Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer

Authors: Otto Schmalhofer, Simone Brabletz, Thomas Brabletz

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

The embryonic program ‘epithelial-mesenchymal transition’ (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of β-catenin. In addition to an accumulation of cancer stem cells, nuclear β-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and β-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Literature
1.
go back to reference Yilmaz, M., Christofori, G., & Lehembre, F. (2007). Distinct mechanisms of tumor invasion and metastasis. Trends in Molecular Medicine, 13, 535–541.PubMed Yilmaz, M., Christofori, G., & Lehembre, F. (2007). Distinct mechanisms of tumor invasion and metastasis. Trends in Molecular Medicine, 13, 535–541.PubMed
2.
go back to reference Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.PubMed Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.PubMed
3.
go back to reference Takahashi, E., Funato, N., Higashihori, N., Hata, Y., Gridley, T., & Nakamura, M. (2004). Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochemical and Biophysical Research Communications, 325, 1136–1144.PubMed Takahashi, E., Funato, N., Higashihori, N., Hata, Y., Gridley, T., & Nakamura, M. (2004). Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochemical and Biophysical Research Communications, 325, 1136–1144.PubMed
4.
go back to reference Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed
5.
go back to reference Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2, 84–89.PubMed Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2, 84–89.PubMed
6.
go back to reference Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.PubMed Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.PubMed
7.
go back to reference Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277, 39209–39216.PubMed Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277, 39209–39216.PubMed
8.
go back to reference Peinado, H., Ballestar, E., Esteller, M., & Cano, A. (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Molecular and Cellular Biology, 24, 306–319.PubMed Peinado, H., Ballestar, E., Esteller, M., & Cano, A. (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Molecular and Cellular Biology, 24, 306–319.PubMed
9.
go back to reference Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62, 1613–1618.PubMed Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62, 1613–1618.PubMed
10.
go back to reference Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 116, 499–511.PubMed Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 116, 499–511.PubMed
11.
go back to reference Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7, 1267–1278.PubMed Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7, 1267–1278.PubMed
12.
go back to reference Grooteclaes, M. L., & Frisch, S. M. (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19, 3823–3828.PubMed Grooteclaes, M. L., & Frisch, S. M. (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19, 3823–3828.PubMed
13.
go back to reference Funahashi, J., Sekido, R., Murai, K., Kamachi, Y., & Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger- homeodomain protein implicated in postgastrulation embryogenesis. Development, 119, 433–446.PubMed Funahashi, J., Sekido, R., Murai, K., Kamachi, Y., & Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger- homeodomain protein implicated in postgastrulation embryogenesis. Development, 119, 433–446.PubMed
14.
go back to reference Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24, 2375–2385.PubMed Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24, 2375–2385.PubMed
15.
go back to reference Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535–548.PubMed Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535–548.PubMed
16.
go back to reference Perez-Moreno, M., & Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Developmental Cell, 11, 601–612.PubMed Perez-Moreno, M., & Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Developmental Cell, 11, 601–612.PubMed
17.
go back to reference McNeill, H., Ozawa, M., Kemler, R., & Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell, 62, 309–316.PubMed McNeill, H., Ozawa, M., Kemler, R., & Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell, 62, 309–316.PubMed
18.
go back to reference Wheelock, M. J., & Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Annual Review of Cell and Developmental Biology, 19, 207–235.PubMed Wheelock, M. J., & Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Annual Review of Cell and Developmental Biology, 19, 207–235.PubMed
19.
go back to reference Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., et al. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56–65.PubMed Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., et al. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56–65.PubMed
20.
go back to reference De Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., et al. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435–4445.PubMed De Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., et al. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435–4445.PubMed
21.
go back to reference Nose, A., & Takeichi, M. (1986). A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. Journal of Cell Biology, 103, 2649–2658.PubMed Nose, A., & Takeichi, M. (1986). A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. Journal of Cell Biology, 103, 2649–2658.PubMed
22.
go back to reference Butz, S., & Larue, L. (1995). Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhesion and Communication, 3, 337–352.PubMed Butz, S., & Larue, L. (1995). Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhesion and Communication, 3, 337–352.PubMed
23.
go back to reference Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639–655.PubMed Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639–655.PubMed
24.
go back to reference Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., & Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology, 21, 8184–8188.PubMed Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., & Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology, 21, 8184–8188.PubMed
25.
go back to reference Huber, O., Bierkamp, C., & Kemler, R. (1996). Cadherins and catenins in development. Current Opinion in Cell Biology, 8, 685–691.PubMed Huber, O., Bierkamp, C., & Kemler, R. (1996). Cadherins and catenins in development. Current Opinion in Cell Biology, 8, 685–691.PubMed
26.
go back to reference Barbara, G., De Giorgio, R., Stanghellini, V., Corinaldesi, R., Cremon, C., Gerard, N., et al. (2003). Neutral endopeptidase (EC 3.4.24.11) downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut, 52, 1457–1464.PubMed Barbara, G., De Giorgio, R., Stanghellini, V., Corinaldesi, R., Cremon, C., Gerard, N., et al. (2003). Neutral endopeptidase (EC 3.4.24.11) downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut, 52, 1457–1464.PubMed
27.
go back to reference Matsunami, H., & Takeichi, M. (1995). Fetal brain subdivisions defined by R- and E-cadherin expressions: evidence for the role of cadherin activity in region-specific, cell-cell adhesion. Developmental Biology, 172, 466–478.PubMed Matsunami, H., & Takeichi, M. (1995). Fetal brain subdivisions defined by R- and E-cadherin expressions: evidence for the role of cadherin activity in region-specific, cell-cell adhesion. Developmental Biology, 172, 466–478.PubMed
28.
go back to reference Shimamura, K., Hirano, S., McMahon, A. P., & Takeichi, M. (1994). Wnt-1-dependent regulation of local E-cadherin and alpha N-catenin expression in the embryonic mouse brain. Development, 120, 2225–2234.PubMed Shimamura, K., Hirano, S., McMahon, A. P., & Takeichi, M. (1994). Wnt-1-dependent regulation of local E-cadherin and alpha N-catenin expression in the embryonic mouse brain. Development, 120, 2225–2234.PubMed
29.
go back to reference Shimamura, K., & Takeichi, M. (1992). Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development, 116, 1011–1019.PubMed Shimamura, K., & Takeichi, M. (1992). Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development, 116, 1011–1019.PubMed
30.
go back to reference Shimamura, K., Takahashi, T., & Takeichi, M. (1992). E-cadherin expression in a particular subset of sensory neurons. Developmental Biology, 152, 242–254.PubMed Shimamura, K., Takahashi, T., & Takeichi, M. (1992). E-cadherin expression in a particular subset of sensory neurons. Developmental Biology, 152, 242–254.PubMed
31.
go back to reference Nishimura, E. K., Yoshida, H., Kunisada, T., & Nishikawa, S. I. (1999). Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Developmental Biology, 215, 155–166.PubMed Nishimura, E. K., Yoshida, H., Kunisada, T., & Nishikawa, S. I. (1999). Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Developmental Biology, 215, 155–166.PubMed
32.
go back to reference Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M., et al. (1996). A role for cadherins in tissue formation. Development, 122, 3185–3194.PubMed Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M., et al. (1996). A role for cadherins in tissue formation. Development, 122, 3185–3194.PubMed
33.
go back to reference Riethmacher, D., Brinkmann, V., & Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proceedings of the National Academy of Sciences of the United States of America, 92, 855–859.PubMed Riethmacher, D., Brinkmann, V., & Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proceedings of the National Academy of Sciences of the United States of America, 92, 855–859.PubMed
34.
go back to reference Larue, L., Ohsugi, M., Hirchenhain, J., & Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America, 91, 8263–8267.PubMed Larue, L., Ohsugi, M., Hirchenhain, J., & Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America, 91, 8263–8267.PubMed
35.
go back to reference Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V., & Kemler, R. (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mechanisms of Development, 115, 53–62.PubMed Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V., & Kemler, R. (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mechanisms of Development, 115, 53–62.PubMed
36.
go back to reference Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., et al. (2005). E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO Journal, 24, 1146–1156.PubMed Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., et al. (2005). E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO Journal, 24, 1146–1156.PubMed
37.
go back to reference Cali, G., Zannini, M., Rubini, P., Tacchetti, C., D’Andrea, B., Affuso, A., et al. (2007). Conditional inactivation of the E-cadherin gene in thyroid follicular cells affects gland development but does not impair junction formation. Endocrinology, 148, 2737–2746.PubMed Cali, G., Zannini, M., Rubini, P., Tacchetti, C., D’Andrea, B., Affuso, A., et al. (2007). Conditional inactivation of the E-cadherin gene in thyroid follicular cells affects gland development but does not impair junction formation. Endocrinology, 148, 2737–2746.PubMed
38.
go back to reference Tinkle, C. L., Lechler, T., Pasolli, H. A., & Fuchs, E. (2004). Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 101, 552–557.PubMed Tinkle, C. L., Lechler, T., Pasolli, H. A., & Fuchs, E. (2004). Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 101, 552–557.PubMed
39.
go back to reference Young, P., Boussadia, O., Halfter, H., Grose, R., Berger, P., Leone, D. P., et al. (2003). E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO Journal, 22, 5723–5733.PubMed Young, P., Boussadia, O., Halfter, H., Grose, R., Berger, P., Leone, D. P., et al. (2003). E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO Journal, 22, 5723–5733.PubMed
40.
go back to reference Hermiston, M. L., Wong, M. H., & Gordon, J. I. (1996). Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes and Development, 10, 985–996.PubMed Hermiston, M. L., Wong, M. H., & Gordon, J. I. (1996). Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes and Development, 10, 985–996.PubMed
41.
go back to reference Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 4, 118–132.PubMed Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 4, 118–132.PubMed
42.
go back to reference Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. Journal of Cell Biology, 153, 1049–1060.PubMed Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. Journal of Cell Biology, 153, 1049–1060.PubMed
43.
go back to reference Kuphal, F., & Behrens, J. (2006). E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts. Experimental Cell Research, 312, 457–467.PubMed Kuphal, F., & Behrens, J. (2006). E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts. Experimental Cell Research, 312, 457–467.PubMed
44.
go back to reference Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68, 3645–3654.PubMed Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68, 3645–3654.PubMed
45.
go back to reference van Noort, M., & Clevers, H. (2002). TCF transcription factors, mediators of Wnt-signaling in development and cancer. Developmental Biology, 244, 1–8.PubMed van Noort, M., & Clevers, H. (2002). TCF transcription factors, mediators of Wnt-signaling in development and cancer. Developmental Biology, 244, 1–8.PubMed
46.
go back to reference Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., et al. (1998). Functional interaction of an axin homolog, conductin, with beta- catenin, APC, and GSK3beta. Science, 280, 596–599.PubMed Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., et al. (1998). Functional interaction of an axin homolog, conductin, with beta- catenin, APC, and GSK3beta. Science, 280, 596–599.PubMed
47.
go back to reference Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., et al. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. Journal of Biological Chemistry, 273, 10823–10826.PubMed Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., et al. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. Journal of Biological Chemistry, 273, 10823–10826.PubMed
48.
go back to reference Amit, S., Hatzubai, A., Birman, Y., Andersen, J. S., Ben-Shushan, E., Mann, M., et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 16, 1066–1076.PubMed Amit, S., Hatzubai, A., Birman, Y., Andersen, J. S., Ben-Shushan, E., Mann, M., et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 16, 1066–1076.PubMed
49.
go back to reference Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108, 837–847.PubMed Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108, 837–847.PubMed
50.
go back to reference Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO Journal, 18, 2401–2410.PubMed Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO Journal, 18, 2401–2410.PubMed
51.
go back to reference Fodde, R., Smits, R., & Clevers, H. (2001). APC, signal transduction and genetic instability in colorectal cancer. Nature Reviews Cancer, 1, 55–67.PubMed Fodde, R., Smits, R., & Clevers, H. (2001). APC, signal transduction and genetic instability in colorectal cancer. Nature Reviews Cancer, 1, 55–67.PubMed
52.
go back to reference Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407, 527–530.PubMed Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407, 527–530.PubMed
53.
go back to reference Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.PubMed Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.PubMed
54.
go back to reference Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., & Nusse, R. (1995). The dishevelled protein is modified by wingless signaling in Drosophila. Genes and Development, 9, 1087–1097.PubMed Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., & Nusse, R. (1995). The dishevelled protein is modified by wingless signaling in Drosophila. Genes and Development, 9, 1087–1097.PubMed
55.
go back to reference Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma [see comments]. Science, 275, 1784–1787.PubMed Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma [see comments]. Science, 275, 1784–1787.PubMed
56.
go back to reference Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382, 638–642.PubMed Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382, 638–642.PubMed
57.
go back to reference Clevers, H., & van de Wetering, M. (1997). TCF/LEF factor earn their wings. Trends in Genetics, 13, 485–489.PubMed Clevers, H., & van de Wetering, M. (1997). TCF/LEF factor earn their wings. Trends in Genetics, 13, 485–489.PubMed
58.
go back to reference Kramps, T., Peter, O., Brunner, E., Nellen, D., Froesch, B., Chatterjee, S., et al. (2002). Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 109, 47–60.PubMed Kramps, T., Peter, O., Brunner, E., Nellen, D., Froesch, B., Chatterjee, S., et al. (2002). Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 109, 47–60.PubMed
59.
go back to reference Takemaru, K., Yamaguchi, S., Lee, Y. S., Zhang, Y., Carthew, R. W., & Moon, R. T. (2003). Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature, 422, 905–909.PubMed Takemaru, K., Yamaguchi, S., Lee, Y. S., Zhang, Y., Carthew, R. W., & Moon, R. T. (2003). Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature, 422, 905–909.PubMed
60.
go back to reference Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. Journal of Cell Biology, 149, 249–254.PubMed Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. Journal of Cell Biology, 149, 249–254.PubMed
61.
go back to reference Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., & Clevers, H. (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO Journal, 20, 4935–4943.PubMed Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., & Clevers, H. (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO Journal, 20, 4935–4943.PubMed
62.
go back to reference Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., et al. (2006). Activation of the canonical wingless/t-cell factor signaling pathway promotes invasive differentiation of human trophoblast. American Journal of Pathology, 168, 1134–1147.PubMed Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., et al. (2006). Activation of the canonical wingless/t-cell factor signaling pathway promotes invasive differentiation of human trophoblast. American Journal of Pathology, 168, 1134–1147.PubMed
63.
go back to reference Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes and Development, 11, 3286–3305.PubMed Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes and Development, 11, 3286–3305.PubMed
64.
go back to reference Angerer, L., & Angerer, R. (1999). Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Seminars in Cell and Developmental Biology, 10, 327–334.PubMed Angerer, L., & Angerer, R. (1999). Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Seminars in Cell and Developmental Biology, 10, 327–334.PubMed
65.
go back to reference Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 166, 359–367.PubMed Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 166, 359–367.PubMed
66.
go back to reference Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529–3537.PubMed Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529–3537.PubMed
67.
go back to reference Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95, 605–614.PubMed Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95, 605–614.PubMed
68.
go back to reference Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105, 533–545.PubMed Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105, 533–545.PubMed
69.
go back to reference Staal, F. J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B. C., Vainio, S., et al. (2001). Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 31, 285–293.PubMed Staal, F. J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B. C., Vainio, S., et al. (2001). Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 31, 285–293.PubMed
70.
go back to reference Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 128, 1253–1264.PubMed Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 128, 1253–1264.PubMed
71.
go back to reference Ishikawa, T., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S., et al. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128, 25–33.PubMed Ishikawa, T., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S., et al. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128, 25–33.PubMed
72.
go back to reference Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289, 950–953.PubMed Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289, 950–953.PubMed
73.
go back to reference Barker, N., Huls, G., Korinek, V., & Clevers, H. (1999). Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. American Journal of Pathology, 154, 29–35.PubMed Barker, N., Huls, G., Korinek, V., & Clevers, H. (1999). Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. American Journal of Pathology, 154, 29–35.PubMed
74.
go back to reference Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19, 379–383.PubMed Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19, 379–383.PubMed
75.
go back to reference Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.PubMed Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.PubMed
76.
go back to reference Herzig, M., Savarese, F., Novatchkova, M., Semb, H., & Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene, 26, 2290–2298.PubMed Herzig, M., Savarese, F., Novatchkova, M., Semb, H., & Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene, 26, 2290–2298.PubMed
77.
go back to reference van de Wetering, M., Barker, N., Harkes, I. C., van der Heyden, M., Dijk, N. J., Hollestelle, A., et al. (2001). Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Research, 61, 278–284.PubMed van de Wetering, M., Barker, N., Harkes, I. C., van der Heyden, M., Dijk, N. J., Hollestelle, A., et al. (2001). Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Research, 61, 278–284.PubMed
78.
go back to reference Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., et al. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.PubMed Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., et al. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.PubMed
79.
go back to reference Huelsken, J., & Behrens, J. (2002). The Wnt signalling pathway. Jouranl of Cell Science, 115, 3977–3978. Huelsken, J., & Behrens, J. (2002). The Wnt signalling pathway. Jouranl of Cell Science, 115, 3977–3978.
80.
go back to reference Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMed Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMed
81.
go back to reference Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed
82.
go back to reference Behrens, J., Mareel, M. M., Van Roy, F. M., & Birchmeier, W. (1989). Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. Journal of Cell Biology, 108, 2435–2447.PubMed Behrens, J., Mareel, M. M., Van Roy, F. M., & Birchmeier, W. (1989). Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. Journal of Cell Biology, 108, 2435–2447.PubMed
83.
go back to reference Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. Journal of Cell Biology, 113, 173–185.PubMed Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. Journal of Cell Biology, 113, 173–185.PubMed
84.
go back to reference Vleminckx, K., Vakaet Jr., L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66, 107–119.PubMed Vleminckx, K., Vakaet Jr., L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66, 107–119.PubMed
85.
go back to reference Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7, 619–627.PubMed Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7, 619–627.PubMed
86.
go back to reference Kemler, R. (1993). From Cadherins to Catenins: cytoplasmic proetin interactions and regulation of cell adhesion. Trend in Genetics, 9, 317–321. Kemler, R. (1993). From Cadherins to Catenins: cytoplasmic proetin interactions and regulation of cell adhesion. Trend in Genetics, 9, 317–321.
87.
go back to reference Berx, G., Cleton-Jansen, A. M., Strumane, K., de Leeuw, W. J., Nollet, F., van Roy, F., et al. (1996). E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene, 13, 1919–1925.PubMed Berx, G., Cleton-Jansen, A. M., Strumane, K., de Leeuw, W. J., Nollet, F., van Roy, F., et al. (1996). E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene, 13, 1919–1925.PubMed
88.
go back to reference Risinger, J. I., Berchuck, A., Kohler, M. F., & Boyd, J. (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nature Genetics, 7, 98–102.PubMed Risinger, J. I., Berchuck, A., Kohler, M. F., & Boyd, J. (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nature Genetics, 7, 98–102.PubMed
89.
go back to reference Oda, T., Kanai, Y., Oyama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., et al. (1994). E-cadherin gene mutations in human gastric carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America, 91, 1858–1862.PubMed Oda, T., Kanai, Y., Oyama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., et al. (1994). E-cadherin gene mutations in human gastric carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America, 91, 1858–1862.PubMed
90.
go back to reference Tamura, G., Sakata, K., Nishizuka, S., Maesawa, C., Suzuki, Y., Iwaya, T., et al. (1996). Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Japanese Journal of Cancer Research, 87, 1153–1159.PubMed Tamura, G., Sakata, K., Nishizuka, S., Maesawa, C., Suzuki, Y., Iwaya, T., et al. (1996). Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Japanese Journal of Cancer Research, 87, 1153–1159.PubMed
91.
go back to reference Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., et al. (1998). E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.PubMed Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., et al. (1998). E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.PubMed
92.
go back to reference Guilford, P. J., Hopkins, J. B., Grady, W. M., Markowitz, S. D., Willis, J., Lynch, H., et al. (1999). E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Human Mutation, 14, 249–255.PubMed Guilford, P. J., Hopkins, J. B., Grady, W. M., Markowitz, S. D., Willis, J., Lynch, H., et al. (1999). E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Human Mutation, 14, 249–255.PubMed
93.
go back to reference Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. Journal of Biological Chemistry, 275, 2727–2732.PubMed Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. Journal of Biological Chemistry, 275, 2727–2732.PubMed
94.
go back to reference Lynch, H. T., Grady, W., Lynch, J. F., Tsuchiya, K. D., Wiesner, G., & Markowitz, S. D. (2000). E-cadherin mutation-based genetic counseling and hereditary diffuse gastric carcinoma. Cancer Genet Cytogenet, 122, 1–6.PubMed Lynch, H. T., Grady, W., Lynch, J. F., Tsuchiya, K. D., Wiesner, G., & Markowitz, S. D. (2000). E-cadherin mutation-based genetic counseling and hereditary diffuse gastric carcinoma. Cancer Genet Cytogenet, 122, 1–6.PubMed
95.
go back to reference Caldeira, J. R., Prando, E. C., Quevedo, F. C., Neto, F. A., Rainho, C. A., & Rogatto, S. R. (2006). CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 6, 48.PubMed Caldeira, J. R., Prando, E. C., Quevedo, F. C., Neto, F. A., Rainho, C. A., & Rogatto, S. R. (2006). CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 6, 48.PubMed
96.
go back to reference Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60, 4346–4348.PubMed Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60, 4346–4348.PubMed
97.
go back to reference Azarschab, P., Stembalska, A., Loncar, M. B., Pfister, M., Sasiadek, M. M., & Blin, N. (2003). Epigenetic control of E-cadherin (CDH1) by CpG methylation in metastasising laryngeal cancer. Oncology Reports, 10, 501–503.PubMed Azarschab, P., Stembalska, A., Loncar, M. B., Pfister, M., Sasiadek, M. M., & Blin, N. (2003). Epigenetic control of E-cadherin (CDH1) by CpG methylation in metastasising laryngeal cancer. Oncology Reports, 10, 501–503.PubMed
98.
go back to reference Wheeler, J. M., Kim, H. C., Efstathiou, J. A., Ilyas, M., Mortensen, N. J., & Bodmer, W. F. (2001). Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut, 48, 367–371.PubMed Wheeler, J. M., Kim, H. C., Efstathiou, J. A., Ilyas, M., Mortensen, N. J., & Bodmer, W. F. (2001). Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut, 48, 367–371.PubMed
99.
go back to reference Vicovac, L., & Aplin, J. D. (1996). Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel), 156, 202–216. Vicovac, L., & Aplin, J. D. (1996). Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel), 156, 202–216.
100.
go back to reference Bloch-Zupan, A., Hunter, N., Manthey, A., & Gibbins, J. (2001). R-twist gene expression during rat palatogenesis. International Journal of Developmental Biology, 45, 397–404.PubMed Bloch-Zupan, A., Hunter, N., Manthey, A., & Gibbins, J. (2001). R-twist gene expression during rat palatogenesis. International Journal of Developmental Biology, 45, 397–404.PubMed
101.
go back to reference Selleck, M. A., & Bronner-Fraser, M. (2000). Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. International Journal of Developmental Neuroscience, 18, 621–627.PubMed Selleck, M. A., & Bronner-Fraser, M. (2000). Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. International Journal of Developmental Neuroscience, 18, 621–627.PubMed
102.
go back to reference Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6, 1–11.PubMed Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6, 1–11.PubMed
103.
go back to reference Viebahn, C. (1995). Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anatomica, 154, 79–97.PubMed Viebahn, C. (1995). Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anatomica, 154, 79–97.PubMed
104.
go back to reference Kim, K., Lu, Z., & Hay, E. D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biology International, 26, 463–476.PubMed Kim, K., Lu, Z., & Hay, E. D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biology International, 26, 463–476.PubMed
105.
go back to reference Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.PubMed Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.PubMed
106.
go back to reference Agiostratidou, G., Hulit, J., Phillips, G. R., & Hazan, R. B. (2007). Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. Journal of Mammary Gland Biology and Neoplasia, 12, 127–133.PubMed Agiostratidou, G., Hulit, J., Phillips, G. R., & Hazan, R. B. (2007). Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. Journal of Mammary Gland Biology and Neoplasia, 12, 127–133.PubMed
107.
go back to reference Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed
108.
go back to reference Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE, 3, e2888.PubMed Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE, 3, e2888.PubMed
109.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMed Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMed
110.
go back to reference Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.PubMed Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.PubMed
111.
go back to reference Lai, Z. C., Fortini, M. E., & Rubin, G. M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mechanisms of Development, 34, 123–134.PubMed Lai, Z. C., Fortini, M. E., & Rubin, G. M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mechanisms of Development, 34, 123–134.PubMed
112.
go back to reference Lai, Z. C., Rushton, E., Bate, M., & Rubin, G. M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 90, 4122–4126.PubMed Lai, Z. C., Rushton, E., Bate, M., & Rubin, G. M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 90, 4122–4126.PubMed
113.
go back to reference Takagi, T., Moribe, H., Kondoh, H., & Higashi, Y. (1998). DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development, 125, 21–31.PubMed Takagi, T., Moribe, H., Kondoh, H., & Higashi, Y. (1998). DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development, 125, 21–31.PubMed
114.
go back to reference Higashi, Y., Moribe, H., Takagi, T., Sekido, R., Kawakami, K., Kikutani, H., et al. (1997). Impairment of T cell development in deltaEF1 mutant mice. Journal of Experimental Medicine, 185, 1467–1479.PubMed Higashi, Y., Moribe, H., Takagi, T., Sekido, R., Kawakami, K., Kikutani, H., et al. (1997). Impairment of T cell development in deltaEF1 mutant mice. Journal of Experimental Medicine, 185, 1467–1479.PubMed
115.
go back to reference Liu, Y., El-Naggar, S., Darling, D. S., Higashi, Y., & Dean, D. C. (2008). Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development, 135, 579–588.PubMed Liu, Y., El-Naggar, S., Darling, D. S., Higashi, Y., & Dean, D. C. (2008). Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development, 135, 579–588.PubMed
116.
go back to reference Genetta, T., Ruezinsky, D., & Kadesch, T. (1994). Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 14, 6153–6163.PubMed Genetta, T., Ruezinsky, D., & Kadesch, T. (1994). Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 14, 6153–6163.PubMed
117.
go back to reference Williams, T. M., Moolten, D., Burlein, J., Romano, J., Bhaerman, R., Godillot, A., et al. (1991). Identification of a zinc finger protein that inhibits IL-2 gene expression. Science, 254, 1791–1794.PubMed Williams, T. M., Moolten, D., Burlein, J., Romano, J., Bhaerman, R., Godillot, A., et al. (1991). Identification of a zinc finger protein that inhibits IL-2 gene expression. Science, 254, 1791–1794.PubMed
118.
go back to reference Kraus, R. J., Perrigoue, J. G., & Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. Journal of Virology, 77, 199–207.PubMed Kraus, R. J., Perrigoue, J. G., & Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. Journal of Virology, 77, 199–207.PubMed
119.
go back to reference Remacle, J. E., Kraft, H., Lerchner, W., Wuytens, G., Collart, C., Verschueren, K., et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO Journal, 18, 5073–5084.PubMed Remacle, J. E., Kraft, H., Lerchner, W., Wuytens, G., Collart, C., Verschueren, K., et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO Journal, 18, 5073–5084.PubMed
120.
go back to reference Gregoire, J. M., & Romeo, P. H. (1999). T-cell expression of the human GATA-3 gene is regulated by a non- lineage-specific silencer. Journal of Biological Chemistry, 274, 6567–6578.PubMed Gregoire, J. M., & Romeo, P. H. (1999). T-cell expression of the human GATA-3 gene is regulated by a non- lineage-specific silencer. Journal of Biological Chemistry, 274, 6567–6578.PubMed
121.
go back to reference Fontemaggi, G., Gurtner, A., Strano, S., Higashi, Y., Sacchi, A., Piaggio, G., et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Molecular and Cellular Biology, 21, 8461–8470.PubMed Fontemaggi, G., Gurtner, A., Strano, S., Higashi, Y., Sacchi, A., Piaggio, G., et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Molecular and Cellular Biology, 21, 8461–8470.PubMed
122.
go back to reference Murray, D., Precht, P., Balakir, R., & Horton Jr., W. E. (2000). The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. Journal of Biological Chemistry, 275, 3610–3618.PubMed Murray, D., Precht, P., Balakir, R., & Horton Jr., W. E. (2000). The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. Journal of Biological Chemistry, 275, 3610–3618.PubMed
123.
go back to reference Terraz, C., Toman, D., Delauche, M., Ronco, P., & Rossert, J. (2001). delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1(I) collagen gene and represses its expression in osteoblasts. Journal of Biological Chemistry, 276, 37011–37019.PubMed Terraz, C., Toman, D., Delauche, M., Ronco, P., & Rossert, J. (2001). delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1(I) collagen gene and represses its expression in osteoblasts. Journal of Biological Chemistry, 276, 37011–37019.PubMed
124.
go back to reference Brabletz, T., Jung, A., Hlubek, F., Lohberg, C., Meiler, J., Suchy, U., et al. (1999). Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB. International Immunology, 11, 1701–1708.PubMed Brabletz, T., Jung, A., Hlubek, F., Lohberg, C., Meiler, J., Suchy, U., et al. (1999). Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB. International Immunology, 11, 1701–1708.PubMed
125.
go back to reference Nishimura, G., Manabe, I., Tsushima, K., Fujiu, K., Oishi, Y., Imai, Y., et al. (2006). DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Developmental Cell, 11, 93–104.PubMed Nishimura, G., Manabe, I., Tsushima, K., Fujiu, K., Oishi, Y., Imai, Y., et al. (2006). DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Developmental Cell, 11, 93–104.PubMed
126.
go back to reference Chamberlain, E. M., & Sanders, M. M. (1999). Identification of the novel player deltaEF1 in estrogen transcriptional cascades. Molecular Cellular Biology, 19, 3600–3606. Chamberlain, E. M., & Sanders, M. M. (1999). Identification of the novel player deltaEF1 in estrogen transcriptional cascades. Molecular Cellular Biology, 19, 3600–3606.
127.
go back to reference Lazarova, D. L., Bordonaro, M., & Sartorelli, A. C. (2001). Transcriptional regulation of the vitamin D(3) receptor gene by ZEB. Cell Growth and Differentiation, 12, 319–326.PubMed Lazarova, D. L., Bordonaro, M., & Sartorelli, A. C. (2001). Transcriptional regulation of the vitamin D(3) receptor gene by ZEB. Cell Growth and Differentiation, 12, 319–326.PubMed
128.
go back to reference Postigo, A. A. (2003). Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO Journal, 22, 2443–2452.PubMed Postigo, A. A. (2003). Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO Journal, 22, 2443–2452.PubMed
129.
go back to reference Postigo, A. A., Depp, J. L., Taylor, J. J., & Kroll, K. L. (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO Journal, 22, 2453–2462.PubMed Postigo, A. A., Depp, J. L., Taylor, J. J., & Kroll, K. L. (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO Journal, 22, 2453–2462.PubMed
130.
go back to reference van Grunsven, L. A., Taelman, V., Michiels, C., Opdecamp, K., Huylebroeck, D., & Bellefroid, E. J. (2006). deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Developmental Dynamics, 235, 1491–1500.PubMed van Grunsven, L. A., Taelman, V., Michiels, C., Opdecamp, K., Huylebroeck, D., & Bellefroid, E. J. (2006). deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Developmental Dynamics, 235, 1491–1500.PubMed
131.
go back to reference Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.PubMed Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.PubMed
132.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMed
133.
go back to reference Gilles, C., Polette, M., Birembaut, P., Brunner, N., & Thompson, E. W. (1997). Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clinical and Experimental Metastasis, 15, 519–526.PubMed Gilles, C., Polette, M., Birembaut, P., Brunner, N., & Thompson, E. W. (1997). Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clinical and Experimental Metastasis, 15, 519–526.PubMed
134.
go back to reference Rodrigo, I., Cato, A. C., & Cano, A. (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Experimental Cell Research, 248, 358–371.PubMed Rodrigo, I., Cato, A. C., & Cano, A. (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Experimental Cell Research, 248, 358–371.PubMed
135.
go back to reference Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Report, 9, 582–589. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Report, 9, 582–589.
136.
go back to reference Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMed Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMed
137.
go back to reference Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. Journal of Cell Biology, 171, 1023–1034.PubMed Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. Journal of Cell Biology, 171, 1023–1034.PubMed
138.
go back to reference Kawada, M., Inoue, H., Masuda, T., & Ikeda, D. (2006). Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Research, 66, 4419–4425.PubMed Kawada, M., Inoue, H., Masuda, T., & Ikeda, D. (2006). Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Research, 66, 4419–4425.PubMed
139.
go back to reference Miyamoto, S., Nakamura, M., Shitara, K., Nakamura, K., Ohki, Y., Ishii, G., et al. (2005). Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clinical Cancer Research, 11, 3494–3502.PubMed Miyamoto, S., Nakamura, M., Shitara, K., Nakamura, K., Ohki, Y., Ishii, G., et al. (2005). Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clinical Cancer Research, 11, 3494–3502.PubMed
140.
go back to reference Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.PubMed Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.PubMed
141.
go back to reference Weber, K. L., Doucet, M., & Price, J. E. (2003). Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res, 415, S86–94. Weber, K. L., Doucet, M., & Price, J. E. (2003). Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res, 415, S86–94.
142.
go back to reference Verbeek, B. S., Adriaansen-Slot, S. S., Vroom, T. M., Beckers, T., & Rijksen, G. (1998). Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Letters, 425, 145–150.PubMed Verbeek, B. S., Adriaansen-Slot, S. S., Vroom, T. M., Beckers, T., & Rijksen, G. (1998). Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Letters, 425, 145–150.PubMed
143.
go back to reference Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMed Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMed
144.
go back to reference Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.PubMed Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.PubMed
145.
go back to reference Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.PubMed Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.PubMed
146.
go back to reference Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M., & Horwitz, K. B. (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. Journal of Biological Chemistry, 277, 5209–5218.PubMed Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M., & Horwitz, K. B. (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. Journal of Biological Chemistry, 277, 5209–5218.PubMed
147.
go back to reference Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K., Huang, M., et al. (2006). Cyclooxygenase-2-dependent regulation of E-Cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Research, 66, 5338–5345.PubMed Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K., Huang, M., et al. (2006). Cyclooxygenase-2-dependent regulation of E-Cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Research, 66, 5338–5345.PubMed
148.
go back to reference Manavella, P. A., Roqueiro, G., Darling, D. S., & Cabanillas, A. M. (2007). The ZFHX1A gene is differentially autoregulated by its isoforms. Biochemical and Biophysical Research Communications, 360, 621–626.PubMed Manavella, P. A., Roqueiro, G., Darling, D. S., & Cabanillas, A. M. (2007). The ZFHX1A gene is differentially autoregulated by its isoforms. Biochemical and Biophysical Research Communications, 360, 621–626.PubMed
149.
go back to reference Liu, Y., Costantino, M. E., Montoya-Durango, D., Higashi, Y., Darling, D. S., & Dean, D. C. (2007). The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1. Biochemical Journal, 408, 79–85.PubMed Liu, Y., Costantino, M. E., Montoya-Durango, D., Higashi, Y., Darling, D. S., & Dean, D. C. (2007). The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1. Biochemical Journal, 408, 79–85.PubMed
150.
go back to reference Anose, B. M., LaGoo, L., & Schwendinger, J. (2008). Characterization of androgen regulation of ZEB-1 and PSA in 22RV1 prostate cancer cells. Advances in Experimental Medicine and Biology, 617, 541–546.PubMed Anose, B. M., LaGoo, L., & Schwendinger, J. (2008). Characterization of androgen regulation of ZEB-1 and PSA in 22RV1 prostate cancer cells. Advances in Experimental Medicine and Biology, 617, 541–546.PubMed
151.
go back to reference Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.PubMed Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.PubMed
152.
go back to reference Singh, M., Spoelstra, N. S., Jean, A., Howe, E., Torkko, K. C., Clark, H. R., et al. (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Modern Pathology, 21, 912–923.PubMed Singh, M., Spoelstra, N. S., Jean, A., Howe, E., Torkko, K. C., Clark, H. R., et al. (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Modern Pathology, 21, 912–923.PubMed
153.
go back to reference Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Research, 66, 3893–3902.PubMed Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Research, 66, 3893–3902.PubMed
154.
go back to reference Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2006). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMed Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2006). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMed
155.
go back to reference Aigner, K., Descovich, L., Mikula, M., Sultan, A., Dampier, B., Bonne, S., et al. (2007). The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett, 581, 1617–1624.PubMed Aigner, K., Descovich, L., Mikula, M., Sultan, A., Dampier, B., Bonne, S., et al. (2007). The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett, 581, 1617–1624.PubMed
156.
go back to reference Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M., et al. (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979–6988.PubMed Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M., et al. (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979–6988.PubMed
157.
go back to reference Kleer, C. G., Zhang, Y., Pan, Q., & Merajver, S. D. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia, 6, 179–185.PubMed Kleer, C. G., Zhang, Y., Pan, Q., & Merajver, S. D. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia, 6, 179–185.PubMed
158.
go back to reference Zhang, Y., Pan, Q., Zhong, H., Merajver, S. D., & Kleer, C. G. (2005). Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res, 7, R1080–1089.PubMed Zhang, Y., Pan, Q., Zhong, H., Merajver, S. D., & Kleer, C. G. (2005). Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res, 7, R1080–1089.PubMed
159.
go back to reference Kleer, C. G., Zhang, Y., & Merajver, S. D. (2007). CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs, 185, 95–99.PubMed Kleer, C. G., Zhang, Y., & Merajver, S. D. (2007). CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs, 185, 95–99.PubMed
160.
go back to reference Ohira, T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., et al. (2003). WNT7a induces E-cadherin in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 10429–10434.PubMed Ohira, T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., et al. (2003). WNT7a induces E-cadherin in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 10429–10434.PubMed
161.
go back to reference Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.PubMed Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.PubMed
162.
go back to reference Oving, I. M., & Clevers, H. C. (2002). Molecular causes of colon cancer. European Journal of Clinical Investigation, 32, 448–457.PubMed Oving, I. M., & Clevers, H. C. (2002). Molecular causes of colon cancer. European Journal of Clinical Investigation, 32, 448–457.PubMed
163.
go back to reference Behrens, J. (2005). The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochemical Society Transactions, 33, 672–675.PubMed Behrens, J. (2005). The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochemical Society Transactions, 33, 672–675.PubMed
164.
go back to reference Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103, 311–320.PubMed Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103, 311–320.PubMed
165.
go back to reference Hlubek, F., Spaderna, S., Schmalhofer, O., Jung, A., Kirchner, T., & Brabletz, T. (2007). Wnt/FZD signaling and colorectal cancer morphogenesis. Frontiers in Bioscience, 12, 458–470.PubMed Hlubek, F., Spaderna, S., Schmalhofer, O., Jung, A., Kirchner, T., & Brabletz, T. (2007). Wnt/FZD signaling and colorectal cancer morphogenesis. Frontiers in Bioscience, 12, 458–470.PubMed
166.
go back to reference Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMed Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMed
167.
go back to reference de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.PubMed de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.PubMed
168.
go back to reference Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.PubMed Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.PubMed
169.
go back to reference Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L., et al. (2001). Variable beta-catenin expression in colorectal cancer indicates a tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98, 10356–10361.PubMed Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L., et al. (2001). Variable beta-catenin expression in colorectal cancer indicates a tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98, 10356–10361.PubMed
170.
go back to reference Brabletz, T., Jung, A., & Kirchner, T. (2002). Beta-catenin and the morphogenesis of colorectal cancer. Virchows Archiv, 441, 1–11.PubMed Brabletz, T., Jung, A., & Kirchner, T. (2002). Beta-catenin and the morphogenesis of colorectal cancer. Virchows Archiv, 441, 1–11.PubMed
171.
go back to reference Ueno, H., Mochizuki, H., Hatsuse, K., Hase, K., & Yamamoto, T. (2000). Indicators for treatment strategies of colorectal liver metastases. Annals of Surgery, 231, 59–66.PubMed Ueno, H., Mochizuki, H., Hatsuse, K., Hase, K., & Yamamoto, T. (2000). Indicators for treatment strategies of colorectal liver metastases. Annals of Surgery, 231, 59–66.PubMed
172.
go back to reference Hlubek, F., Jung, A., Kotzor, N., Kirchner, T., & Brabletz, T. (2001). Expression of the invasion factor laminin g2 in colorectal carcinomas is regulated by b-catenin. Cancer Research, 61, 8089–8093.PubMed Hlubek, F., Jung, A., Kotzor, N., Kirchner, T., & Brabletz, T. (2001). Expression of the invasion factor laminin g2 in colorectal carcinomas is regulated by b-catenin. Cancer Research, 61, 8089–8093.PubMed
173.
go back to reference Mariadason, J. M., Bordonaro, M., Aslam, F., Shi, L., Kuraguchi, M., Velcich, A., et al. (2001). Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Research, 61, 3465–3471.PubMed Mariadason, J. M., Bordonaro, M., Aslam, F., Shi, L., Kuraguchi, M., Velcich, A., et al. (2001). Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Research, 61, 3465–3471.PubMed
174.
go back to reference Naishiro, Y., Yamada, T., Takaoka, A. S., Hayashi, R., Hasegawa, F., Imai, K., et al. (2001). Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Research, 61, 2751–2758.PubMed Naishiro, Y., Yamada, T., Takaoka, A. S., Hayashi, R., Hasegawa, F., Imai, K., et al. (2001). Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Research, 61, 2751–2758.PubMed
175.
go back to reference Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5, 744–749.PubMed Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5, 744–749.PubMed
176.
go back to reference Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells [In Process Citation]. Nature, 398, 422–426.PubMed Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells [In Process Citation]. Nature, 398, 422–426.PubMed
177.
go back to reference Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 5522–5527.PubMed Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 5522–5527.PubMed
178.
go back to reference He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway [see comments]. Science, 281, 1509–1512.PubMed He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway [see comments]. Science, 281, 1509–1512.PubMed
179.
go back to reference Zhang, T., Otevrel, T., Gao, Z., Ehrlich, S. M., Fields, J. Z., & Boman, B. M. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61, 8664–8667.PubMed Zhang, T., Otevrel, T., Gao, Z., Ehrlich, S. M., Fields, J. Z., & Boman, B. M. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61, 8664–8667.PubMed
180.
go back to reference Yamada, T., Takaoka, A. S., Naishiro, Y., Hayashi, R., Maruyama, K., Maesawa, C., et al. (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Research, 60, 4761–4766.PubMed Yamada, T., Takaoka, A. S., Naishiro, Y., Hayashi, R., Maruyama, K., Maesawa, C., et al. (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Research, 60, 4761–4766.PubMed
181.
go back to reference Fodde, R., & Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology, 19, 150–158.PubMed Fodde, R., & Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology, 19, 150–158.PubMed
182.
go back to reference Stemmer, V., de Craene, B., Berx, G., & Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene, 27, 5075–5080.PubMed Stemmer, V., de Craene, B., Berx, G., & Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene, 27, 5075–5080.PubMed
183.
go back to reference Roy, H. K., Smyrk, T. C., Koetsier, J., Victor, T. A., & Wali, R. K. (2005). The transcriptional repressor SNAIL is overexpressed in human colon cancer. Digestive Diseases and Sciences, 50, 42–46.PubMed Roy, H. K., Smyrk, T. C., Koetsier, J., Victor, T. A., & Wali, R. K. (2005). The transcriptional repressor SNAIL is overexpressed in human colon cancer. Digestive Diseases and Sciences, 50, 42–46.PubMed
184.
go back to reference Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P., & Ben-Ze’ev, A. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. Journal of Cell Biology, 163, 847–857.PubMed Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P., & Ben-Ze’ev, A. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. Journal of Cell Biology, 163, 847–857.PubMed
185.
go back to reference Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. British Journal of Cancer, 94, 1816–1822.PubMed Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. British Journal of Cancer, 94, 1816–1822.PubMed
186.
go back to reference Peinado, H., Portillo, F., & Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 48, 365–375.PubMed Peinado, H., Portillo, F., & Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 48, 365–375.PubMed
187.
go back to reference Hlubek, F., Brabletz, T., Budczies, J., Pfeiffer, S., Jung, A., & Kirchner, T. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121, 1941–1948. Hlubek, F., Brabletz, T., Budczies, J., Pfeiffer, S., Jung, A., & Kirchner, T. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121, 1941–1948.
188.
go back to reference Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMed Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMed
189.
go back to reference Bates, R. C., & Mercurio, A. M. (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Molecular Biology of the Cell, 14, 1790–1800.PubMed Bates, R. C., & Mercurio, A. M. (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Molecular Biology of the Cell, 14, 1790–1800.PubMed
190.
go back to reference Jungck, M., Grunhage, F., Spengler, U., Dernac, A., Mathiak, M., Caspari, R., et al. (2004). E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, beta-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis, 19, 438–445.PubMed Jungck, M., Grunhage, F., Spengler, U., Dernac, A., Mathiak, M., Caspari, R., et al. (2004). E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, beta-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis, 19, 438–445.PubMed
191.
go back to reference Dohadwala, M., Luo, J., Zhu, L., Lin, Y., Dougherty, G. J., Sharma, S., et al. (2001). Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. Journal of Biological Chemistry, 276, 20809–20812.PubMed Dohadwala, M., Luo, J., Zhu, L., Lin, Y., Dougherty, G. J., Sharma, S., et al. (2001). Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. Journal of Biological Chemistry, 276, 20809–20812.PubMed
192.
go back to reference Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Pold, M., et al. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277, 50828–50833.PubMed Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Pold, M., et al. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277, 50828–50833.PubMed
193.
go back to reference Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.PubMed Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.PubMed
194.
go back to reference Longo, K. A., Kennell, J. A., Ochocinska, M. J., Ross, S. E., Wright, W. S., & MacDougald, O. A. (2002). Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. Journal of Biological Chemistry, 277, 38239–38244.PubMed Longo, K. A., Kennell, J. A., Ochocinska, M. J., Ross, S. E., Wright, W. S., & MacDougald, O. A. (2002). Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. Journal of Biological Chemistry, 277, 38239–38244.PubMed
195.
go back to reference Dannenberg, A. J., & Zakim, D. (1999). Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Seminars in Oncology, 26, 499–504.PubMed Dannenberg, A. J., & Zakim, D. (1999). Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Seminars in Oncology, 26, 499–504.PubMed
196.
go back to reference Shao, J., Jung, C., Liu, C., & Sheng, H. (2005). Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. Journal of Biological Chemistry, 280, 26565–26572.PubMed Shao, J., Jung, C., Liu, C., & Sheng, H. (2005). Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. Journal of Biological Chemistry, 280, 26565–26572.PubMed
197.
go back to reference Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20, 1697–1704.PubMed Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20, 1697–1704.PubMed
198.
go back to reference Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68, 537–544.PubMed Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68, 537–544.PubMed
199.
go back to reference Barsky, S. H., Siegal, G. P., Jannotta, F., & Liotta, L. A. (1983). Loss of basement membrane components by invasive tumors but not by their benign counterparts. Laboratory Investigation, 49, 140–147.PubMed Barsky, S. H., Siegal, G. P., Jannotta, F., & Liotta, L. A. (1983). Loss of basement membrane components by invasive tumors but not by their benign counterparts. Laboratory Investigation, 49, 140–147.PubMed
200.
go back to reference Wodarz, A., & Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol, 9, 1016–1024.PubMed Wodarz, A., & Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol, 9, 1016–1024.PubMed
201.
go back to reference Marazuela, M., & Alonso, M. A. (2004). Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histology and Histopathology, 19, 925–933.PubMed Marazuela, M., & Alonso, M. A. (2004). Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histology and Histopathology, 19, 925–933.PubMed
202.
go back to reference Woodhouse, E., Hersperger, E., & Shearn, A. (1998). Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Development Genes and Evolution, 207, 542–550.PubMed Woodhouse, E., Hersperger, E., & Shearn, A. (1998). Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Development Genes and Evolution, 207, 542–550.PubMed
203.
go back to reference Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247.PubMed Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247.PubMed
204.
go back to reference Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.PubMed
205.
go back to reference Cano, A., & Nieto, M. A. (2008). Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends in Cell Biology, 18, 357–359.PubMed Cano, A., & Nieto, M. A. (2008). Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends in Cell Biology, 18, 357–359.PubMed
Metadata
Title
E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer
Authors
Otto Schmalhofer
Simone Brabletz
Thomas Brabletz
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9179-y

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine