Skip to main content
Top
Published in: BMC Immunology 1/2023

Open Access 01-12-2023 | Systemic Lupus Erythematosus | Research

Immunoprofiling of cytokines, chemokines, and growth factors in female patients with systemic lupus erythematosus– a pilot study

Authors: Laila A. Damiati, Iuliana Denetiu, Sami Bahlas, Samar Damiati, Peter Natesan Pushparaj

Published in: BMC Immunology | Issue 1/2023

Login to get access

Abstract

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease affecting different organ systems. This study aimed to determine the concentrations of 30 different human cytokines, chemokines, and growth factors in human plasma to understand the role of these markers in the pathogenicity of SLE using Luminex Multiple Analyte Profiling (xMAP) technology. Plasma samples were obtained from patients with SLE (n = 28), osteoarthritis (OA) (n = 9), and healthy individuals (n = 12) were obtained. High levels of TNF, IL-6, IFN-γ, INF-α, IL-4, IL-5, IL-13, IL-8, IP-10, MIG, MCP-1, MIP-1β, GM-CSF, G-CSF, EGF, VEGF, IL-12, IL-1RA, and IL-10 was detected in SLE patients compared with the OA and healthy control groups. xMAP analysis has been used to address the differential regulation of clinical heterogeneity and immunological phenotypes in SLE patients. In addition, complete disease phenotyping information along with cytokine immune profiles would be useful for developing personalized treatments for patients with SLE.
Literature
1.
2.
go back to reference Yu H, Nagafuchi Y, Fujio K. Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules vol. 11 (2021). Yu H, Nagafuchi Y, Fujio K. Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules vol. 11 (2021).
3.
go back to reference Ohl K, Tenbrock K. Inflammatory cytokines in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 432595 (2011). Ohl K, Tenbrock K. Inflammatory cytokines in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 432595 (2011).
4.
go back to reference Krasselt M, Kippenhahn A, Baerwald C, Pietsch C, Seifert O. Relationship between cytomegalovirus prevalence and markers of disease activity in systemic lupus erythematosus. Rheumatology. 2022;61:1288–90.CrossRefPubMed Krasselt M, Kippenhahn A, Baerwald C, Pietsch C, Seifert O. Relationship between cytomegalovirus prevalence and markers of disease activity in systemic lupus erythematosus. Rheumatology. 2022;61:1288–90.CrossRefPubMed
5.
go back to reference et al. Scoring systemic lupus erythematosus (SLE) disease activity with simple, rapid outcome measures. Lupus Sci. & Med. 6, e000365 (2019). et al. Scoring systemic lupus erythematosus (SLE) disease activity with simple, rapid outcome measures. Lupus Sci. & Med. 6, e000365 (2019).
6.
go back to reference Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–7.CrossRefPubMed Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–7.CrossRefPubMed
7.
go back to reference Petri M. Review of classification criteria for systemic lupus erythematosus. Rheum Dis Clin North Am. 2005;31:245–54. vi.CrossRefPubMed Petri M. Review of classification criteria for systemic lupus erythematosus. Rheum Dis Clin North Am. 2005;31:245–54. vi.CrossRefPubMed
8.
go back to reference Petri M, et al. Derivation and validation of the systemic Lupus International collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.CrossRefPubMedPubMedCentral Petri M, et al. Derivation and validation of the systemic Lupus International collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.CrossRefPubMedPubMedCentral
9.
go back to reference Anić F, Zuvić-Butorac M, Stimac D, Novak S. New classification criteria for systemic lupus erythematosus correlate with disease activity. Croat Med J. 2014;55:514–9.CrossRefPubMedCentral Anić F, Zuvić-Butorac M, Stimac D, Novak S. New classification criteria for systemic lupus erythematosus correlate with disease activity. Croat Med J. 2014;55:514–9.CrossRefPubMedCentral
10.
go back to reference Sippl N, et al. Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clin Exp Immunol. 2021;205:44–52.CrossRefPubMedPubMedCentral Sippl N, et al. Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clin Exp Immunol. 2021;205:44–52.CrossRefPubMedPubMedCentral
11.
go back to reference Katsuyama T, Tsokos GC, Moulton VR, Aberrant. T cell signaling and subsets in systemic Lupus Erythematosus. Front Immunol vol. 9 (2018). Katsuyama T, Tsokos GC, Moulton VR, Aberrant. T cell signaling and subsets in systemic Lupus Erythematosus. Front Immunol vol. 9 (2018).
12.
13.
go back to reference González LA, Ugarte-Gil MF, Alarcón GS. Systemic lupus erythematosus: the search for the ideal biomarker. Lupus. 2020;30:181–203.CrossRefPubMed González LA, Ugarte-Gil MF, Alarcón GS. Systemic lupus erythematosus: the search for the ideal biomarker. Lupus. 2020;30:181–203.CrossRefPubMed
15.
go back to reference Jin S, Yu C, Yu B. Changes of serum IL-6, IL-10 and TNF-α levels in patients with systemic lupus erythematosus and their clinical value. Am J Transl Res. 2021;13:2867–74.PubMedPubMedCentral Jin S, Yu C, Yu B. Changes of serum IL-6, IL-10 and TNF-α levels in patients with systemic lupus erythematosus and their clinical value. Am J Transl Res. 2021;13:2867–74.PubMedPubMedCentral
16.
go back to reference Wu Y-R, Hsing C-H, Chiu C-J, Huang H-Y, Hsu Y-H. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: friends or foes? IUBMB Life. 2022;74:143–56.CrossRefPubMed Wu Y-R, Hsing C-H, Chiu C-J, Huang H-Y, Hsu Y-H. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: friends or foes? IUBMB Life. 2022;74:143–56.CrossRefPubMed
17.
go back to reference Rzeszotarska E et al. IL-1β, IL-10 and TNF-α polymorphisms may affect systemic lupus erythematosus risk and phenotype. Clin Exp Rheumatol (2022). Rzeszotarska E et al. IL-1β, IL-10 and TNF-α polymorphisms may affect systemic lupus erythematosus risk and phenotype. Clin Exp Rheumatol (2022).
18.
19.
go back to reference Park J, et al. Cytokine clusters as potential diagnostic markers of disease activity and renal involvement in systemic lupus erythematosus. J Int Med Res. 2020;48:300060520926882.CrossRefPubMed Park J, et al. Cytokine clusters as potential diagnostic markers of disease activity and renal involvement in systemic lupus erythematosus. J Int Med Res. 2020;48:300060520926882.CrossRefPubMed
21.
22.
go back to reference Bahlas S, et al. Rapid immunoprofiling of cytokines, chemokines and growth factors in patients with active rheumatoid arthritis using Luminex multiple analyte profiling technology for precision medicine. Clin Exp Rheumatol. 2019;37:112–9.PubMed Bahlas S, et al. Rapid immunoprofiling of cytokines, chemokines and growth factors in patients with active rheumatoid arthritis using Luminex multiple analyte profiling technology for precision medicine. Clin Exp Rheumatol. 2019;37:112–9.PubMed
23.
go back to reference Cigni A, et al. Interleukin 1, interleukin 6, Interleukin 10, and Tumor Necrosis factor α in active and quiescent systemic Lupus Erythematosus. J Investig Med. 2014;62:825LP–829.CrossRef Cigni A, et al. Interleukin 1, interleukin 6, Interleukin 10, and Tumor Necrosis factor α in active and quiescent systemic Lupus Erythematosus. J Investig Med. 2014;62:825LP–829.CrossRef
24.
25.
26.
go back to reference Xiang N, et al. Expression profile of PU.1 in CD4(+)T cells from patients with systemic lupus erythematosus. Clin Exp Med. 2021;21:621–32.CrossRefPubMed Xiang N, et al. Expression profile of PU.1 in CD4(+)T cells from patients with systemic lupus erythematosus. Clin Exp Med. 2021;21:621–32.CrossRefPubMed
27.
go back to reference Hashemi S, Habibagahi Z, Heidari M, Abdollahpour-Alitappeh M, Karimi MH. Effects of combined aerobic and anaerobic exercise training on cytokine profiles in patients with systemic lupus erythematosus (SLE); a randomized controlled trial. Transpl Immunol. 2022;70:101516.CrossRefPubMed Hashemi S, Habibagahi Z, Heidari M, Abdollahpour-Alitappeh M, Karimi MH. Effects of combined aerobic and anaerobic exercise training on cytokine profiles in patients with systemic lupus erythematosus (SLE); a randomized controlled trial. Transpl Immunol. 2022;70:101516.CrossRefPubMed
28.
go back to reference Molnar V et al. Cytokines and Chemokines involved in Osteoarthritis Pathogenesis. Int J Mol Sci 22, (2021). Molnar V et al. Cytokines and Chemokines involved in Osteoarthritis Pathogenesis. Int J Mol Sci 22, (2021).
29.
go back to reference Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine. 2021;146:155640.CrossRefPubMed Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine. 2021;146:155640.CrossRefPubMed
30.
go back to reference Yoshio T, et al. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25:997–1003.CrossRefPubMed Yoshio T, et al. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25:997–1003.CrossRefPubMed
31.
go back to reference Novikov A, et al. Cytokine profiles in systemic Lupus Erythematosus and Rheumatoid Arthritis. Ann Rheum Dis. 2016;75:907LP–907.CrossRef Novikov A, et al. Cytokine profiles in systemic Lupus Erythematosus and Rheumatoid Arthritis. Ann Rheum Dis. 2016;75:907LP–907.CrossRef
32.
go back to reference Armstrong DJ, Whitehead EM, Crockard AD, Bell AL. Distinctive effects of G-CSF, GM-CSF and TNFalpha on neutrophil apoptosis in systemic lupus erythematosus. Clin Exp Rheumatol. 2005;23:152–8.PubMed Armstrong DJ, Whitehead EM, Crockard AD, Bell AL. Distinctive effects of G-CSF, GM-CSF and TNFalpha on neutrophil apoptosis in systemic lupus erythematosus. Clin Exp Rheumatol. 2005;23:152–8.PubMed
33.
go back to reference Stanford SJ, Pepper JR, Burke-Gaffney A, Mitchell JA. Cytokine-activated human vascular smooth muscle delays apoptosis of neutrophils: relevance of interactions between cyclo-oxygenase-2 and colony-stimulating factors. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15:1813–5. Stanford SJ, Pepper JR, Burke-Gaffney A, Mitchell JA. Cytokine-activated human vascular smooth muscle delays apoptosis of neutrophils: relevance of interactions between cyclo-oxygenase-2 and colony-stimulating factors. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15:1813–5.
35.
go back to reference Ngamjanyaporn P, et al. Predicting treatment response and clinicopathological findings in lupus nephritis with urine epidermal growth factor, monocyte chemoattractant protein-1 or their ratios. PLoS ONE. 2022;17:e0263778.CrossRefPubMedPubMedCentral Ngamjanyaporn P, et al. Predicting treatment response and clinicopathological findings in lupus nephritis with urine epidermal growth factor, monocyte chemoattractant protein-1 or their ratios. PLoS ONE. 2022;17:e0263778.CrossRefPubMedPubMedCentral
36.
go back to reference Avihingsanon Y, et al. Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis. Kidney Int. 2006;69:747–53.CrossRefPubMed Avihingsanon Y, et al. Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis. Kidney Int. 2006;69:747–53.CrossRefPubMed
37.
go back to reference Robak E, Woźniacka A, Sysa-Jedrzejowska A, Stepień H, Robak T. Serum levels of angiogenic cytokines in systemic lupus erythematosus and their correlation with disease activity. Eur Cytokine Netw. 2001;12:445–52.PubMed Robak E, Woźniacka A, Sysa-Jedrzejowska A, Stepień H, Robak T. Serum levels of angiogenic cytokines in systemic lupus erythematosus and their correlation with disease activity. Eur Cytokine Netw. 2001;12:445–52.PubMed
38.
go back to reference Adhya Z, et al. Soluble TNF-R1, VEGF and other cytokines as markers of disease activity in systemic lupus erythematosus and lupus nephritis. Lupus. 2019;28:713–21.CrossRefPubMed Adhya Z, et al. Soluble TNF-R1, VEGF and other cytokines as markers of disease activity in systemic lupus erythematosus and lupus nephritis. Lupus. 2019;28:713–21.CrossRefPubMed
39.
go back to reference Hrycek A, Janowska J, Cieślik P. Selected angiogenic cytokines in systemic lupus erythematosus patients. Autoimmunity. 2009;42:459–66.CrossRefPubMed Hrycek A, Janowska J, Cieślik P. Selected angiogenic cytokines in systemic lupus erythematosus patients. Autoimmunity. 2009;42:459–66.CrossRefPubMed
40.
go back to reference Robak E, Woźniacka A, Sysa-Jedrzejowska A, Stepień H, Robak T. Circulating angiogenesis inhibitor endostatin and positive endothelial growth regulators in patients with systemic lupus erythematosus. Lupus. 2002;11:348–55.CrossRefPubMed Robak E, Woźniacka A, Sysa-Jedrzejowska A, Stepień H, Robak T. Circulating angiogenesis inhibitor endostatin and positive endothelial growth regulators in patients with systemic lupus erythematosus. Lupus. 2002;11:348–55.CrossRefPubMed
41.
go back to reference Manetti R, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing th cells. J Exp Med. 1993;177:1199–204.CrossRefPubMed Manetti R, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing th cells. J Exp Med. 1993;177:1199–204.CrossRefPubMed
42.
go back to reference Nembrini C, Abel B, Kopf M, Marsland BJ. Strong TCR signaling, TLR ligands, and cytokine redundancies ensure robust development of type 1 effector T cells. J Immunol. 2006;176:7180–8.CrossRefPubMed Nembrini C, Abel B, Kopf M, Marsland BJ. Strong TCR signaling, TLR ligands, and cytokine redundancies ensure robust development of type 1 effector T cells. J Immunol. 2006;176:7180–8.CrossRefPubMed
43.
go back to reference Uzrail AH, Assaf AM, Abdalla SS. Correlations of Expression Levels of a Panel of Genes (IRF5, STAT4, TNFSF4, MECP2, and TLR7) and Cytokine Levels (IL-2, IL-6, IL-10, IL-12, IFN-γ, and TNF-α) with Systemic Lupus Erythematosus Outcomes in Jordanian Patients. Biomed Res. Int. 2019, 1703842 (2019). Uzrail AH, Assaf AM, Abdalla SS. Correlations of Expression Levels of a Panel of Genes (IRF5, STAT4, TNFSF4, MECP2, and TLR7) and Cytokine Levels (IL-2, IL-6, IL-10, IL-12, IFN-γ, and TNF-α) with Systemic Lupus Erythematosus Outcomes in Jordanian Patients. Biomed Res. Int. 2019, 1703842 (2019).
44.
go back to reference H J Y, et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci. 2010;107:204–9.CrossRef H J Y, et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci. 2010;107:204–9.CrossRef
45.
go back to reference Mizui M et al. IL-2 Protects Lupus-Prone Mice from Multiple End-Organ Damage by Limiting CD4 – CD8 – IL-17–Producing T Cells. J. Immunol. 193, 2168 LP – 2177 (2014). Mizui M et al. IL-2 Protects Lupus-Prone Mice from Multiple End-Organ Damage by Limiting CD4 – CD8 – IL-17–Producing T Cells. J. Immunol. 193, 2168 LP – 2177 (2014).
46.
go back to reference Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol. 1995;154:483–90.CrossRefPubMed Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol. 1995;154:483–90.CrossRefPubMed
47.
go back to reference Aringer M, et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology. 2001;40:876–81.CrossRefPubMed Aringer M, et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology. 2001;40:876–81.CrossRefPubMed
49.
go back to reference Robert M, Miossec P. Interleukin-17 and lupus: enough to be a target? For which patients? Lupus. 2019;29:6–14.CrossRefPubMed Robert M, Miossec P. Interleukin-17 and lupus: enough to be a target? For which patients? Lupus. 2019;29:6–14.CrossRefPubMed
50.
go back to reference Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: application to destruction in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1629 LP – 1631 (2015). Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: application to destruction in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1629 LP – 1631 (2015).
51.
go back to reference Raymond W, Ostli-Eilertsen G, Griffiths S, Nossent J. IL-17A levels in systemic lupus erythematosus associated with inflammatory markers and lower rates of malignancy and heart damage: evidence for a dual role. Eur J Rheumatol. 2017;4:29–35.CrossRefPubMed Raymond W, Ostli-Eilertsen G, Griffiths S, Nossent J. IL-17A levels in systemic lupus erythematosus associated with inflammatory markers and lower rates of malignancy and heart damage: evidence for a dual role. Eur J Rheumatol. 2017;4:29–35.CrossRefPubMed
52.
go back to reference du Toit R, et al. Serum cytokine levels associated with myocardial injury in systemic lupus erythematosus. Rheumatology (Oxford). 2021;60:2010–21.CrossRefPubMed du Toit R, et al. Serum cytokine levels associated with myocardial injury in systemic lupus erythematosus. Rheumatology (Oxford). 2021;60:2010–21.CrossRefPubMed
Metadata
Title
Immunoprofiling of cytokines, chemokines, and growth factors in female patients with systemic lupus erythematosus– a pilot study
Authors
Laila A. Damiati
Iuliana Denetiu
Sami Bahlas
Samar Damiati
Peter Natesan Pushparaj
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2023
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-023-00551-6

Other articles of this Issue 1/2023

BMC Immunology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.