Skip to main content
Top
Published in:

Open Access 01-12-2017 | Review

Cancer nanomedicine: a review of recent success in drug delivery

Authors: Stephanie Tran, Peter-Joseph DeGiovanni, Brandon Piel, Prakash Rai

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Cancer continues to be one of the most difficult global healthcare problems. Although there is a large library of drugs that can be used in cancer treatment, the problem is selectively killing all the cancer cells while reducing collateral toxicity to healthy cells. There are several biological barriers to effective drug delivery in cancer such as renal, hepatic, or immune clearance. Nanoparticles loaded with drugs can be designed to overcome these biological barriers to improve efficacy while reducing morbidity. Nanomedicine has ushered in a new era for drug delivery by improving the therapeutic indices of the active pharmaceutical ingredients engineered within nanoparticles. First generation nanomedicines have received widespread clinical approval over the past two decades, from Doxil® (liposomal doxorubicin) in 1995 to Onivyde® (liposomal irinotecan) in 2015. This review highlights the biological barriers to effective drug delivery in cancer, emphasizing the need for nanoparticles for improving therapeutic outcomes. A summary of different nanoparticles used for drug delivery applications in cancer are presented. The review summarizes recent successes in cancer nanomedicine in the clinic. The clinical trials of Onivyde leading to its approval in 2015 by the Food and Drug Adminstration are highlighted as a case study in the recent clinical success of nanomedicine against cancer. Next generation nanomedicines need to be better targeted to specifically destroy cancerous tissue, but face several obstacles in their clinical development, including identification of appropriate biomarkers to target, scale-up of synthesis, and reproducible characterization. These hurdles need to be overcome through multidisciplinary collaborations across academia, pharmaceutical industry, and regulatory agencies in order to achieve the goal of eradicating cancer. This review discusses the current use of clinically approved nanomedicines, the investigation of nanomedicines in clinical trials, and the challenges that may hinder development of the nanomedicines for cancer treatment.
Literature
1.
go back to reference Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67(3):177–193CrossRefPubMed Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67(3):177–193CrossRefPubMed
2.
3.
go back to reference Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157CrossRefPubMed Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157CrossRefPubMed
4.
go back to reference Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917CrossRefPubMed Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917CrossRefPubMed
5.
go back to reference Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMed Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMed
6.
go back to reference Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med 12(1):81–103CrossRef Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med 12(1):81–103CrossRef
7.
go back to reference Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opini Drug Deliv 12(1):129–142CrossRef Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opini Drug Deliv 12(1):129–142CrossRef
8.
go back to reference Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL et al (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99(5):1342–1349CrossRefPubMedPubMedCentral Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL et al (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99(5):1342–1349CrossRefPubMedPubMedCentral
9.
go back to reference Locatelli E, Franchini MC (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1CrossRef Locatelli E, Franchini MC (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1CrossRef
10.
go back to reference Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522CrossRef Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522CrossRef
11.
go back to reference von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY (2017) Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol 35(2):159–171CrossRef von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY (2017) Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol 35(2):159–171CrossRef
12.
go back to reference Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316CrossRefPubMed Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316CrossRefPubMed
14.
go back to reference Yang J, Duan Y, Zhang X, Wang Y, Yu A (2016) Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. J Mater Chem B 4(22):3868–3873CrossRef Yang J, Duan Y, Zhang X, Wang Y, Yu A (2016) Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. J Mater Chem B 4(22):3868–3873CrossRef
15.
go back to reference Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352CrossRefPubMed Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352CrossRefPubMed
16.
go back to reference Chen K-J, Liang H-F, Chen H-L, Wang Y, Cheng P-Y, Liu H-L et al (2012) A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7(1):438–446CrossRefPubMed Chen K-J, Liang H-F, Chen H-L, Wang Y, Cheng P-Y, Liu H-L et al (2012) A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7(1):438–446CrossRefPubMed
17.
go back to reference Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190:352–370CrossRefPubMed Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190:352–370CrossRefPubMed
18.
go back to reference Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106CrossRefPubMed Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106CrossRefPubMed
19.
go back to reference Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep 3:2953CrossRefPubMedPubMedCentral Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep 3:2953CrossRefPubMedPubMedCentral
20.
go back to reference Konan-Kouakou YN, Boch R, Gurny R, Allemann E (2005) In vitro and in vivo activities of verteporfin-loaded nanoparticles. J Control Release 103(1):83–91CrossRefPubMed Konan-Kouakou YN, Boch R, Gurny R, Allemann E (2005) In vitro and in vivo activities of verteporfin-loaded nanoparticles. J Control Release 103(1):83–91CrossRefPubMed
21.
go back to reference Wang L, Shi C, Wright FA, Guo D, Wang X, Wang D et al (2017) Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Can Res 77(12):3293–3305CrossRef Wang L, Shi C, Wright FA, Guo D, Wang X, Wang D et al (2017) Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Can Res 77(12):3293–3305CrossRef
22.
go back to reference Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S et al (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7(2):994–1005CrossRefPubMedPubMedCentral Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S et al (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7(2):994–1005CrossRefPubMedPubMedCentral
23.
go back to reference Ananta JS, Paulmurugan R, Massoud TF (2016) Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by temozolomide: toward a “personalized” anti-microRNA therapy. Mol Pharm 13(9):3164–3175CrossRefPubMed Ananta JS, Paulmurugan R, Massoud TF (2016) Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by temozolomide: toward a “personalized” anti-microRNA therapy. Mol Pharm 13(9):3164–3175CrossRefPubMed
24.
go back to reference Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17(17):928–934CrossRefPubMed Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17(17):928–934CrossRefPubMed
25.
go back to reference Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S et al (2010) Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 62(11):1094–1124CrossRefPubMedPubMedCentral Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S et al (2010) Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 62(11):1094–1124CrossRefPubMedPubMedCentral
26.
go back to reference Garcia KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L et al (2014) Zwitterionic-coated “Stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529CrossRef Garcia KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L et al (2014) Zwitterionic-coated “Stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529CrossRef
27.
go back to reference Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99CrossRef Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99CrossRef
28.
go back to reference Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975CrossRefPubMedPubMedCentral Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975CrossRefPubMedPubMedCentral
29.
go back to reference Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532CrossRefPubMed Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532CrossRefPubMed
30.
go back to reference Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22(11):115101CrossRefPubMedPubMedCentral Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22(11):115101CrossRefPubMedPubMedCentral
31.
go back to reference Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9(1):121–134CrossRefPubMedPubMedCentral Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9(1):121–134CrossRefPubMedPubMedCentral
32.
go back to reference Yuan H, Takeuchi E, Salant DJ (2002) Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. Am J Physiol Renal Physiol 282(4):F585–F591CrossRefPubMed Yuan H, Takeuchi E, Salant DJ (2002) Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. Am J Physiol Renal Physiol 282(4):F585–F591CrossRefPubMed
33.
go back to reference Liu J, Yu M, Zhou C, Zheng J (2013) Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today 16(12):477–486CrossRef Liu J, Yu M, Zhou C, Zheng J (2013) Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today 16(12):477–486CrossRef
34.
go back to reference Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA et al (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci 107(27):12369–12374CrossRefPubMedPubMedCentral Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA et al (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci 107(27):12369–12374CrossRefPubMedPubMedCentral
35.
go back to reference Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109CrossRefPubMedPubMedCentral Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109CrossRefPubMedPubMedCentral
37.
go back to reference Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256CrossRefPubMed Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256CrossRefPubMed
38.
go back to reference Kreuter J (2013) Mechanism of polymeric nanoparticle-based drug transport across the blood–brain barrier (BBB). J Microencapsul 30(1):49–54CrossRefPubMed Kreuter J (2013) Mechanism of polymeric nanoparticle-based drug transport across the blood–brain barrier (BBB). J Microencapsul 30(1):49–54CrossRefPubMed
39.
go back to reference Michaelis K, Hoffmann M, Dreis S, Herbert E, Alyautdin R, Michaelis M et al (2006) Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317(3):1246–1253CrossRefPubMed Michaelis K, Hoffmann M, Dreis S, Herbert E, Alyautdin R, Michaelis M et al (2006) Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317(3):1246–1253CrossRefPubMed
40.
go back to reference Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q et al (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61CrossRefPubMed Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q et al (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61CrossRefPubMed
41.
go back to reference Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H et al (2007) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64(3):356–364CrossRefPubMed Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H et al (2007) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64(3):356–364CrossRefPubMed
42.
go back to reference Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R (2015) The effect of nanoparticle size on the probability to cross the blood–brain barrier: an in vitro endothelial cell model. J Nanobiotechnol 13(1):19CrossRef Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R (2015) The effect of nanoparticle size on the probability to cross the blood–brain barrier: an in vitro endothelial cell model. J Nanobiotechnol 13(1):19CrossRef
43.
go back to reference Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641CrossRefPubMed Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641CrossRefPubMed
44.
go back to reference ShankerSharma H, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):65–80CrossRef ShankerSharma H, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):65–80CrossRef
45.
go back to reference Xue Y, Wu J, Sun J (2012) Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214(2):91–98CrossRefPubMed Xue Y, Wu J, Sun J (2012) Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214(2):91–98CrossRefPubMed
46.
go back to reference Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951CrossRefPubMedPubMedCentral Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951CrossRefPubMedPubMedCentral
47.
go back to reference Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388CrossRefPubMedPubMedCentral Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388CrossRefPubMedPubMedCentral
48.
go back to reference Huang S, Shao K, Liu Y, Kuang Y, Li J, An S et al (2013) Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3):2860–2871CrossRefPubMed Huang S, Shao K, Liu Y, Kuang Y, Li J, An S et al (2013) Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3):2860–2871CrossRefPubMed
49.
go back to reference Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364
50.
go back to reference Alley SC, Okeley NM, Senter PD (2010) Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537CrossRefPubMed Alley SC, Okeley NM, Senter PD (2010) Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537CrossRefPubMed
51.
go back to reference Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13(3):235–244CrossRefPubMed Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13(3):235–244CrossRefPubMed
52.
go back to reference Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev ™ Ther Drug Carrier Syst 26(6):523–580CrossRef Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev ™ Ther Drug Carrier Syst 26(6):523–580CrossRef
53.
go back to reference Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293CrossRefPubMed Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293CrossRefPubMed
55.
go back to reference Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J et al (2013) RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 10(9):3366–3374CrossRefPubMedPubMedCentral Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J et al (2013) RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 10(9):3366–3374CrossRefPubMedPubMedCentral
56.
go back to reference Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef
57.
go back to reference Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493CrossRefPubMed Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493CrossRefPubMed
58.
go back to reference Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 11:5163CrossRef Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 11:5163CrossRef
59.
go back to reference Rao A, Richter E, Bandow S, Chase B, Eklund P, Williams K et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275(5297):187–191CrossRefPubMed Rao A, Richter E, Bandow S, Chase B, Eklund P, Williams K et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275(5297):187–191CrossRefPubMed
60.
go back to reference Almajhdi F, Fouad H, Khalil K, Awad H, Mohamed S, Elsarnagawy T et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci 25(4):1045–1053 Almajhdi F, Fouad H, Khalil K, Awad H, Mohamed S, Elsarnagawy T et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci 25(4):1045–1053
61.
go back to reference Elbaz NM, Ziko L, Siam R, Mamdouh W (2016) Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep 6:30729CrossRefPubMedPubMedCentral Elbaz NM, Ziko L, Siam R, Mamdouh W (2016) Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep 6:30729CrossRefPubMedPubMedCentral
62.
go back to reference Hsiang Y-H, Hertzberg R, Hecht S, Liu L (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27):14873–14878PubMed Hsiang Y-H, Hertzberg R, Hecht S, Liu L (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27):14873–14878PubMed
63.
go back to reference Hsiang Y-H, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Can Res 49(18):5077–5082 Hsiang Y-H, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Can Res 49(18):5077–5082
64.
go back to reference Chang T, Shiah H, Yang C, Yeh K, Cheng A, Shen B et al (2015) Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother Pharmacol 75(3):579CrossRefPubMedPubMedCentral Chang T, Shiah H, Yang C, Yeh K, Cheng A, Shen B et al (2015) Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother Pharmacol 75(3):579CrossRefPubMedPubMedCentral
65.
go back to reference Zamboni WC, Jung LL, Egorin MJ, Hamburger DR, Joseph E, Jin R et al (2005) Relationship between plasma exposure of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite and antitumor response in mice bearing human colon carcinoma xenografts. Clin Cancer Res 11(13):4867–4874CrossRefPubMed Zamboni WC, Jung LL, Egorin MJ, Hamburger DR, Joseph E, Jin R et al (2005) Relationship between plasma exposure of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite and antitumor response in mice bearing human colon carcinoma xenografts. Clin Cancer Res 11(13):4867–4874CrossRefPubMed
66.
go back to reference Carnevale J, Ko AH (2016) MM-398 (nanoliposomal irinotecan): emergence of a novel therapy for the treatment of advanced pancreatic cancer. Future Oncol 12(4):453–464CrossRefPubMed Carnevale J, Ko AH (2016) MM-398 (nanoliposomal irinotecan): emergence of a novel therapy for the treatment of advanced pancreatic cancer. Future Oncol 12(4):453–464CrossRefPubMed
67.
go back to reference Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB (2006) Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Can Res 66(6):3271–3277CrossRef Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB (2006) Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Can Res 66(6):3271–3277CrossRef
68.
go back to reference Chiang N-J, Chao T-Y, Hsieh R-K, Wang C-H, Wang Y-W, Yeh CG et al (2016) A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors. BMC Cancer 16(1):907CrossRefPubMedPubMedCentral Chiang N-J, Chao T-Y, Hsieh R-K, Wang C-H, Wang Y-W, Yeh CG et al (2016) A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors. BMC Cancer 16(1):907CrossRefPubMedPubMedCentral
69.
go back to reference Roy A, Park S, Cunningham D, Kang Y, Chao Y, Chen L et al (2013) A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro–oesophageal junction adenocarcinoma. Ann Oncol 24(6):1567–1573CrossRefPubMed Roy A, Park S, Cunningham D, Kang Y, Chao Y, Chen L et al (2013) A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro–oesophageal junction adenocarcinoma. Ann Oncol 24(6):1567–1573CrossRefPubMed
74.
go back to reference Pan X, Lee R (2017) Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 336(2):276–283CrossRef Pan X, Lee R (2017) Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 336(2):276–283CrossRef
76.
go back to reference Ko A, Tempero M, Shan Y, Su W, Lin Y, Dito E et al (2013) A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 109(4):920–925CrossRefPubMedPubMedCentral Ko A, Tempero M, Shan Y, Su W, Lin Y, Dito E et al (2013) A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 109(4):920–925CrossRefPubMedPubMedCentral
77.
go back to reference Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G et al (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387(10018):545–557CrossRefPubMed Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G et al (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387(10018):545–557CrossRefPubMed
78.
go back to reference Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong K-S, Veech RL et al (1994) Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res 54(15):4011–4016PubMed Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong K-S, Veech RL et al (1994) Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res 54(15):4011–4016PubMed
80.
go back to reference Tinkle S, McNeil SE, Mϋhlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann NY Acad Sci 1313:35–56CrossRefPubMed Tinkle S, McNeil SE, Mϋhlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann NY Acad Sci 1313:35–56CrossRefPubMed
81.
go back to reference Ma MK, Zamboni WC, Radomski KM, Furman WL, Santana VM, Houghton PJ et al (2000) Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res 6(3):813–819PubMed Ma MK, Zamboni WC, Radomski KM, Furman WL, Santana VM, Houghton PJ et al (2000) Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res 6(3):813–819PubMed
82.
go back to reference Cainelli F, Vallone A (2009) Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi’s sarcoma. Biologics 3:385PubMedPubMedCentral Cainelli F, Vallone A (2009) Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi’s sarcoma. Biologics 3:385PubMedPubMedCentral
83.
go back to reference Chen L, Shiah H, Chao T, Hsieh R, Chen G, Chang J et al (2010) Phase I study of liposome irinotecan (PEP02) in combination with weekly infusion of 5-FU/LV in advanced solid tumors. J Clin Oncol 28(15):e13024CrossRef Chen L, Shiah H, Chao T, Hsieh R, Chen G, Chang J et al (2010) Phase I study of liposome irinotecan (PEP02) in combination with weekly infusion of 5-FU/LV in advanced solid tumors. J Clin Oncol 28(15):e13024CrossRef
84.
go back to reference Conner JB, Bawa R, Nicholas M, Weinstein V (2014) Copaxone® in the era of biosimilars and nanosimilars. Handbook of Clinical Nanomedicine-From Bench too Bedside. Pan Stanford Publishing Pte Ltd., Singapore, pp 1–31 Conner JB, Bawa R, Nicholas M, Weinstein V (2014) Copaxone® in the era of biosimilars and nanosimilars. Handbook of Clinical Nanomedicine-From Bench too Bedside. Pan Stanford Publishing Pte Ltd., Singapore, pp 1–31
85.
go back to reference Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716CrossRefPubMed Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716CrossRefPubMed
86.
go back to reference Ledet G, Mandal TK (2012) Nanomedicine: emerging therapeutics for the 21st century. US Pharm 37(3):7–11 Ledet G, Mandal TK (2012) Nanomedicine: emerging therapeutics for the 21st century. US Pharm 37(3):7–11
87.
go back to reference Silverman JA, Deitcher SR (2013) Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71(3):555–564CrossRefPubMed Silverman JA, Deitcher SR (2013) Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71(3):555–564CrossRefPubMed
88.
go back to reference Bayever E, Dhindsa N, Fitzgerald JB, Laivins P, Moyo V, Niyikiza C (2013) Méthodes de traitement du cancer du pancréas à l’aide de polythérapies comportant l’irinotécan en liposome. Patent number WO2013188586 A1 Bayever E, Dhindsa N, Fitzgerald JB, Laivins P, Moyo V, Niyikiza C (2013) Méthodes de traitement du cancer du pancréas à l’aide de polythérapies comportant l’irinotécan en liposome. Patent number WO2013188586 A1
97.
go back to reference Young C, Schluep T, Hwang J, Eliasof S (2011) CRLX101 (formerly IT-101)—a novel nanopharmaceutical of camptothecin in clinical development. Current Bioactive Compd 7(1):8–14CrossRef Young C, Schluep T, Hwang J, Eliasof S (2011) CRLX101 (formerly IT-101)—a novel nanopharmaceutical of camptothecin in clinical development. Current Bioactive Compd 7(1):8–14CrossRef
109.
go back to reference Pan X, Lee RJ (2007) Construction of anti-EGFR immunoliposomes via folate–folate binding protein affinity. Int J Pharm 336(2):276–283CrossRefPubMed Pan X, Lee RJ (2007) Construction of anti-EGFR immunoliposomes via folate–folate binding protein affinity. Int J Pharm 336(2):276–283CrossRefPubMed
111.
go back to reference Li C, Zhao X, Deng C, Wang C, Wei N, Cui J (2014) Pegylated liposomal mitoxantrone is more therapeutically active than mitoxantrone in L1210 ascitic tumor and exhibits dose-dependent activity saturation effect. Int J Pharm 460(1):165–172CrossRefPubMed Li C, Zhao X, Deng C, Wang C, Wei N, Cui J (2014) Pegylated liposomal mitoxantrone is more therapeutically active than mitoxantrone in L1210 ascitic tumor and exhibits dose-dependent activity saturation effect. Int J Pharm 460(1):165–172CrossRefPubMed
112.
go back to reference Li C, Cui J, Wang C, Li Y, Zhang H, Wang J, Li Y, Zhang L, Zhang L, Guo W, Wang Y (2008) Encapsulation of mitoxantrone into pegylated SUVs enhances its antineoplastic efficacy. Eur J Pharm Biopharm 70(2):657–665CrossRefPubMed Li C, Cui J, Wang C, Li Y, Zhang H, Wang J, Li Y, Zhang L, Zhang L, Guo W, Wang Y (2008) Encapsulation of mitoxantrone into pegylated SUVs enhances its antineoplastic efficacy. Eur J Pharm Biopharm 70(2):657–665CrossRefPubMed
115.
go back to reference Cortes JE, Goldberg SL, Feldman EJ, Rizzeri DA, Hogge DE, Larson M et al (2015) Phase II, multicenter, randomized trial of CPX-351 (cytarabine: daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 121(2):234–242CrossRefPubMed Cortes JE, Goldberg SL, Feldman EJ, Rizzeri DA, Hogge DE, Larson M et al (2015) Phase II, multicenter, randomized trial of CPX-351 (cytarabine: daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 121(2):234–242CrossRefPubMed
117.
go back to reference Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103CrossRefPubMedPubMedCentral Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103CrossRefPubMedPubMedCentral
127.
go back to reference Young C, Schluep T, Hwang J, Eliasof S (2011) CRLX101 (formerly IT-101) a novel nanopharmaceutical of camptothecin in clinical development. Curr Bioact Compd 7(1):8–14CrossRefPubMedPubMedCentral Young C, Schluep T, Hwang J, Eliasof S (2011) CRLX101 (formerly IT-101) a novel nanopharmaceutical of camptothecin in clinical development. Curr Bioact Compd 7(1):8–14CrossRefPubMedPubMedCentral
Metadata
Title
Cancer nanomedicine: a review of recent success in drug delivery
Authors
Stephanie Tran
Peter-Joseph DeGiovanni
Brandon Piel
Prakash Rai
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0175-0