Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2014

01-06-2014 | Preclinical study

Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators

Authors: Lyndsay V. Rhodes, Chandra R. Tate, H. Chris Segar, Hope E. Burks, Theresa B. Phamduy, Van Hoang, Steven Elliott, Diari Gilliam, F. Nell Pounder, Muralidharan Anbalagan, Douglas B. Chrisey, Brian G. Rowan, Matthew E. Burow, Bridgette M. Collins-Burow

Published in: Breast Cancer Research and Treatment | Issue 3/2014

Login to get access

Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018PubMedCrossRef Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018PubMedCrossRef
2.
go back to reference Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434PubMedCrossRef Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434PubMedCrossRef
3.
go back to reference Cleere DW (2010) Triple-negative breast cancer: a clinical update. Community Oncol 7:203–211CrossRef Cleere DW (2010) Triple-negative breast cancer: a clinical update. Community Oncol 7:203–211CrossRef
4.
5.
go back to reference De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S et al (2010) Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 36:S80–S86PubMedCrossRef De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S et al (2010) Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 36:S80–S86PubMedCrossRef
7.
go back to reference O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384PubMedCrossRef O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384PubMedCrossRef
8.
go back to reference Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528PubMedCrossRef Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528PubMedCrossRef
9.
go back to reference Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165PubMedCrossRef Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165PubMedCrossRef
10.
go back to reference Atadja P (2009) Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–241PubMedCrossRef Atadja P (2009) Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–241PubMedCrossRef
11.
go back to reference Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14(3):R79PubMedCentralPubMedCrossRef Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14(3):R79PubMedCentralPubMedCrossRef
12.
go back to reference Guarino M, Rubino B, Ballabio G (2007) The role of epithelial mesenchymal transition in cancer pathology. Pathology 39:305–318PubMedCrossRef Guarino M, Rubino B, Ballabio G (2007) The role of epithelial mesenchymal transition in cancer pathology. Pathology 39:305–318PubMedCrossRef
13.
go back to reference Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef
14.
go back to reference Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28:151–166PubMedCrossRef Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28:151–166PubMedCrossRef
15.
go back to reference Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24:587–597PubMedCrossRef Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24:587–597PubMedCrossRef
16.
go back to reference Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3:716–729PubMedCentralPubMedCrossRef Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3:716–729PubMedCentralPubMedCrossRef
17.
go back to reference Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385PubMedCrossRef Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385PubMedCrossRef
18.
go back to reference Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef
19.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCentralPubMedCrossRef Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCentralPubMedCrossRef
20.
go back to reference Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P et al (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121:293–300PubMedCrossRef Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P et al (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121:293–300PubMedCrossRef
21.
go back to reference Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q et al (2012) Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res 14(2):R45PubMedCentralPubMedCrossRef Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q et al (2012) Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res 14(2):R45PubMedCentralPubMedCrossRef
22.
go back to reference Marsden CG, Wright MJ, Carrier L, Moroz K, Pochampally R, Rowan BG (2012) A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies. BMC Cancer 12:10PubMedCentralPubMedCrossRef Marsden CG, Wright MJ, Carrier L, Moroz K, Pochampally R, Rowan BG (2012) A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies. BMC Cancer 12:10PubMedCentralPubMedCrossRef
23.
go back to reference Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17(5):499–508PubMedCrossRef Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17(5):499–508PubMedCrossRef
24.
go back to reference Nozato M, Kaneko S, Nakagawara A, Komuro H (2013) Epithelial–mesenchymal transition-related gene expression as a new prognostic marker for neuroblastoma. Int J Oncol 42(1):134–140PubMedCentralPubMed Nozato M, Kaneko S, Nakagawara A, Komuro H (2013) Epithelial–mesenchymal transition-related gene expression as a new prognostic marker for neuroblastoma. Int J Oncol 42(1):134–140PubMedCentralPubMed
25.
go back to reference Feng MY, Wang K, Shi QT, Yu XW, Geng JS (2009) Gene expression profiling in TWIST-depleted gastric cancer cells. Anat Rec 292(2):262–270CrossRef Feng MY, Wang K, Shi QT, Yu XW, Geng JS (2009) Gene expression profiling in TWIST-depleted gastric cancer cells. Anat Rec 292(2):262–270CrossRef
26.
go back to reference Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399PubMedCrossRef Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399PubMedCrossRef
27.
go back to reference Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP (2008) Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 68(7):2194–2203PubMedCrossRef Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP (2008) Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 68(7):2194–2203PubMedCrossRef
28.
go back to reference Abuharbeid S, Czubayko F, Aigner A (2006) The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 38(9):1463–1468PubMedCrossRef Abuharbeid S, Czubayko F, Aigner A (2006) The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 38(9):1463–1468PubMedCrossRef
29.
go back to reference Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial–mesenchymal transition in human breast cancer: observations in vitro and in vivo. Cells Tissues Organs 185(13):191–203PubMedCrossRef Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial–mesenchymal transition in human breast cancer: observations in vitro and in vivo. Cells Tissues Organs 185(13):191–203PubMedCrossRef
30.
go back to reference Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libé R et al (2012) Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab 97(6):E954–E962PubMedCrossRef Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libé R et al (2012) Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab 97(6):E954–E962PubMedCrossRef
31.
go back to reference Zhou C, Nitschke AM, Xiong W, Zhang Q, Tang Y, Bloch M et al (2008) Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 10(6):R105PubMedCentralPubMedCrossRef Zhou C, Nitschke AM, Xiong W, Zhang Q, Tang Y, Bloch M et al (2008) Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 10(6):R105PubMedCentralPubMedCrossRef
32.
go back to reference Jiang Z, Wang Z, Xu Y, Wang B, Huang W, Cai S (2010) Analysis of RGS2 expression and prognostic significance in stage II and III colorectal cancer. Biosci Rep 30(6):383–390PubMedCrossRef Jiang Z, Wang Z, Xu Y, Wang B, Huang W, Cai S (2010) Analysis of RGS2 expression and prognostic significance in stage II and III colorectal cancer. Biosci Rep 30(6):383–390PubMedCrossRef
33.
go back to reference Takada H, Wakabayashi N, Dohi O, Yasui K, Sakakura C, Mitsufuji S et al (2010) Tissue factor pathway inhibitor 2 (TFPI2) is frequently silenced by aberrant promoter hypermethylation in gastric cancer. Cancer Genet Cytogenet 197(1):16–24PubMedCrossRef Takada H, Wakabayashi N, Dohi O, Yasui K, Sakakura C, Mitsufuji S et al (2010) Tissue factor pathway inhibitor 2 (TFPI2) is frequently silenced by aberrant promoter hypermethylation in gastric cancer. Cancer Genet Cytogenet 197(1):16–24PubMedCrossRef
34.
go back to reference Hibi K, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H et al (2011) Detection of TFPI2 methylation in the serum of gastric cancer patients. Anticancer Res 31(11):3835–3838PubMed Hibi K, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H et al (2011) Detection of TFPI2 methylation in the serum of gastric cancer patients. Anticancer Res 31(11):3835–3838PubMed
35.
go back to reference Huang H, Sossey-Alaoui K, Beachy SH, Geradts J (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133(10):761–769PubMedCrossRef Huang H, Sossey-Alaoui K, Beachy SH, Geradts J (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133(10):761–769PubMedCrossRef
36.
go back to reference Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11(12):4357–4364PubMedCrossRef Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11(12):4357–4364PubMedCrossRef
37.
go back to reference Vincan E, Swain RK, Brabletz T, Steinbeisser H (2007) Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Front Biosci 12:4558–4567PubMedCrossRef Vincan E, Swain RK, Brabletz T, Steinbeisser H (2007) Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Front Biosci 12:4558–4567PubMedCrossRef
38.
go back to reference Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H et al (2009) Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci 100(7):1227–1233PubMedCrossRef Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H et al (2009) Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci 100(7):1227–1233PubMedCrossRef
39.
go back to reference Bradley EW, Drissi MH (2011) Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol 226(6):1683–1693PubMedCrossRef Bradley EW, Drissi MH (2011) Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol 226(6):1683–1693PubMedCrossRef
40.
go back to reference Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33(20):6566–6578PubMedCentralPubMedCrossRef Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33(20):6566–6578PubMedCentralPubMedCrossRef
41.
go back to reference Weigelt B, Petersen JL, van‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedCrossRef Weigelt B, Petersen JL, van‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedCrossRef
42.
go back to reference Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9:311–320PubMed Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9:311–320PubMed
43.
go back to reference Wang F, Qi Y, Li X, He W, Fan QX, Zong H (2013) HDAC inhibitor trichostatin A suppresses esophageal squamous cell carcinoma metastasis through HADC2 reduced MMP-2/9. Clin Invest Med 36(2):E87–E94PubMed Wang F, Qi Y, Li X, He W, Fan QX, Zong H (2013) HDAC inhibitor trichostatin A suppresses esophageal squamous cell carcinoma metastasis through HADC2 reduced MMP-2/9. Clin Invest Med 36(2):E87–E94PubMed
44.
go back to reference Shan Z, Feng-Nian R, Jie G, Ting Z (2012) Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo. Asian Pac J Cancer Prev 13(8):3977–3982PubMedCrossRef Shan Z, Feng-Nian R, Jie G, Ting Z (2012) Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo. Asian Pac J Cancer Prev 13(8):3977–3982PubMedCrossRef
45.
go back to reference Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS (2012) HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res 18(17):4691–4701PubMedCrossRef Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS (2012) HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res 18(17):4691–4701PubMedCrossRef
46.
go back to reference Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R et al (2013) Histone deacetylase inhibitor induction of epithelial–mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta 1833(3):663–671PubMedCrossRef Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R et al (2013) Histone deacetylase inhibitor induction of epithelial–mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta 1833(3):663–671PubMedCrossRef
47.
go back to reference Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH (2012) Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 7(9):e45045PubMedCentralPubMedCrossRef Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH (2012) Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 7(9):e45045PubMedCentralPubMedCrossRef
48.
go back to reference Wang Y, Shang Y (2013) Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319(2):160–169PubMedCrossRef Wang Y, Shang Y (2013) Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319(2):160–169PubMedCrossRef
49.
go back to reference Fortunati N, Marano F, Bandino A, Frairia R, Catalano MG, Boccuzzi G (2014) The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int J Oncol 44(3):700–708PubMed Fortunati N, Marano F, Bandino A, Frairia R, Catalano MG, Boccuzzi G (2014) The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int J Oncol 44(3):700–708PubMed
50.
go back to reference Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD et al (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61(3):439–448PubMedCrossRef Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD et al (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61(3):439–448PubMedCrossRef
51.
go back to reference Kakihana M, Ohira T, Chan D, Webster RB, Kato H, Drabkin HA et al (2009) Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition. J Thorac Oncol 4(12):1455–1465PubMedCentralPubMedCrossRef Kakihana M, Ohira T, Chan D, Webster RB, Kato H, Drabkin HA et al (2009) Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition. J Thorac Oncol 4(12):1455–1465PubMedCentralPubMedCrossRef
Metadata
Title
Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators
Authors
Lyndsay V. Rhodes
Chandra R. Tate
H. Chris Segar
Hope E. Burks
Theresa B. Phamduy
Van Hoang
Steven Elliott
Diari Gilliam
F. Nell Pounder
Muralidharan Anbalagan
Douglas B. Chrisey
Brian G. Rowan
Matthew E. Burow
Bridgette M. Collins-Burow
Publication date
01-06-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-2979-6

Other articles of this Issue 3/2014

Breast Cancer Research and Treatment 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine