Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

01-12-2014

Role of MTA2 in human cancer

Authors: Kyle R. Covington, Suzanne A. W. Fuqua

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

Metastasis is the ultimate cause of death for most cancer patients. While many mechanisms have been delineated for regulation of growth and tumor initiation of the primary tumor, very little is known about the process of metastasis. Metastasis requires dynamic alteration of cellular processes in order for cells to disseminate from the primary tumor to distant sites. These alterations often involve dramatic changes in the regulation of cytoskeletal and cell-environment interactions. Furthermore, controlled refinement of these interactions requires feedback to regulatory networks in the nucleus. MTA2 is a member of the metastasis tumor-associated family of transcriptional regulators and is a central component of the nucleosome remodeling and histone deacetylation complex. MTA2 acts as a central hub for cytoskeletal organization and transcription and provides a link between nuclear and cytoskeletal organization. We will focus on MTA2 in this chapter, especially its role in breast cancer metastasis.
Literature
2.
go back to reference Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767. doi:10.1073/pnas.0805139105.PubMedCentralPubMedCrossRef Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767. doi:10.​1073/​pnas.​0805139105.PubMedCentralPubMedCrossRef
3.
go back to reference Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., & Han, D. K. (2009). Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Science Signaling, 2(84), ra46. doi:10.1126/scisignal.2000007.PubMedCrossRef Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., & Han, D. K. (2009). Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Science Signaling, 2(84), ra46. doi:10.​1126/​scisignal.​2000007.PubMedCrossRef
4.
go back to reference Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. doi:10.1126/scisignal.2000475.PubMedCrossRef Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. doi:10.​1126/​scisignal.​2000475.PubMedCrossRef
5.
go back to reference Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., & Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.1126/scisignal.2001570.PubMedCrossRef Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., & Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.​1126/​scisignal.​2001570.PubMedCrossRef
6.
go back to reference Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840. doi:10.1126/science.1175371.CrossRef Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840. doi:10.​1126/​science.​1175371.CrossRef
7.
go back to reference Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef
8.
go back to reference Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews. Molecular Cell Biology, 5(2), 158–163. doi:10.1038/nrm1314.PubMedCrossRef Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews. Molecular Cell Biology, 5(2), 158–163. doi:10.​1038/​nrm1314.PubMedCrossRef
9.
go back to reference Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed
10.
go back to reference Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge, England), 126(11), 2483–2494. Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge, England), 126(11), 2483–2494.
11.
12.
go back to reference Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., & Fuqua, S. A. W. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035. doi:10.1210/me.2005-0063.PubMedCrossRef Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., & Fuqua, S. A. W. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035. doi:10.​1210/​me.​2005-0063.PubMedCrossRef
13.
go back to reference Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30(5 Suppl 16), 30–37.CrossRef Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30(5 Suppl 16), 30–37.CrossRef
16.
go back to reference Moon, H.-E., Cheon, H., Chun, K.-H., Lee, S. K., Kim, Y.-S., Jung, B.-K., & Lee, M.-S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed Moon, H.-E., Cheon, H., Chun, K.-H., Lee, S. K., Kim, Y.-S., Jung, B.-K., & Lee, M.-S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed
17.
18.
go back to reference Barone, I., Brusco, L., Gu, G., Selever, J., Beyer, A., Covington, K. R., & Fuqua, S. A. W. (2011). Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. Journal of the National Cancer Institute, 103(7), 538–552. doi:10.1093/jnci/djr058.PubMedCentralPubMedCrossRef Barone, I., Brusco, L., Gu, G., Selever, J., Beyer, A., Covington, K. R., & Fuqua, S. A. W. (2011). Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. Journal of the National Cancer Institute, 103(7), 538–552. doi:10.​1093/​jnci/​djr058.PubMedCentralPubMedCrossRef
19.
go back to reference Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., & Fuqua, S. A. W. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment. doi:10.1007/s10549-013-2709-5.PubMed Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., & Fuqua, S. A. W. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-013-2709-5.PubMed
20.
go back to reference Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef
21.
go back to reference Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949. doi:10.1210/me.2004-0258.PubMedCrossRef Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949. doi:10.​1210/​me.​2004-0258.PubMedCrossRef
22.
go back to reference Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486. doi:10.1158/1078-0432.CCR-05-1519.PubMedCrossRef Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486. doi:10.​1158/​1078-0432.​CCR-05-1519.PubMedCrossRef
23.
go back to reference Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50(19), 6130–6138.PubMed Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50(19), 6130–6138.PubMed
24.
go back to reference Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.PubMed Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.PubMed
26.
go back to reference Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed
27.
go back to reference Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef
28.
go back to reference Buyse, M., Loi, S., Veer, L., van’t Viale, G., Delorenzi, M., Glas, A. M., & Consortium, T. R. A. N. S. B. I. G. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98(17), 1183–1192.PubMedCrossRef Buyse, M., Loi, S., Veer, L., van’t Viale, G., Delorenzi, M., Glas, A. M., & Consortium, T. R. A. N. S. B. I. G. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98(17), 1183–1192.PubMedCrossRef
29.
go back to reference Sabatier, R., Finetti, P., Cervera, N., Lambaudie, E., Esterni, B., Mamessier, E., & Bertucci, F. (2011). A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Research and Treatment, 126(2), 407–420. doi:10.1007/s10549-010-0897-9.PubMedCrossRef Sabatier, R., Finetti, P., Cervera, N., Lambaudie, E., Esterni, B., Mamessier, E., & Bertucci, F. (2011). A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Research and Treatment, 126(2), 407–420. doi:10.​1007/​s10549-010-0897-9.PubMedCrossRef
30.
go back to reference Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., & Thompson, E. W. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi:10.1007/s10911-010-9175-z.PubMedCrossRef Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., & Thompson, E. W. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi:10.​1007/​s10911-010-9175-z.PubMedCrossRef
31.
go back to reference Alves, C. C., Carneiro, F., Hoefler, H., & Becker, K.-F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience, 14, 3035–3050.CrossRef Alves, C. C., Carneiro, F., Hoefler, H., & Becker, K.-F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience, 14, 3035–3050.CrossRef
33.
go back to reference Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., & Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 160(2), 267–277. doi:10.1083/jcb.200209006.PubMedCentralPubMedCrossRef Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., & Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 160(2), 267–277. doi:10.​1083/​jcb.​200209006.PubMedCentralPubMedCrossRef
34.
go back to reference Carr, H. S., Zuo, Y., Oh, W., & Frost, J. A. (2013). Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Molecular and Cellular Biology, 33(14), 2773–2786. doi:10.1128/MCB.00175-13.PubMedCentralPubMedCrossRef Carr, H. S., Zuo, Y., Oh, W., & Frost, J. A. (2013). Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Molecular and Cellular Biology, 33(14), 2773–2786. doi:10.​1128/​MCB.​00175-13.PubMedCentralPubMedCrossRef
40.
go back to reference Schackmann, R. C. J., van Amersfoort, M., Haarhuis, J. H. I., Vlug, E. J., Halim, V. A., Roodhart, J. M. L., & Derksen, P. W. B. (2011). Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. Journal of Clinical Investigation, 121(8), 3176–3188. doi:10.1172/JCI41695.PubMedCentralPubMedCrossRef Schackmann, R. C. J., van Amersfoort, M., Haarhuis, J. H. I., Vlug, E. J., Halim, V. A., Roodhart, J. M. L., & Derksen, P. W. B. (2011). Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. Journal of Clinical Investigation, 121(8), 3176–3188. doi:10.​1172/​JCI41695.PubMedCentralPubMedCrossRef
42.
go back to reference (EBCTCG), E. B. C. T. C. G, Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., & Peto, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784. doi:10.1016/S0140-6736(11)60993-8.PubMedCrossRef (EBCTCG), E. B. C. T. C. G, Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., & Peto, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784. doi:10.​1016/​S0140-6736(11)60993-8.PubMedCrossRef
44.
go back to reference Heyn, C., Ronald, J. A., Ramadan, S. S., Snir, J. A., Barry, A. M., MacKenzie, L. T., & Foster, P. J. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56(5), 1001–1010. doi:10.1002/mrm.21029.PubMedCrossRef Heyn, C., Ronald, J. A., Ramadan, S. S., Snir, J. A., Barry, A. M., MacKenzie, L. T., & Foster, P. J. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56(5), 1001–1010. doi:10.​1002/​mrm.​21029.PubMedCrossRef
45.
go back to reference Riethdorf, S., & Pantel, K. (2008). Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology, 75(2), 140–148. doi:10.1159/000123852.PubMedCrossRef Riethdorf, S., & Pantel, K. (2008). Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology, 75(2), 140–148. doi:10.​1159/​000123852.PubMedCrossRef
46.
go back to reference Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., & Segall, J. E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 143–152. doi:10.1007/s10911-007-9046-4.PubMedCrossRef Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., & Segall, J. E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 143–152. doi:10.​1007/​s10911-007-9046-4.PubMedCrossRef
49.
go back to reference Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545–554. doi:10.1002/cm.20472.CrossRef Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545–554. doi:10.​1002/​cm.​20472.CrossRef
50.
go back to reference Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRef Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRef
52.
go back to reference Vansteenkiste, J., Cutsem, E. V., Dumez, H., Chen, C., Ricker, J. L., Randolph, S. S., & Schöffski, P. (2008). Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs, 26(5), 483–488. doi:10.1007/s10637-008-9131-6.PubMedCrossRef Vansteenkiste, J., Cutsem, E. V., Dumez, H., Chen, C., Ricker, J. L., Randolph, S. S., & Schöffski, P. (2008). Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs, 26(5), 483–488. doi:10.​1007/​s10637-008-9131-6.PubMedCrossRef
54.
go back to reference Liu, G. J., Wang, Z. J., Wang, Y. F., Xu, L. L., Wang, X. L., Liu, Y., & Zeng, Y. J. (2012). Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. European Journal of Clinical Pharmacology, 68(2), 131–139. doi:10.1007/s00228-011-1100-x.PubMedCrossRef Liu, G. J., Wang, Z. J., Wang, Y. F., Xu, L. L., Wang, X. L., Liu, Y., & Zeng, Y. J. (2012). Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. European Journal of Clinical Pharmacology, 68(2), 131–139. doi:10.​1007/​s00228-011-1100-x.PubMedCrossRef
55.
go back to reference Ying, H., Biroc, S. L., Li, W.-W., Alicke, B., Xuan, J.-A., Pagila, R., & Dinter, H. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular Cancer Therapeutics, 5(9), 2158–2164. doi:10.1158/1535-7163.MCT-05-0440.PubMedCrossRef Ying, H., Biroc, S. L., Li, W.-W., Alicke, B., Xuan, J.-A., Pagila, R., & Dinter, H. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular Cancer Therapeutics, 5(9), 2158–2164. doi:10.​1158/​1535-7163.​MCT-05-0440.PubMedCrossRef
Metadata
Title
Role of MTA2 in human cancer
Authors
Kyle R. Covington
Suzanne A. W. Fuqua
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9518-0

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine