Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Status of insecticide resistance in malaria vectors in Kwale County, Coastal Kenya

Authors: Caroline W. Kiuru, Florence Awino Oyieke, Wolfgang Richard Mukabana, Joseph Mwangangi, Luna Kamau, Damaris Muhia-Matoke

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

The strategy for malaria vector control in the context of reducing malaria morbidity and mortality has been the scale-up of long-lasting insecticidal nets to universal coverage and indoor residual spraying. This has led to significant decline in malaria transmission. However, these vector control strategies rely on insecticides which are threatened by insecticide resistance. In this study the status of pyrethroid resistance in malaria vectors and it’s implication in malaria transmission at the Kenyan Coast was investigated.

Results

Using World Health Organization diagnostic bioassay, levels of phenotypic resistance to permethrin and deltamethrin was determined. Anopheles arabiensis showed high resistance to pyrethroids while Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus showed low resistance and susceptibility, respectively. Anopheles gambiae sensu lato (s.l.) mosquitoes were further genotyped for L1014S and L1014F kdr mutation by real time PCR. An allele frequency of 1.33% for L1014S with no L1014F was detected. To evaluate the implication of pyrethroid resistance on malaria transmission, Plasmodium falciparum infection rates in field collected adult mosquitoes was determined using enzyme linked immunosorbent assay and further, the behaviour of the vectors was assessed by comparing indoor and outdoor proportions of mosquitoes collected. Sporozoite infection rate was observed at 4.94 and 2.60% in An. funestus s.l. and An. gambiae s.l., respectively. A higher density of malaria vectors was collected outdoor and this also corresponded with high Plasmodium infection rates outdoor.

Conclusions

This study showed phenotypic resistance to pyrethroids and low frequency of L1014S kdr mutation in An. gambiae s.l. The occurrence of phenotypic resistance with low levels of kdr frequencies highlights the need to investigate other mechanisms of resistance. Despite being susceptible to pyrethroids An. funestus s.l. could be driving malaria infections in the area.
Literature
1.
go back to reference RBM. The global malaria action plan for a malaria free world. Geneva: Roll Back Malaria Partnership; 2008. RBM. The global malaria action plan for a malaria free world. Geneva: Roll Back Malaria Partnership; 2008.
2.
go back to reference National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS), ICF International. Kenya malaria indicator survey 2015. Nairobi: Ministry of Health; 2016. National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS), ICF International. Kenya malaria indicator survey 2015. Nairobi: Ministry of Health; 2016.
3.
go back to reference WHO. World malaria report 2014. Geneva: World Health Organization; 2014. WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
4.
go back to reference RBM. Malaria control today; current WHO recommendations. Geneva: Roll Back Malaria Partnership; 2005. RBM. Malaria control today; current WHO recommendations. Geneva: Roll Back Malaria Partnership; 2005.
5.
go back to reference White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions-a systematic review. Malar J. 2011;10:1.CrossRef White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions-a systematic review. Malar J. 2011;10:1.CrossRef
6.
go back to reference WHOPES. Pesticides and their application for the control of vectors and pests of public health importance. 6th ed. Geneva: World Health Organization Pesticide Evaluation Scheme; 2006. WHOPES. Pesticides and their application for the control of vectors and pests of public health importance. 6th ed. Geneva: World Health Organization Pesticide Evaluation Scheme; 2006.
7.
go back to reference Noor AM, Amin AA, Akhwale WS, Snow RW. Increasing coverage and decreasing inequity in insecticide-treated bed net use among rural Kenyan children. PLoS Med. 2007;4:e255.CrossRefPubMedPubMedCentral Noor AM, Amin AA, Akhwale WS, Snow RW. Increasing coverage and decreasing inequity in insecticide-treated bed net use among rural Kenyan children. PLoS Med. 2007;4:e255.CrossRefPubMedPubMedCentral
8.
go back to reference Zhou G, Li JS, Ototo EN, Atieli HE, Githeko AK, Yan G. Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malar J. 2014;13:351.CrossRefPubMedPubMedCentral Zhou G, Li JS, Ototo EN, Atieli HE, Githeko AK, Yan G. Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malar J. 2014;13:351.CrossRefPubMedPubMedCentral
10.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed
11.
go back to reference Ochomo E, Bayoh NM, Kamau L, Atieli F, Vulule J, Ouma C, et al. Pyrethroid susceptibility of malaria vectors in four districts of Western Kenya. Parasites Vectors. 2014;7:310.CrossRefPubMedPubMedCentral Ochomo E, Bayoh NM, Kamau L, Atieli F, Vulule J, Ouma C, et al. Pyrethroid susceptibility of malaria vectors in four districts of Western Kenya. Parasites Vectors. 2014;7:310.CrossRefPubMedPubMedCentral
12.
go back to reference Yewhalaw D, Kweka EJ. Insecticide resistance in East Africa—history, distribution and drawbacks on malaria vectors and disease control. In: Trdan S, editor. Agricultural and Biological Sciences. Insecticides resistance. Rijeka: Intech; 2016. p. 189–215. Yewhalaw D, Kweka EJ. Insecticide resistance in East Africa—history, distribution and drawbacks on malaria vectors and disease control. In: Trdan S, editor. Agricultural and Biological Sciences. Insecticides resistance. Rijeka: Intech; 2016. p. 189–215.
13.
go back to reference Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRefPubMedPubMedCentral Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRefPubMedPubMedCentral
14.
go back to reference Mutuku FM, King CH, Mungai P, Mbogo C, Mwangangi J, Muchiri EM, et al. Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya. Malar J. 2011;10:356.CrossRefPubMedPubMedCentral Mutuku FM, King CH, Mungai P, Mbogo C, Mwangangi J, Muchiri EM, et al. Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya. Malar J. 2011;10:356.CrossRefPubMedPubMedCentral
15.
go back to reference Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010;9:62.CrossRefPubMedPubMedCentral Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010;9:62.CrossRefPubMedPubMedCentral
16.
go back to reference Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J. 2016;15:107.CrossRefPubMedPubMedCentral Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J. 2016;15:107.CrossRefPubMedPubMedCentral
17.
go back to reference Mutuku FM, Khambira M, Bisanzio D, Mungai P, Mwanzo I, Muchiri EM, et al. Physical condition and maintenance of mosquito bed nets in Kwale County, coastal Kenya. Malar J. 2013;12:46.CrossRefPubMedPubMedCentral Mutuku FM, Khambira M, Bisanzio D, Mungai P, Mwanzo I, Muchiri EM, et al. Physical condition and maintenance of mosquito bed nets in Kwale County, coastal Kenya. Malar J. 2013;12:46.CrossRefPubMedPubMedCentral
18.
go back to reference Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg. 2003;68:734–42.PubMed Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg. 2003;68:734–42.PubMed
19.
go back to reference Onyango SA, Kitron U, Mungai P, Muchiri EM, Kokwaro E, King CH, et al. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods. J Med Entomol. 2013;50:1140–51.CrossRefPubMedPubMedCentral Onyango SA, Kitron U, Mungai P, Muchiri EM, Kokwaro E, King CH, et al. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods. J Med Entomol. 2013;50:1140–51.CrossRefPubMedPubMedCentral
20.
go back to reference Bøgh C, Pedersen EM, Mukoko DA, Ouma JH. Permethrin-impregnated bednet effects on resting and feeding behaviour of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol. 1998;12:52–9.CrossRefPubMed Bøgh C, Pedersen EM, Mukoko DA, Ouma JH. Permethrin-impregnated bednet effects on resting and feeding behaviour of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol. 1998;12:52–9.CrossRefPubMed
21.
go back to reference Mboera LE. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rates. Tanzan Health Res Bull. 2005;7:117–24.PubMed Mboera LE. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rates. Tanzan Health Res Bull. 2005;7:117–24.PubMed
22.
go back to reference Morgan JC. Methods in Anopheles research. Atlanta: Malaria Research and Reference Reagent Resource Center (MR4); 2010. Morgan JC. Methods in Anopheles research. Atlanta: Malaria Research and Reference Reagent Resource Center (MR4); 2010.
23.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces: report of the WHO informal consultation. Geneva: World Health Organization; 1998. WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces: report of the WHO informal consultation. Geneva: World Health Organization; 1998.
24.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2013.
25.
go back to reference Gillies T, Coetzee M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region). Johannesburg: Publication of the South African Institute of Medical Research; 1987. Gillies T, Coetzee M. Supplement of the Anopheles of Africa south of Sahara (Afrotropical region). Johannesburg: Publication of the South African Institute of Medical Research; 1987.
26.
go back to reference Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.CrossRefPubMed
27.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed
28.
go back to reference Koekemoer L, Kamau L, Hunt R, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRefPubMed Koekemoer L, Kamau L, Hunt R, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRefPubMed
29.
go back to reference Della Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol. 2005;35:755–69.CrossRefPubMed Della Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol. 2005;35:755–69.CrossRefPubMed
30.
go back to reference Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.CrossRefPubMedPubMedCentral Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.CrossRefPubMedPubMedCentral
31.
go back to reference Wirtz RA, Burkot TR. Detection of malarial parasites in mosquitoes. Adv Dis Vector Res. 1991;8:77–106.CrossRef Wirtz RA, Burkot TR. Detection of malarial parasites in mosquitoes. Adv Dis Vector Res. 1991;8:77–106.CrossRef
33.
go back to reference McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE, et al. Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg. 2014;90:597–604.CrossRefPubMedPubMedCentral McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE, et al. Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg. 2014;90:597–604.CrossRefPubMedPubMedCentral
34.
go back to reference Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.CrossRefPubMedPubMedCentral Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.CrossRefPubMedPubMedCentral
35.
go back to reference Dia I, Guelbeogo MW, Ayala D. Advances and perspectives in the study of the malaria mosquito Anopheles funestus. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. Rijeka: InTech Publ; 2013. Dia I, Guelbeogo MW, Ayala D. Advances and perspectives in the study of the malaria mosquito Anopheles funestus. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. Rijeka: InTech Publ; 2013.
36.
go back to reference Kamau L, Munyekenye GO, Koekemoer LL, Hunt RH, Coetzee M. A survey of the Anopheles funestus (Diptera: Culicidae) group of mosquitoes from 10 sites in Kenya with special emphasis on population genetic structure based on chromosomal inversion karyotypes. J Med Entomol. 2003;40:664–71.CrossRefPubMed Kamau L, Munyekenye GO, Koekemoer LL, Hunt RH, Coetzee M. A survey of the Anopheles funestus (Diptera: Culicidae) group of mosquitoes from 10 sites in Kenya with special emphasis on population genetic structure based on chromosomal inversion karyotypes. J Med Entomol. 2003;40:664–71.CrossRefPubMed
37.
go back to reference Kweka E, Kamau L, Munga S, Lee M, Githeko A, Yan G. A first report of Anopheles funestus sibling species in western Kenya highlands. Acta Trop. 2013;128:158–61.CrossRefPubMedPubMedCentral Kweka E, Kamau L, Munga S, Lee M, Githeko A, Yan G. A first report of Anopheles funestus sibling species in western Kenya highlands. Acta Trop. 2013;128:158–61.CrossRefPubMedPubMedCentral
38.
go back to reference Kamau L, Hunt R, Coetzee M. Analysis of the population structure of Anopheles funestus (Diptera: Culicidae) from western and coastal Kenya using paracentric chromosomal inversion frequencies. J Med Entomol. 2002;39:78–83.CrossRefPubMed Kamau L, Hunt R, Coetzee M. Analysis of the population structure of Anopheles funestus (Diptera: Culicidae) from western and coastal Kenya using paracentric chromosomal inversion frequencies. J Med Entomol. 2002;39:78–83.CrossRefPubMed
39.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.CrossRefPubMedPubMedCentral
40.
go back to reference Gimnig JE, Vulule JM, Lo TQ, Kamau L, Kolczak MS, Phillips-Howard PA, et al. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am J Trop Med Hyg. 2003;68:16–22.PubMed Gimnig JE, Vulule JM, Lo TQ, Kamau L, Kolczak MS, Phillips-Howard PA, et al. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am J Trop Med Hyg. 2003;68:16–22.PubMed
41.
go back to reference Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, Beier JC. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc. 1993;9:260–3.PubMed Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, Beier JC. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc. 1993;9:260–3.PubMed
42.
go back to reference Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ. Comparison of sampling of anopheline mosquitoes by light trap and human-bait collections indoor in Bagamoyo, Tanzania. Med Vet Entomol. 1995;9:249–55.CrossRefPubMed Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ. Comparison of sampling of anopheline mosquitoes by light trap and human-bait collections indoor in Bagamoyo, Tanzania. Med Vet Entomol. 1995;9:249–55.CrossRefPubMed
43.
go back to reference Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, et al. Changing malaria prevalence on the Kenyan Coast since 1974: climate, drugs and vector control. PLoS ONE. 2015;10:e0128792.CrossRefPubMedPubMedCentral Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, et al. Changing malaria prevalence on the Kenyan Coast since 1974: climate, drugs and vector control. PLoS ONE. 2015;10:e0128792.CrossRefPubMedPubMedCentral
Metadata
Title
Status of insecticide resistance in malaria vectors in Kwale County, Coastal Kenya
Authors
Caroline W. Kiuru
Florence Awino Oyieke
Wolfgang Richard Mukabana
Joseph Mwangangi
Luna Kamau
Damaris Muhia-Matoke
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2156-6

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.