2010 | Review Article

Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part I

Authors: Dr Christine E. Staatz, Lucy K. Goodman, Susan E. Tett

Published in: Clinical Pharmacokinetics | Issue 3/2010

Login to get access

Abstract

The calcineurin inhibitors ciclosporin (cyclosporine) and tacrolimus are immunosuppressant drugs used for the prevention of organ rejection following transplantation. Both agents are metabolic substrates for cytochrome P450 (CYP) 3A enzymes — in particular, CYP3A4 and CYP3A5 — and are transported out of cells via P-glycoprotein (ABCB1). Several single nucleotide polymorphisms (SNPs) have been identified in the genes encoding for CYP3A4, CYP3A5 and P-glycoprotein, including CYP3A4 −392A>G (rs2740574), CYP3A5 6986A>G (rs776746), ABCB1 3435C>T (rs1045642), ABCB1 1236C>T (rs1128503) and ABCB1 2677G>T/A (rs2032582). The aim of this review is to provide the clinician with an extensive overview of the recent literature on the known effects of these SNPs on the pharmacokinetics of ciclosporin and tacrolimus in solid-organ transplant recipients. Literature searches were performed, and all relevant primary research articles were critiqued and summarized. Influence of the CYP3A4 −392A>G SNP on the pharmacokinetics of either ciclosporin or tacrolimus appears limited. Variability in CYP3A4 expression due to environmental factors is likely to be more important than patient genotype. Influence of the CYP3A5 6986A>G SNP on the pharmacokinetics of ciclosporin is also uncertain and likely to be small. CYP3A4 may play a more dominant role than CYP3A5 in the metabolism of ciclosporin. The CYP3A5 6986A>G SNP has a well established influence on the pharmacokinetics of tacrolimus. Several studies in kidney, heart and liver transplant recipients have reported an approximate halving of tacrolimus dose-adjusted trough concentrations and doubling of tacrolimus dose requirements in heterozygous or homozygous carriers of a CYP3A5*1 wild-type allele compared with homozygous carriers of a CYP3A5*3 variant allele. Carriers of a CYP3A5*1 allele take a longer time to reach target blood tacrolimus concentrations. Influence of ABCB1 3435C>T, 1236C>T and 2677G>T/A SNPs on the pharmacokinetics of ciclosporin and tacrolimus remains uncertain, with inconsistent results. Genetic linkage between the three variant genotypes suggests that the pharmacokinetic effects are complex and not related to any one ABCB1 SNP. It is likely that these polymorphisms exert a small but combined effect, which is additive to the effects of the CYP3A5 6986A>G SNP. In liver transplant patients, recipient and donor liver genotypes may act together in determining overall drug disposition, hence the importance of assessing both. Studies with low patient numbers may account for many inconsistent results to date. Meta-analyses of the current data should help resolve some discrepancies. The majority of studies have only evaluated the effects of individual SNPs; however, multiple polymorphisms may interact to produce a combined effect. Further haplotype analyses are likely to be useful. It is not yet clear whether pharmacogenetic profiling of calcineurin inhibitors will be a useful clinical tool for personalizing immunosuppressant therapy.
Literature
1.
go back to reference Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther 2006; 112(1): 184–98PubMedCrossRef Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther 2006; 112(1): 184–98PubMedCrossRef
2.
go back to reference Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2007; 2(2): 374–84PubMedCrossRef Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2007; 2(2): 374–84PubMedCrossRef
3.
go back to reference Thervet E, Anglicheau D, Legendre C, et al. Role of pharmacogenetics of immunosuppressive drugs in organ transplantation. Ther Drug Monit 2008; 30(2): 143–50PubMedCrossRef Thervet E, Anglicheau D, Legendre C, et al. Role of pharmacogenetics of immunosuppressive drugs in organ transplantation. Ther Drug Monit 2008; 30(2): 143–50PubMedCrossRef
4.
go back to reference Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348(6): 538–49PubMedCrossRef Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348(6): 538–49PubMedCrossRef
5.
go back to reference Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmaco-dynamics of calcineurin inhibitors: Part II. Clin Pharmacokinet 2010; 49(4): 207–21PubMedCrossRef Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmaco-dynamics of calcineurin inhibitors: Part II. Clin Pharmacokinet 2010; 49(4): 207–21PubMedCrossRef
6.
go back to reference de Jonge H, Kuypers DR. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant Rev 2008; 22(1): 6–20CrossRef de Jonge H, Kuypers DR. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant Rev 2008; 22(1): 6–20CrossRef
7.
go back to reference Cattaneo D, Baldelli S, Perico N. Pharmacogenetics of immunosuppressants: progress, pitfalls and promises. Am J Transplant 2008; 8(7): 1374–83PubMedCrossRef Cattaneo D, Baldelli S, Perico N. Pharmacogenetics of immunosuppressants: progress, pitfalls and promises. Am J Transplant 2008; 8(7): 1374–83PubMedCrossRef
8.
go back to reference Ekbal NJ, Holt DW, Macphee IA. Pharmacogenetics of immunosuppressive drugs: prospect of individual therapy for transplant patients. Pharmaco-genomics 2008; 9(5): 585–96 Ekbal NJ, Holt DW, Macphee IA. Pharmacogenetics of immunosuppressive drugs: prospect of individual therapy for transplant patients. Pharmaco-genomics 2008; 9(5): 585–96
9.
go back to reference Anglicheau D, Legendre C, Beaune P, et al. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics 2007; 8(7): 835–49PubMedCrossRef Anglicheau D, Legendre C, Beaune P, et al. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics 2007; 8(7): 835–49PubMedCrossRef
10.
go back to reference Dai Y, Hebert MF, Isoherranen N, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34(5): 836–47PubMedCrossRef Dai Y, Hebert MF, Isoherranen N, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34(5): 836–47PubMedCrossRef
11.
go back to reference Dai Y, Iwanaga K, Lin YS, et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol 2004; 68(9): 1889–902PubMedCrossRef Dai Y, Iwanaga K, Lin YS, et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol 2004; 68(9): 1889–902PubMedCrossRef
12.
go back to reference Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20(5): 753–61PubMed Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20(5): 753–61PubMed
13.
go back to reference Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet 2007; 22(5): 328–35PubMedCrossRef Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet 2007; 22(5): 328–35PubMedCrossRef
14.
go back to reference Lamba JK, Lin YS, Schuetz EG, et al. Genetic contributiontovariable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef Lamba JK, Lin YS, Schuetz EG, et al. Genetic contributiontovariable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef
15.
go back to reference Schuetz EG, Schuetz JD, Grogan WM, et al. Expression of cytochrome P450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys 1992; 294(1): 206–14PubMedCrossRef Schuetz EG, Schuetz JD, Grogan WM, et al. Expression of cytochrome P450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys 1992; 294(1): 206–14PubMedCrossRef
16.
go back to reference Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30(10): 1108–14PubMedCrossRef Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30(10): 1108–14PubMedCrossRef
17.
go back to reference Pauli-Magnus C, Kroetz DL. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm Res 2004; 21(6): 904–13PubMedCrossRef Pauli-Magnus C, Kroetz DL. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm Res 2004; 21(6): 904–13PubMedCrossRef
18.
go back to reference Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43(10): 623–53PubMedCrossRef Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43(10): 623–53PubMedCrossRef
19.
go back to reference Christians U, Strom T, Zhang YL, et al. Active drug transport of immuno-suppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit 2006; 28(1): 39–44PubMedCrossRef Christians U, Strom T, Zhang YL, et al. Active drug transport of immuno-suppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit 2006; 28(1): 39–44PubMedCrossRef
20.
go back to reference Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Invest 2003; 33 Suppl. 2: 6–9PubMedCrossRef Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Invest 2003; 33 Suppl. 2: 6–9PubMedCrossRef
21.
go back to reference Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002; 300(3): 1036–45PubMedCrossRef Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002; 300(3): 1036–45PubMedCrossRef
22.
go back to reference Cummins CL, Salphati L, Reid MJ, et al. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther 2003; 305(1): 306–14PubMedCrossRef Cummins CL, Salphati L, Reid MJ, et al. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther 2003; 305(1): 306–14PubMedCrossRef
23.
go back to reference Christians U, Sewing KF. Alternative cyclosporine metabolic pathways and toxicity. Clin Biochem 1995; 28(6): 547–59PubMedCrossRef Christians U, Sewing KF. Alternative cyclosporine metabolic pathways and toxicity. Clin Biochem 1995; 28(6): 547–59PubMedCrossRef
24.
go back to reference Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001; 50 Suppl. 1: S3–11PubMedCrossRef Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001; 50 Suppl. 1: S3–11PubMedCrossRef
25.
go back to reference Cummins CL, Jacobsen W, Christians U, et al. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam. J Pharmacol Exp Ther 2004; 308(1): 143–55PubMedCrossRef Cummins CL, Jacobsen W, Christians U, et al. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam. J Pharmacol Exp Ther 2004; 308(1): 143–55PubMedCrossRef
26.
go back to reference Christians U, Sewing KF. Cyclosporin metabolism in transplant patients. Pharmacol Ther 1993; 57(2–3): 291–345PubMedCrossRef Christians U, Sewing KF. Cyclosporin metabolism in transplant patients. Pharmacol Ther 1993; 57(2–3): 291–345PubMedCrossRef
27.
go back to reference Bader A, Hansen T, Kirchner G, et al. Primary porcine enterocyte and hepatocyte cultures to study drug oxidation reactions. Br J Pharmacol 2000; 129(2): 331–42PubMedCrossRef Bader A, Hansen T, Kirchner G, et al. Primary porcine enterocyte and hepatocyte cultures to study drug oxidation reactions. Br J Pharmacol 2000; 129(2): 331–42PubMedCrossRef
28.
go back to reference Balayssac D, Authier N, Cayre A, et al. Does inhibition of P-glycoprotein lead to drug-drug interactions?. Toxicol Lett 2005; 156(3): 319–29PubMedCrossRef Balayssac D, Authier N, Cayre A, et al. Does inhibition of P-glycoprotein lead to drug-drug interactions?. Toxicol Lett 2005; 156(3): 319–29PubMedCrossRef
29.
go back to reference Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4): 1698–705PubMedCrossRef Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4): 1698–705PubMedCrossRef
30.
go back to reference Yokogawa K, Takahashi M, Tamai I, et al. P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm Res 1999; 16(8): 1213–8PubMedCrossRef Yokogawa K, Takahashi M, Tamai I, et al. P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm Res 1999; 16(8): 1213–8PubMedCrossRef
31.
go back to reference Lemahieu WP, Maes BD, Verbeke K, et al. Alterations of CYP3A4 and P-glycoprotein activity in vivo with time in renal graft recipients. Kidney Int 2004; 66(1): 433–40PubMedCrossRef Lemahieu WP, Maes BD, Verbeke K, et al. Alterations of CYP3A4 and P-glycoprotein activity in vivo with time in renal graft recipients. Kidney Int 2004; 66(1): 433–40PubMedCrossRef
32.
go back to reference Lemahieu WP, Maes BD, Verbeke K, et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs tacrolimus vs sirolimus. Am J Transplant 2004; 4(9): 1514–22PubMedCrossRef Lemahieu WP, Maes BD, Verbeke K, et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs tacrolimus vs sirolimus. Am J Transplant 2004; 4(9): 1514–22PubMedCrossRef
33.
go back to reference del Mar Fernandez De Gatta M, Santos-Buelga D, Dominguez-Gil A, et al. Immunosuppressive therapy for paediatric transplant patients: pharmaco-kinetic considerations. Clin Pharmacokinet 2002; 41(2): 115–35PubMedCrossRef del Mar Fernandez De Gatta M, Santos-Buelga D, Dominguez-Gil A, et al. Immunosuppressive therapy for paediatric transplant patients: pharmaco-kinetic considerations. Clin Pharmacokinet 2002; 41(2): 115–35PubMedCrossRef
34.
go back to reference Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997; 247(2): 625–34PubMedCrossRef Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997; 247(2): 625–34PubMedCrossRef
35.
go back to reference Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003; 307(2): 573–82PubMedCrossRef Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003; 307(2): 573–82PubMedCrossRef
36.
go back to reference Bjorkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods?. Clin Pharmacokinet 2006; 45(1): 1–11PubMedCrossRef Bjorkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods?. Clin Pharmacokinet 2006; 45(1): 1–11PubMedCrossRef
37.
go back to reference Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 2008; 118(2): 250–67PubMedCrossRef Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 2008; 118(2): 250–67PubMedCrossRef
39.
go back to reference Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90(16): 1225–9PubMedCrossRef Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90(16): 1225–9PubMedCrossRef
40.
go back to reference Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 1999; 259(1): 201–5PubMedCrossRef Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 1999; 259(1): 201–5PubMedCrossRef
41.
go back to reference Amirimani B, Walker AH, Weber BL, et al. Response: re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 1999; 91(18): 1588–90PubMedCrossRef Amirimani B, Walker AH, Weber BL, et al. Response: re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 1999; 91(18): 1588–90PubMedCrossRef
42.
go back to reference Amirimani B, Ning B, Deitz AC, et al. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42(4): 299–305PubMedCrossRef Amirimani B, Ning B, Deitz AC, et al. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42(4): 299–305PubMedCrossRef
43.
go back to reference Ando Y, Tateishi T, Sekido Y, et al. Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 1999; 91(18): 1587–90PubMedCrossRef Ando Y, Tateishi T, Sekido Y, et al. Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 1999; 91(18): 1587–90PubMedCrossRef
44.
go back to reference Lamba JK, Lin YS, Thummel K, et al. Common allelic variants of cyto-chrome P4503A4 and their prevalence in different populations. Pharmaco-genetics 2002; 12(2): 121–32 Lamba JK, Lin YS, Thummel K, et al. Common allelic variants of cyto-chrome P4503A4 and their prevalence in different populations. Pharmaco-genetics 2002; 12(2): 121–32
45.
go back to reference Spurdle AB, Goodwin B, Hodgson E, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 2002; 12(5): 355–66PubMedCrossRef Spurdle AB, Goodwin B, Hodgson E, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 2002; 12(5): 355–66PubMedCrossRef
46.
go back to reference Ball SE, Scatina J, Kao J, et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 1999; 66(3): 288–94PubMedCrossRef Ball SE, Scatina J, Kao J, et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 1999; 66(3): 288–94PubMedCrossRef
47.
go back to reference Garcia-Martin E, Martinez C, Pizarro RM, et al. CYP3A4 variant alleles in White individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002; 71(3): 196–204PubMedCrossRef Garcia-Martin E, Martinez C, Pizarro RM, et al. CYP3A4 variant alleles in White individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002; 71(3): 196–204PubMedCrossRef
48.
go back to reference Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68(1): 82–91PubMedCrossRef Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68(1): 82–91PubMedCrossRef
49.
go back to reference Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9PubMedCrossRef Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9PubMedCrossRef
50.
go back to reference Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91PubMedCrossRef Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91PubMedCrossRef
51.
go back to reference Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62(1): 162–72PubMedCrossRef Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62(1): 162–72PubMedCrossRef
52.
go back to reference Huang W, Lin YS, McConn II DJ, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 2004; 32(12): 1434–45PubMedCrossRef Huang W, Lin YS, McConn II DJ, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 2004; 32(12): 1434–45PubMedCrossRef
53.
go back to reference Paulussen A, Lavrijsen K, Bohets H, et al. Two linked mutations in tran-scriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 2000; 10(5): 415–24PubMedCrossRef Paulussen A, Lavrijsen K, Bohets H, et al. Two linked mutations in tran-scriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 2000; 10(5): 415–24PubMedCrossRef
55.
go back to reference Kroetz DL, Pauli-Magnus C, Hodges LM, et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13(8): 481–94PubMedCrossRef Kroetz DL, Pauli-Magnus C, Hodges LM, et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13(8): 481–94PubMedCrossRef
56.
go back to reference Wang D, Johnson AD, Papp AC, et al. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15(10): 693–704PubMedCrossRef Wang D, Johnson AD, Papp AC, et al. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15(10): 693–704PubMedCrossRef
57.
go back to reference Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315(5811): 525–8PubMedCrossRef Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315(5811): 525–8PubMedCrossRef
58.
go back to reference Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8PubMedCrossRef Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8PubMedCrossRef
59.
go back to reference Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359(9300): 30–6PubMedCrossRef Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359(9300): 30–6PubMedCrossRef
60.
go back to reference Hitzl M, Drescher S, van der Kuip H, et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics 2001; 11(4): 293–8PubMedCrossRef Hitzl M, Drescher S, van der Kuip H, et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics 2001; 11(4): 293–8PubMedCrossRef
61.
go back to reference Hitzl M, Schaeffeler E, Hocher B, et al. Variable expression of P-glycoprotein in the human placenta and its association with mutations of the multidrug resistance 1 gene (MDR1, ABCB1). Pharmacogenetics 2004; 14(5): 309–18PubMedCrossRef Hitzl M, Schaeffeler E, Hocher B, et al. Variable expression of P-glycoprotein in the human placenta and its association with mutations of the multidrug resistance 1 gene (MDR1, ABCB1). Pharmacogenetics 2004; 14(5): 309–18PubMedCrossRef
62.
go back to reference Tanabe M, Ieiri I, Nagata N, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297(3): 1137–43PubMed Tanabe M, Ieiri I, Nagata N, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297(3): 1137–43PubMed
63.
go back to reference Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res 2001; 18(10): 1400–4PubMedCrossRef Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res 2001; 18(10): 1400–4PubMedCrossRef
64.
go back to reference Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2): 189–99PubMedCrossRef Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2): 189–99PubMedCrossRef
65.
go back to reference Nakamura T, Sakaeda T, Horinouchi M, et al. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther 2002; 71(4): 297–303PubMedCrossRef Nakamura T, Sakaeda T, Horinouchi M, et al. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther 2002; 71(4): 297–303PubMedCrossRef
66.
go back to reference Drescher S, Schaeffeler E, Hitzl M, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002; 53(5): 526–34PubMedCrossRef Drescher S, Schaeffeler E, Hitzl M, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002; 53(5): 526–34PubMedCrossRef
67.
go back to reference Siegmund W, Ludwig K, Giessmann T, et al. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin Pharmacol Ther 2002; 72(5): 572–83PubMedCrossRef Siegmund W, Ludwig K, Giessmann T, et al. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin Pharmacol Ther 2002; 72(5): 572–83PubMedCrossRef
68.
go back to reference Goto M, Masuda S, Saito H, et al. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in re-cipientsofliving-donor liver transplantation. Pharmacogenetics 2002; 12(6): 451–7PubMedCrossRef Goto M, Masuda S, Saito H, et al. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in re-cipientsofliving-donor liver transplantation. Pharmacogenetics 2002; 12(6): 451–7PubMedCrossRef
69.
go back to reference Wojnowski L, Hustert E, Klein K, et al. Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 2002; 94(8): 630–1; author reply 631–2PubMedCrossRef Wojnowski L, Hustert E, Klein K, et al. Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4 [letter]. J Natl Cancer Inst 2002; 94(8): 630–1; author reply 631–2PubMedCrossRef
70.
go back to reference Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmaco-kinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74(3): 245–54PubMedCrossRef Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmaco-kinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74(3): 245–54PubMedCrossRef
71.
go back to reference Kuypers DR, de Jonge H, Naesens M, et al. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82(6): 711–25PubMedCrossRef Kuypers DR, de Jonge H, Naesens M, et al. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82(6): 711–25PubMedCrossRef
72.
go back to reference Op den Buijsch RA, Christiaans MH, Stolk LM, et al. Tacrolimus pharmaco-kinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol 2007; 21(4): 427–35CrossRef Op den Buijsch RA, Christiaans MH, Stolk LM, et al. Tacrolimus pharmaco-kinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol 2007; 21(4): 427–35CrossRef
73.
go back to reference Hesselink DA, van Gelder T, van Schaik RH, et al. Population pharmaco-kinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther 2004; 76(6): 545–56PubMedCrossRef Hesselink DA, van Gelder T, van Schaik RH, et al. Population pharmaco-kinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther 2004; 76(6): 545–56PubMedCrossRef
74.
go back to reference Yates CR, Zhang W, Song P, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 2003; 43(6): 555–64PubMed Yates CR, Zhang W, Song P, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 2003; 43(6): 555–64PubMed
75.
go back to reference Loh PT, Lou HX, Zhao Y, et al. Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplant Proc 2008; 40(5): 1690–5PubMedCrossRef Loh PT, Lou HX, Zhao Y, et al. Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplant Proc 2008; 40(5): 1690–5PubMedCrossRef
76.
go back to reference Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33PubMedCrossRef Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33PubMedCrossRef
77.
go back to reference Anglicheau D, Verstuyft C, Laurent-Puig P, et al. Association of the multi-drug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 2003; 14(7): 1889–96PubMedCrossRef Anglicheau D, Verstuyft C, Laurent-Puig P, et al. Association of the multi-drug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 2003; 14(7): 1889–96PubMedCrossRef
78.
go back to reference Salama NN, Yang Z, Bui T, et al. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 2006; 95(10): 2293–308PubMedCrossRef Salama NN, Yang Z, Bui T, et al. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 2006; 95(10): 2293–308PubMedCrossRef
79.
go back to reference von Ahsen N, Richter M, Grupp C, et al. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001; 47(6): 1048–52 von Ahsen N, Richter M, Grupp C, et al. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001; 47(6): 1048–52
80.
go back to reference Rivory LP, Qin H, Clarke SJ, et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000; 56(5): 395–8PubMedCrossRef Rivory LP, Qin H, Clarke SJ, et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000; 56(5): 395–8PubMedCrossRef
81.
go back to reference Min DI, Ellingrod VL. Association of the CYP3A4*1B 5′-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2003; 25(3): 305–9PubMedCrossRef Min DI, Ellingrod VL. Association of the CYP3A4*1B 5′-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2003; 25(3): 305–9PubMedCrossRef
82.
go back to reference Crettol S, Venetz JP, Fontana M, et al. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther Drug Monit 2008; 30(6): 689–99PubMedCrossRef Crettol S, Venetz JP, Fontana M, et al. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther Drug Monit 2008; 30(6): 689–99PubMedCrossRef
83.
go back to reference Zhao Y, Song M, Guan D, et al. Genetic polymorphisms of CYP3A5 genes and concentrationofthe cyclosporine and tacrolimus. Transplant Proc 2005; 37(1): 178–81PubMedCrossRef Zhao Y, Song M, Guan D, et al. Genetic polymorphisms of CYP3A5 genes and concentrationofthe cyclosporine and tacrolimus. Transplant Proc 2005; 37(1): 178–81PubMedCrossRef
84.
go back to reference Chu XM, Hao HP, Wang GJ, et al. Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients. Acta Pharmacol Sin 2006; 27(11): 1504–8PubMedCrossRef Chu XM, Hao HP, Wang GJ, et al. Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients. Acta Pharmacol Sin 2006; 27(11): 1504–8PubMedCrossRef
85.
go back to reference Hu YF, Qiu W, Liu ZQ, et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol 2006; 33(11): 1093–8PubMedCrossRef Hu YF, Qiu W, Liu ZQ, et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol 2006; 33(11): 1093–8PubMedCrossRef
86.
go back to reference Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14(3): 147–54PubMedCrossRef Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14(3): 147–54PubMedCrossRef
87.
go back to reference Min DI, Ellingrod VL, Marsh S, et al. CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2004; 26(5): 524–8PubMedCrossRef Min DI, Ellingrod VL, Marsh S, et al. CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2004; 26(5): 524–8PubMedCrossRef
88.
go back to reference Qiu XY, Jiao Z, Zhang M, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol 2008; 64(11): 1069–84PubMedCrossRef Qiu XY, Jiao Z, Zhang M, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol 2008; 64(11): 1069–84PubMedCrossRef
89.
go back to reference Chowbay B, Cumaraswamy S, Cheung YB, et al. Genetic polymorphisms in MDR1 and CYP3A4 genes inAsians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 2003; 13(2): 89–95PubMedCrossRef Chowbay B, Cumaraswamy S, Cheung YB, et al. Genetic polymorphisms in MDR1 and CYP3A4 genes inAsians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 2003; 13(2): 89–95PubMedCrossRef
90.
go back to reference Kuzuya T, Kobayashi T, Moriyama N, et al. Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation 2003; 76(5): 865–8PubMedCrossRef Kuzuya T, Kobayashi T, Moriyama N, et al. Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation 2003; 76(5): 865–8PubMedCrossRef
91.
go back to reference Mai I, Stormer E, Goldammer M, et al. MDR1 haplotypes do not affect the steady-state pharmacokinetics of cyclosporine in renal transplant patients. J Clin Pharmacol 2003; 43(10): 1101–7PubMedCrossRef Mai I, Stormer E, Goldammer M, et al. MDR1 haplotypes do not affect the steady-state pharmacokinetics of cyclosporine in renal transplant patients. J Clin Pharmacol 2003; 43(10): 1101–7PubMedCrossRef
92.
go back to reference Bonhomme-Faivre L, Devocelle A, Saliba F, et al. MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation 2004; 78(1): 21–5PubMedCrossRef Bonhomme-Faivre L, Devocelle A, Saliba F, et al. MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation 2004; 78(1): 21–5PubMedCrossRef
93.
go back to reference Azarpira N, Aghdaie MH, Behzad-Behbahanie A, et al. Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp Clin Transplant 2006; 4(1): 416–9PubMed Azarpira N, Aghdaie MH, Behzad-Behbahanie A, et al. Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp Clin Transplant 2006; 4(1): 416–9PubMed
94.
go back to reference Foote CJ, Greer W, Kiberd BA, et al. MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant Proc 2006; 38(9): 2847–9PubMedCrossRef Foote CJ, Greer W, Kiberd BA, et al. MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant Proc 2006; 38(9): 2847–9PubMedCrossRef
95.
go back to reference Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 2008; 18(2): 77–90PubMedCrossRef Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 2008; 18(2): 77–90PubMedCrossRef
96.
go back to reference Jiang ZP, Wang YR,XuP, et al. Meta-analysis ofthe effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol 2008; 103(5): 433–44PubMedCrossRef Jiang ZP, Wang YR,XuP, et al. Meta-analysis ofthe effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol 2008; 103(5): 433–44PubMedCrossRef
97.
go back to reference Zheng H, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44(2): 135–40PubMedCrossRef Zheng H, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44(2): 135–40PubMedCrossRef
98.
go back to reference Herweijer H, Sonneveld P, Baas F, et al. Expression of mdr1 and mdr3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine. J Natl Cancer Inst 1990; 82(13): 1133–40PubMedCrossRef Herweijer H, Sonneveld P, Baas F, et al. Expression of mdr1 and mdr3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine. J Natl Cancer Inst 1990; 82(13): 1133–40PubMedCrossRef
99.
go back to reference Bandur S, Petrasek J, Hribova P, et al. Haplotypic structure of ABCB1/MDR1 gene modifiesthe risk of the acute allograft rejection in renal transplant recipients. Transplantation 2008; 86(9): 1206–13PubMedCrossRef Bandur S, Petrasek J, Hribova P, et al. Haplotypic structure of ABCB1/MDR1 gene modifiesthe risk of the acute allograft rejection in renal transplant recipients. Transplantation 2008; 86(9): 1206–13PubMedCrossRef
100.
go back to reference Roy JN, Barama A, Poirier C, et al. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 2006; 16(9): 659–65PubMedCrossRef Roy JN, Barama A, Poirier C, et al. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 2006; 16(9): 659–65PubMedCrossRef
101.
go back to reference Hesselink DA, van Schaik RH, van Agteren M, et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics 2008; 18(4): 339–48PubMedCrossRef Hesselink DA, van Schaik RH, van Agteren M, et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics 2008; 18(4): 339–48PubMedCrossRef
102.
go back to reference Tirelli S, Ferraresso M, Ghio L, et al. The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients. Med Sci Monit 2008; 14(5): CR251–4PubMed Tirelli S, Ferraresso M, Ghio L, et al. The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients. Med Sci Monit 2008; 14(5): CR251–4PubMed
103.
go back to reference Zhang X, Liu ZH, Zheng JM, et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transplant 2005; 19(5): 638–43PubMedCrossRef Zhang X, Liu ZH, Zheng JM, et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transplant 2005; 19(5): 638–43PubMedCrossRef
104.
go back to reference Macphee IA, Fredericks S, Mohamed M, et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in Whites and South Asians. Transplantation 2005; 79(4): 499–502PubMedCrossRef Macphee IA, Fredericks S, Mohamed M, et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in Whites and South Asians. Transplantation 2005; 79(4): 499–502PubMedCrossRef
105.
go back to reference Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 2007; 81(2): 228–34PubMedCrossRef Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 2007; 81(2): 228–34PubMedCrossRef
106.
go back to reference Ferraresso M, Tirelli A, Ghio L, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant 2007; 11(3): 296–300PubMedCrossRef Ferraresso M, Tirelli A, Ghio L, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant 2007; 11(3): 296–300PubMedCrossRef
107.
go back to reference Satoh S, Kagaya H, Saito M, et al. Lack of tacrolimus circadian pharmaco-kinetics and CYP3A5 pharmacogenetics in the early and maintenance stages in Japanese renal transplant recipients. Br J Clin Pharmacol 2008; 65(5): 473–81 Satoh S, Kagaya H, Saito M, et al. Lack of tacrolimus circadian pharmaco-kinetics and CYP3A5 pharmacogenetics in the early and maintenance stages in Japanese renal transplant recipients. Br J Clin Pharmacol 2008; 65(5): 473–81
108.
go back to reference Mourad M, Wallemacq P, De Meyer M, et al. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relationtorenal function. Clin Chem Lab Med 2006; 44(10): 1192–8PubMedCrossRef Mourad M, Wallemacq P, De Meyer M, et al. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relationtorenal function. Clin Chem Lab Med 2006; 44(10): 1192–8PubMedCrossRef
109.
go back to reference Fredericks S, Moreton M, Reboux S, et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation 2006; 82(5): 705–8PubMedCrossRef Fredericks S, Moreton M, Reboux S, et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation 2006; 82(5): 705–8PubMedCrossRef
110.
go back to reference Tada H, Tsuchiya N, Satoh S, et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc 2005; 37(4): 1730–2PubMedCrossRef Tada H, Tsuchiya N, Satoh S, et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc 2005; 37(4): 1730–2PubMedCrossRef
111.
go back to reference Mourad M, Mourad G, Wallemacq P, et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005; 80(7): 977–84PubMedCrossRef Mourad M, Mourad G, Wallemacq P, et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005; 80(7): 977–84PubMedCrossRef
112.
go back to reference Cheung CY, Op den Buijsch RA, Wong KM, et al. Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus phar-macokinetic profile of Chinese renal transplant recipients. Pharmaco-genomics 2006; 7(4): 563–74 Cheung CY, Op den Buijsch RA, Wong KM, et al. Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus phar-macokinetic profile of Chinese renal transplant recipients. Pharmaco-genomics 2006; 7(4): 563–74
113.
go back to reference Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78(8): 1182–7PubMedCrossRef Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78(8): 1182–7PubMedCrossRef
114.
go back to reference Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76(8): 1233–5PubMedCrossRef Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76(8): 1233–5PubMedCrossRef
115.
go back to reference Mai I, Perloff ES, Bauer S, et al. MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br J Clin Pharmacol 2004; 58(5): 548–53PubMedCrossRef Mai I, Perloff ES, Bauer S, et al. MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br J Clin Pharmacol 2004; 58(5): 548–53PubMedCrossRef
116.
go back to reference Uesugi M, Masuda S, Katsura T, et al. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics 2006; 16(2): 119–27PubMedCrossRef Uesugi M, Masuda S, Katsura T, et al. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics 2006; 16(2): 119–27PubMedCrossRef
117.
go back to reference Li D, Lu W, Zhu JY, et al. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther 2007; 32(5): 505–15PubMedCrossRef Li D, Lu W, Zhu JY, et al. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther 2007; 32(5): 505–15PubMedCrossRef
118.
go back to reference Fukudo M, Yano I, Masuda S, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther 2006; 80(4): 331–45PubMedCrossRef Fukudo M, Yano I, Masuda S, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther 2006; 80(4): 331–45PubMedCrossRef
119.
go back to reference Li D, Zhu JY, Gao J, et al. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta 2007; 383(1–2): 133–9PubMedCrossRef Li D, Zhu JY, Gao J, et al. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta 2007; 383(1–2): 133–9PubMedCrossRef
120.
go back to reference Goto M, Masuda S, Kiuchi T, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004; 14(7): 471–8PubMedCrossRef Goto M, Masuda S, Kiuchi T, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 2004; 14(7): 471–8PubMedCrossRef
121.
go back to reference Weilin W, Jing J, Shusen Z, et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl 2006; 12(5): 775–80CrossRef Weilin W, Jing J, Shusen Z, et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl 2006; 12(5): 775–80CrossRef
122.
go back to reference Elens L, Capron A, Kerckhove VV, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics 2007; 17(10): 873–83PubMedCrossRef Elens L, Capron A, Kerckhove VV, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics 2007; 17(10): 873–83PubMedCrossRef
123.
go back to reference Fukudo M, Yano I, Yoshimura A, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics 2008; 18(5): 413–23PubMedCrossRef Fukudo M, Yano I, Yoshimura A, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics 2008; 18(5): 413–23PubMedCrossRef
124.
go back to reference Yu S, Wu L, Jin J, et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. Transplantation 2006; 81(1): 46–51PubMedCrossRef Yu S, Wu L, Jin J, et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. Transplantation 2006; 81(1): 46–51PubMedCrossRef
125.
go back to reference Suzuki Y, Homma M, Doki K, et al. Impact of CYP3A5 genetic polymorphism on pharmacokinetics of tacrolimus in healthy Japanese subjects. Br J Clin Pharmacol 2008; 66(1): 154–5PubMedCrossRef Suzuki Y, Homma M, Doki K, et al. Impact of CYP3A5 genetic polymorphism on pharmacokinetics of tacrolimus in healthy Japanese subjects. Br J Clin Pharmacol 2008; 66(1): 154–5PubMedCrossRef
126.
go back to reference Choi JH, Lee YJ, Jang SB, et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol 2007; 64(2): 185–91PubMedCrossRef Choi JH, Lee YJ, Jang SB, et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol 2007; 64(2): 185–91PubMedCrossRef
127.
go back to reference Haufroid V, Wallemacq P, VanKerckhove V, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6(11): 2706–13PubMedCrossRef Haufroid V, Wallemacq P, VanKerckhove V, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6(11): 2706–13PubMedCrossRef
128.
go back to reference MacPhee IA, Fredericks S, Holt DW. Does pharmacogenetics have the potential to allow the individualisation of immunosuppressive drug dosing in organ transplantation?. Expert Opin Pharmacother 2005; 6(15): 2593–605PubMedCrossRef MacPhee IA, Fredericks S, Holt DW. Does pharmacogenetics have the potential to allow the individualisation of immunosuppressive drug dosing in organ transplantation?. Expert Opin Pharmacother 2005; 6(15): 2593–605PubMedCrossRef
129.
go back to reference MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004; 4(6): 914–9PubMedCrossRef MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004; 4(6): 914–9PubMedCrossRef
130.
go back to reference Macphee IA, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef Macphee IA, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef
131.
go back to reference Anglicheau D, Flamant M, Schlageter MH, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 2003; 18(11): 2409–14PubMedCrossRef Anglicheau D, Flamant M, Schlageter MH, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 2003; 18(11): 2409–14PubMedCrossRef
132.
go back to reference Wang J, Zeevi A, McCurry K, et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol 2006; 15(3): 235–40PubMedCrossRef Wang J, Zeevi A, McCurry K, et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol 2006; 15(3): 235–40PubMedCrossRef
133.
go back to reference Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23(1): 100PubMedCrossRef Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23(1): 100PubMedCrossRef
134.
go back to reference Zeng Y, He YJ, He FY, et al. Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects. Acta Pharmacol Sin 2009; 30(4): 478–84PubMedCrossRef Zeng Y, He YJ, He FY, et al. Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects. Acta Pharmacol Sin 2009; 30(4): 478–84PubMedCrossRef
135.
go back to reference Hu YF, Tu JH, Tan ZR, et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica 2007; 37(3): 315–27PubMedCrossRef Hu YF, Tu JH, Tan ZR, et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica 2007; 37(3): 315–27PubMedCrossRef
136.
go back to reference Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31PubMedCrossRef Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31PubMedCrossRef
137.
go back to reference Sim SC, Edwards RJ, Boobis AR, et al. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 2005; 15(9): 625–31PubMedCrossRef Sim SC, Edwards RJ, Boobis AR, et al. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 2005; 15(9): 625–31PubMedCrossRef
138.
go back to reference Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30(8): 883–91PubMedCrossRef Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30(8): 883–91PubMedCrossRef
139.
go back to reference Burk O, Tegude H, Koch I, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277(27): 24280–8PubMedCrossRef Burk O, Tegude H, Koch I, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277(27): 24280–8PubMedCrossRef
140.
go back to reference Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 2003; 1609(1): 1–18PubMedCrossRef Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 2003; 1609(1): 1–18PubMedCrossRef
141.
go back to reference Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14(7): 429–40PubMedCrossRef Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14(7): 429–40PubMedCrossRef
Metadata
Title
Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part I
Authors
Dr Christine E. Staatz
Lucy K. Goodman
Susan E. Tett
Publication date
01-03-2010
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 3/2010
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/11317350-000000000-00000