Skip to main content
Top
Published in: Clinical & Experimental Metastasis 8/2007

01-11-2007 | Research Paper

Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer

Authors: Geert Berx, Eric Raspé, Gerhard Christofori, Jean Paul Thiery, Jonathan P. Sleeman

Published in: Clinical & Experimental Metastasis | Issue 8/2007

Login to get access

Abstract

EMT (epithelial–mesenchymal transition) is a morphogenetic process in which cells loose their epithelial characteristics and gain mesenchymal properties during embryogenesis. Similar processes regulated by similar pathways are recapitulated during tumour progression, endowing cells with invasive properties, thereby contributing to the formation of metastases. In this review, we outline key features of EMT and discuss the evidence for its involvement in the dissemination of tumours. Finally we review the recent literature concerning the mechanisms that regulate EMT in the tumour context, with a particular focus on breast cancer.
Literature
1.
go back to reference Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRef Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRef
2.
go back to reference Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef
3.
4.
go back to reference Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784PubMed Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784PubMed
5.
6.
go back to reference Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396CrossRef Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396CrossRef
7.
go back to reference Takahashi Y, Sato Y, Suetsugu R et al (2005) Mesenchymal-to-epithelial transition during somitic segmentation: a novel approach to studying the roles of Rho family GTPases in morphogenesis. Cells Tissues Organs 179:36–42PubMedCrossRef Takahashi Y, Sato Y, Suetsugu R et al (2005) Mesenchymal-to-epithelial transition during somitic segmentation: a novel approach to studying the roles of Rho family GTPases in morphogenesis. Cells Tissues Organs 179:36–42PubMedCrossRef
8.
go back to reference Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191PubMed Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191PubMed
9.
go back to reference Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543PubMedCrossRef Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543PubMedCrossRef
10.
go back to reference Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326PubMedCrossRef Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326PubMedCrossRef
11.
go back to reference Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572PubMedCrossRef Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572PubMedCrossRef
12.
go back to reference Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235PubMedCrossRef Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235PubMedCrossRef
13.
go back to reference Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15:665–677PubMed Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15:665–677PubMed
14.
go back to reference Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene (Epub ahead of print) Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene (Epub ahead of print)
15.
go back to reference De Craene B, Gilbert B, Stove C et al (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65:6237–6244PubMedCrossRef De Craene B, Gilbert B, Stove C et al (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65:6237–6244PubMedCrossRef
16.
go back to reference Ikenouchi J, Matsuda M, Furuse M et al (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967PubMedCrossRef Ikenouchi J, Matsuda M, Furuse M et al (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967PubMedCrossRef
17.
go back to reference Moreno-Bueno G, Cubillo E, Sarrio D et al (2006) Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug, and e47 factors in epithelial–mesenchymal transition. Cancer Res 66:9543–9556PubMedCrossRef Moreno-Bueno G, Cubillo E, Sarrio D et al (2006) Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug, and e47 factors in epithelial–mesenchymal transition. Cancer Res 66:9543–9556PubMedCrossRef
18.
go back to reference Vandewalle C, Comijn J, De Craene B et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33:6566–6578PubMedCrossRef Vandewalle C, Comijn J, De Craene B et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33:6566–6578PubMedCrossRef
19.
go back to reference LaGamba D, Nawshad A, Hay ED (2005) Microarray analysis of gene expression during epithelial–mesenchymal transformation. Dev Dyn 234:132–142PubMedCrossRef LaGamba D, Nawshad A, Hay ED (2005) Microarray analysis of gene expression during epithelial–mesenchymal transformation. Dev Dyn 234:132–142PubMedCrossRef
20.
go back to reference Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMedCrossRef Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMedCrossRef
21.
go back to reference Andersen H, Mejlvang J, Mahmood S et al (2005) Immediate and delayed effects of E-cadherin inhibition on gene regulation and cell motility in human epidermoid carcinoma cells. Mol Cell Biol 25:9138–9150PubMedCrossRef Andersen H, Mejlvang J, Mahmood S et al (2005) Immediate and delayed effects of E-cadherin inhibition on gene regulation and cell motility in human epidermoid carcinoma cells. Mol Cell Biol 25:9138–9150PubMedCrossRef
22.
go back to reference Capaldo CT, Macara IG (2007) Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 18:189–200PubMedCrossRef Capaldo CT, Macara IG (2007) Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 18:189–200PubMedCrossRef
23.
go back to reference Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRef Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRef
24.
go back to reference Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef
25.
go back to reference van de Wetering M, Barker N, Harkes IC et al (2001) Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res 61:278–284PubMed van de Wetering M, Barker N, Harkes IC et al (2001) Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res 61:278–284PubMed
26.
go back to reference Ferlicot S, Vincent-Salomon A, Medioni J et al (2004) Wide metastatic spreading in infiltrating lobular carcinoma of the breast. Eur J Cancer 40:336–341PubMedCrossRef Ferlicot S, Vincent-Salomon A, Medioni J et al (2004) Wide metastatic spreading in infiltrating lobular carcinoma of the breast. Eur J Cancer 40:336–341PubMedCrossRef
27.
go back to reference Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520PubMedCrossRef Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520PubMedCrossRef
29.
go back to reference Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363PubMedCrossRef Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363PubMedCrossRef
30.
31.
go back to reference Evangelista M, Tian H, de Sauvage FJ (2006) The hedgehog signaling pathway in cancer. Clin Cancer Res 12:5924–5928PubMedCrossRef Evangelista M, Tian H, de Sauvage FJ (2006) The hedgehog signaling pathway in cancer. Clin Cancer Res 12:5924–5928PubMedCrossRef
33.
go back to reference Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821PubMedCrossRef Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821PubMedCrossRef
34.
go back to reference Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedCrossRef Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedCrossRef
35.
go back to reference Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23:912–923PubMedCrossRef Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23:912–923PubMedCrossRef
36.
go back to reference Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293PubMedCrossRef Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293PubMedCrossRef
37.
go back to reference Cano A, Perez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedCrossRef Cano A, Perez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedCrossRef
38.
go back to reference Venkov CD, Link AJ, Jennings JL et al (2007) A proximal activator of transcription in epithelial–mesenchymal transition. J Clin Invest 117:482–491PubMedCrossRef Venkov CD, Link AJ, Jennings JL et al (2007) A proximal activator of transcription in epithelial–mesenchymal transition. J Clin Invest 117:482–491PubMedCrossRef
39.
go back to reference Perez-Moreno MA, Locascio A, Rodrigo I et al (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276:27424–27431PubMedCrossRef Perez-Moreno MA, Locascio A, Rodrigo I et al (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276:27424–27431PubMedCrossRef
40.
go back to reference Mani SA, Yang J, Brooks M et al (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104:10069–10074PubMedCrossRef Mani SA, Yang J, Brooks M et al (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104:10069–10074PubMedCrossRef
41.
go back to reference Hartwell KA, Muir B, Reinhardt F et al (2006) The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 103:18969–18974PubMedCrossRef Hartwell KA, Muir B, Reinhardt F et al (2006) The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 103:18969–18974PubMedCrossRef
42.
go back to reference Wu X, Chen H, Parker B et al (2006) HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial–mesenchymal transition. Cancer Res 66:9527–9534PubMedCrossRef Wu X, Chen H, Parker B et al (2006) HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial–mesenchymal transition. Cancer Res 66:9527–9534PubMedCrossRef
43.
go back to reference Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef
44.
go back to reference Battle MA, Konopka G, Parviz F et al (2006) Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA 103:8419–8424PubMedCrossRef Battle MA, Konopka G, Parviz F et al (2006) Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA 103:8419–8424PubMedCrossRef
45.
go back to reference Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618PubMed Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618PubMed
46.
go back to reference Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939PubMedCrossRef Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939PubMedCrossRef
47.
go back to reference Eger A, Aigner K, Sonderegger S et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385PubMedCrossRef Eger A, Aigner K, Sonderegger S et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385PubMedCrossRef
48.
go back to reference Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81PubMed Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81PubMed
49.
go back to reference Peinado H, Marin F, Cubillo E et al (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117:2827–2839PubMedCrossRef Peinado H, Marin F, Cubillo E et al (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117:2827–2839PubMedCrossRef
50.
go back to reference Korsching E, Packeisen J, Liedtke C et al (2005) The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457PubMedCrossRef Korsching E, Packeisen J, Liedtke C et al (2005) The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457PubMedCrossRef
51.
go back to reference Petersen OW, Nielsen HL, Gudjonsson T et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402PubMed Petersen OW, Nielsen HL, Gudjonsson T et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402PubMed
52.
go back to reference Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6000; discussion 6000–5991PubMedCrossRef Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6000; discussion 6000–5991PubMedCrossRef
53.
go back to reference De Craene B, van Roy F, Berx G (2005) Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17:535–547PubMedCrossRef De Craene B, van Roy F, Berx G (2005) Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17:535–547PubMedCrossRef
54.
go back to reference Valcourt U, Kowanetz M, Niimi H et al (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell 16:1987–2002PubMedCrossRef Valcourt U, Kowanetz M, Niimi H et al (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell 16:1987–2002PubMedCrossRef
55.
go back to reference Zavadil J, Bitzer M, Liang D et al (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98:6686–6691PubMedCrossRef Zavadil J, Bitzer M, Liang D et al (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98:6686–6691PubMedCrossRef
56.
go back to reference Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570PubMedCrossRef Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570PubMedCrossRef
57.
go back to reference Huber MA, Azoitei N, Baumann B et al (2004) NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581PubMed Huber MA, Azoitei N, Baumann B et al (2004) NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581PubMed
58.
go back to reference Dong M, How T, Kirkbride KC et al (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217PubMedCrossRef Dong M, How T, Kirkbride KC et al (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217PubMedCrossRef
59.
go back to reference Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757PubMedCrossRef Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757PubMedCrossRef
60.
61.
go back to reference Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8:197–209PubMedCrossRef Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8:197–209PubMedCrossRef
62.
go back to reference Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRef Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRef
63.
go back to reference Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8:369–378PubMedCrossRef Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8:369–378PubMedCrossRef
64.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef
65.
go back to reference Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef
66.
go back to reference Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255PubMedCrossRef Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255PubMedCrossRef
67.
go back to reference Xue C, Plieth D, Venkov C et al (2003) The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394PubMed Xue C, Plieth D, Venkov C et al (2003) The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394PubMed
68.
go back to reference Derksen PW, Liu X, Saridin F et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449PubMedCrossRef Derksen PW, Liu X, Saridin F et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449PubMedCrossRef
69.
go back to reference Wicki A, Lehembre F, Wick N et al (2006) Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272PubMedCrossRef Wicki A, Lehembre F, Wick N et al (2006) Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272PubMedCrossRef
70.
go back to reference Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449PubMedCrossRef Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449PubMedCrossRef
71.
go back to reference Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedCrossRef Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedCrossRef
72.
go back to reference Friedl P, Wolf K (2003) Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem Soc Symp (70):277–285 Friedl P, Wolf K (2003) Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem Soc Symp (70):277–285
73.
go back to reference Wolf K, Friedl P (2006) Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol 154(Suppl 1):11–15PubMedCrossRef Wolf K, Friedl P (2006) Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol 154(Suppl 1):11–15PubMedCrossRef
74.
go back to reference Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161PubMedCrossRef Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161PubMedCrossRef
75.
go back to reference Thuault S, Valcourt U, Petersen M et al (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol 174:175–183PubMedCrossRef Thuault S, Valcourt U, Petersen M et al (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol 174:175–183PubMedCrossRef
76.
go back to reference Mironchik Y, Winnard PT Jr, Vesuna F et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65:10801–10809PubMedCrossRef Mironchik Y, Winnard PT Jr, Vesuna F et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65:10801–10809PubMedCrossRef
78.
go back to reference Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedCrossRef Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedCrossRef
79.
go back to reference Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146PubMedCrossRef Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146PubMedCrossRef
80.
go back to reference Yang L, Lin C, Zhao S et al (2007) Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating cyclin D1 and c-Myc expression. J Biol Chem 282:16811–16819PubMedCrossRef Yang L, Lin C, Zhao S et al (2007) Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating cyclin D1 and c-Myc expression. J Biol Chem 282:16811–16819PubMedCrossRef
81.
go back to reference Kim HJ, Litzenburger BC, Cui X et al (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27:3165–3175PubMedCrossRef Kim HJ, Litzenburger BC, Cui X et al (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27:3165–3175PubMedCrossRef
82.
go back to reference Lopez T, Hanahan D (2002) Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1:339–353PubMedCrossRef Lopez T, Hanahan D (2002) Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1:339–353PubMedCrossRef
83.
go back to reference Yook JI, Li XY, Ota I et al (2006) A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8:1398–1406PubMedCrossRef Yook JI, Li XY, Ota I et al (2006) A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8:1398–1406PubMedCrossRef
84.
go back to reference Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMedCrossRef Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMedCrossRef
85.
go back to reference Waerner T, Alacakaptan M, Tamir I et al (2006) ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10:227–239PubMedCrossRef Waerner T, Alacakaptan M, Tamir I et al (2006) ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10:227–239PubMedCrossRef
86.
go back to reference Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665PubMedCrossRef Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665PubMedCrossRef
87.
go back to reference Janda E, Lehmann K, Killisch I et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313PubMedCrossRef Janda E, Lehmann K, Killisch I et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313PubMedCrossRef
88.
go back to reference Zhu Y, Xu G, Patel A et al (2002) Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics 80:144–150PubMedCrossRef Zhu Y, Xu G, Patel A et al (2002) Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics 80:144–150PubMedCrossRef
89.
go back to reference Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRef Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRef
90.
go back to reference Breiteneder-Geleff S, Soleiman A, Kowalski H et al (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394PubMed Breiteneder-Geleff S, Soleiman A, Kowalski H et al (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394PubMed
91.
go back to reference Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5PubMedCrossRef Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5PubMedCrossRef
92.
go back to reference Scholl FG, Gamallo C, Vilaro S et al (1999) Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 112(Pt 24):4601–4613 Scholl FG, Gamallo C, Vilaro S et al (1999) Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 112(Pt 24):4601–4613
93.
go back to reference Martin-Villar E, Scholl FG, Gamallo C et al (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113:899–910PubMedCrossRef Martin-Villar E, Scholl FG, Gamallo C et al (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113:899–910PubMedCrossRef
94.
go back to reference Martin-Villar E, Megias D, Castel S et al (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial–mesenchymal transition. J Cell Sci 119:4541–4553PubMedCrossRef Martin-Villar E, Megias D, Castel S et al (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial–mesenchymal transition. J Cell Sci 119:4541–4553PubMedCrossRef
95.
go back to reference Kunita A, Kashima TG, Morishita Y et al (2007) The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 170:1337–1347PubMedCrossRef Kunita A, Kashima TG, Morishita Y et al (2007) The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 170:1337–1347PubMedCrossRef
96.
go back to reference Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRef Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRef
97.
go back to reference Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRef Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRef
98.
go back to reference Dontu G, Al-Hajj M, Abdallah WM et al (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72PubMedCrossRef Dontu G, Al-Hajj M, Abdallah WM et al (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72PubMedCrossRef
99.
go back to reference Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59PubMedCrossRef Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59PubMedCrossRef
100.
go back to reference Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRef Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRef
101.
go back to reference Sleeman KE, Kendrick H, Ashworth A et al (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8:R7PubMedCrossRef Sleeman KE, Kendrick H, Ashworth A et al (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8:R7PubMedCrossRef
Metadata
Title
Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer
Authors
Geert Berx
Eric Raspé
Gerhard Christofori
Jean Paul Thiery
Jonathan P. Sleeman
Publication date
01-11-2007
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 8/2007
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-007-9114-6

Other articles of this Issue 8/2007

Clinical & Experimental Metastasis 8/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine