Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

Open Access 01-06-2009

Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion

Authors: Shuh Narumiya, Masahiro Tanji, Toshimasa Ishizaki

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

The Rho subgroup of the Rho GTPases consisting of RhoA, RhoB and RhoC induces a specific type of actin cytoskeleton and carry out a variety of functions in the cell. mDia and ROCK are downstream effectors of Rho mediating Rho action on the actin cytoskeleton; mDia produces actin filaments by nucleation and polymerization and ROCK activate myosin to cross-link them for induction of actomyosin bundles and contractility. mDia is potentially linked to Rac activation and membrane ruffle formation through c-Src-induced phosphorylation of focal adhesion proteins, and ROCK antagonizes this mDia action. Thus, cell morphogenesis, adhesion, and motility can be determined by the balance between mDia and ROCK activities. Though they are not oncogenes by themselves, overexpression of RhoA and RhoC are often found in clinical cancers, and RhoC has been repeatedly identified as a gene associated with metastasis. The Rho-ROCK pathway is implicated in Ras-mediated transformation, the amoeboid movement of tumor cells in the three-dimensional matrix, and transmigration of tumor cells through the mesothelial monolayer. On the other hand, the Rho-mDia1 pathway is implicated in Src-mediated remodeling of focal adhesions and migration of tumor cells. There is also an indication that the Rho pathway other than ROCK is involved in Src-mediated induction of podosome and regulation of matrix metalloproteases. Thus, Rho mediates various phenotypes of malignant transformation by Ras and Src through its effectors, ROCK and mDia.
Literature
1.
go back to reference Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef
2.
3.
go back to reference Zheng, Y. (2001). Dbl family guanine nucleotide exchange factors. Trends in Biochemical Sciences, 26, 724–732.PubMedCrossRef Zheng, Y. (2001). Dbl family guanine nucleotide exchange factors. Trends in Biochemical Sciences, 26, 724–732.PubMedCrossRef
4.
go back to reference Moon, S. Y., & Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends in Cell Biology, 13, 13–22.PubMedCrossRef Moon, S. Y., & Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends in Cell Biology, 13, 13–22.PubMedCrossRef
5.
go back to reference Leung, T., Manser, E., Tan, L., & Lim, L. (1995). A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. Journal of Biological Chemistry, 270, 29051–29054.PubMedCrossRef Leung, T., Manser, E., Tan, L., & Lim, L. (1995). A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. Journal of Biological Chemistry, 270, 29051–29054.PubMedCrossRef
6.
go back to reference Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A., et al. (1996). The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO Journal, 15, 1885–1893.PubMed Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A., et al. (1996). The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO Journal, 15, 1885–1893.PubMed
7.
go back to reference Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO Journal, 15, 2208–2216.PubMed Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO Journal, 15, 2208–2216.PubMed
8.
go back to reference Watanabe, N., Madaule, P., Reid, T., Ishizaki, T., Watanabe, G., Kakizuka, A., et al. (1997). p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO Journal, 16, 3044–3056.PubMedCrossRef Watanabe, N., Madaule, P., Reid, T., Ishizaki, T., Watanabe, G., Kakizuka, A., et al. (1997). p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO Journal, 16, 3044–3056.PubMedCrossRef
9.
go back to reference Goode, B. L., & Eck, M. J. (2007). Mechanism and function of formins in the control of actin assembly. Annual Reviews of Biochemical, 76, 593–627.CrossRef Goode, B. L., & Eck, M. J. (2007). Mechanism and function of formins in the control of actin assembly. Annual Reviews of Biochemical, 76, 593–627.CrossRef
10.
go back to reference Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology, 4, 446–456.PubMedCrossRef Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology, 4, 446–456.PubMedCrossRef
11.
go back to reference Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273, 245–248.PubMedCrossRef Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273, 245–248.PubMedCrossRef
12.
go back to reference Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389, 990–994.PubMedCrossRef Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389, 990–994.PubMedCrossRef
13.
go back to reference Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., et al. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). Journal of Biological Chemistry, 271, 20246–20249.PubMedCrossRef Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., et al. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). Journal of Biological Chemistry, 271, 20246–20249.PubMedCrossRef
14.
go back to reference Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., et al. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 285, 895–898.PubMedCrossRef Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., et al. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 285, 895–898.PubMedCrossRef
15.
go back to reference Narumiya, S., Ishizkai, T., & Uehata, M. (2000). Use and properties of ROCK-specific inhibitor. Methods Enzymol, 325, 273–284.PubMedCrossRef Narumiya, S., Ishizkai, T., & Uehata, M. (2000). Use and properties of ROCK-specific inhibitor. Methods Enzymol, 325, 273–284.PubMedCrossRef
16.
go back to reference Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biology, 1, 136–143.PubMedCrossRef Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biology, 1, 136–143.PubMedCrossRef
17.
go back to reference Kosako, H., Yoshida, T., Matsumura, F., Ishizaki, T., Narumiya, S., & Inagaki, M. (2000). Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene, 19, 6059–6064.PubMedCrossRef Kosako, H., Yoshida, T., Matsumura, F., Ishizaki, T., Narumiya, S., & Inagaki, M. (2000). Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene, 19, 6059–6064.PubMedCrossRef
18.
go back to reference Watanabe, S., Ando, Y., Yasuda, S., Hosoya, H., Watanabe, N., Ishizaki, T., et al. (2008). mDia2 Induces the Actin Scaffold for the Contractile Ring and Stabilizes Its Position during Cytokinesis in NIH 3T3 Cells. Molecular Biology of the Cell, 19, 2328–2338.PubMedCrossRef Watanabe, S., Ando, Y., Yasuda, S., Hosoya, H., Watanabe, N., Ishizaki, T., et al. (2008). mDia2 Induces the Actin Scaffold for the Contractile Ring and Stabilizes Its Position during Cytokinesis in NIH 3T3 Cells. Molecular Biology of the Cell, 19, 2328–2338.PubMedCrossRef
19.
go back to reference Ishizaki, T., Naito, M., Fujisawa, K., Maekawa, M., Watanabe, N., Saito, Y., et al. (1997). p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Letters, 404, 118–124.PubMedCrossRef Ishizaki, T., Naito, M., Fujisawa, K., Maekawa, M., Watanabe, N., Saito, Y., et al. (1997). p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Letters, 404, 118–124.PubMedCrossRef
20.
go back to reference Tsuji, T., Ishizaki, T., Okamoto, M., Higashida, C., Kimura, K., Furuyashiki, T., et al. (2002). ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. Journal of Cell Biology, 157, 819–830.PubMedCrossRef Tsuji, T., Ishizaki, T., Okamoto, M., Higashida, C., Kimura, K., Furuyashiki, T., et al. (2002). ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. Journal of Cell Biology, 157, 819–830.PubMedCrossRef
21.
go back to reference Morii, N., & Narumiya, S. (1995). Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADP-ribosylation. Methods Enzymol, 256, 196–206.PubMedCrossRef Morii, N., & Narumiya, S. (1995). Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADP-ribosylation. Methods Enzymol, 256, 196–206.PubMedCrossRef
22.
go back to reference Sahai, E., & Marshall, C. J. (2002). ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biology, 4, 408–415.PubMedCrossRef Sahai, E., & Marshall, C. J. (2002). ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biology, 4, 408–415.PubMedCrossRef
23.
go back to reference Arakawa, Y., Bito, H., Furuyashiki, T., Tsuji, T., Takemoto-Kimura, S., Kimura, K., et al. (2003). Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. Journal of Cell Biology, 161, 381–391.PubMedCrossRef Arakawa, Y., Bito, H., Furuyashiki, T., Tsuji, T., Takemoto-Kimura, S., Kimura, K., et al. (2003). Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. Journal of Cell Biology, 161, 381–391.PubMedCrossRef
24.
go back to reference Blumenstein, L., & Ahmadian, M. R. (2004). Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation. Journal of Biological Chemistry, 279, 53419–53426.PubMedCrossRef Blumenstein, L., & Ahmadian, M. R. (2004). Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation. Journal of Biological Chemistry, 279, 53419–53426.PubMedCrossRef
25.
go back to reference Rose, R., Weyand, M., Lammers, M., Ishizaki, T., Ahmadian, M. R., & Wittinghofer, A. (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature, 435, 513–518.PubMedCrossRef Rose, R., Weyand, M., Lammers, M., Ishizaki, T., Ahmadian, M. R., & Wittinghofer, A. (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature, 435, 513–518.PubMedCrossRef
26.
go back to reference Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. Journal of Cell Biology, 144, 1235–1244.PubMedCrossRef Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. Journal of Cell Biology, 144, 1235–1244.PubMedCrossRef
27.
go back to reference Allen, W. E., Zicha, D., Ridley, A. J., & Jones, G. E. (1998). A role for Cdc42 in macrophage chemotaxis. Journal of Cell Biology, 141, 1147–1157.PubMedCrossRef Allen, W. E., Zicha, D., Ridley, A. J., & Jones, G. E. (1998). A role for Cdc42 in macrophage chemotaxis. Journal of Cell Biology, 141, 1147–1157.PubMedCrossRef
28.
go back to reference Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302, 1704–1709.PubMedCrossRef Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302, 1704–1709.PubMedCrossRef
29.
go back to reference Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., & Matsuda, M. (2002). Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Molecular and Cellular Biology, 22, 6582–6591.PubMedCrossRef Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., & Matsuda, M. (2002). Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Molecular and Cellular Biology, 22, 6582–6591.PubMedCrossRef
30.
go back to reference Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC. Cell, 106, 489–498.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC. Cell, 106, 489–498.PubMedCrossRef
31.
go back to reference Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMedCrossRef
32.
go back to reference Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell, 121, 451–463.PubMedCrossRef Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell, 121, 451–463.PubMedCrossRef
33.
go back to reference Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., & Hahn, K. M. (2000). Localized Rac activation dynamics visualized in living cells. Science, 290, 333–337.PubMedCrossRef Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., & Hahn, K. M. (2000). Localized Rac activation dynamics visualized in living cells. Science, 290, 333–337.PubMedCrossRef
34.
35.
go back to reference Worthylake, R. A., Lemoine, S., Watson, J. M., & Burridge, K. (2001). RhoA is required for monocyte tail retraction during transendothelial migration. Journal of Cell Biology, 154, 147–160.PubMedCrossRef Worthylake, R. A., Lemoine, S., Watson, J. M., & Burridge, K. (2001). RhoA is required for monocyte tail retraction during transendothelial migration. Journal of Cell Biology, 154, 147–160.PubMedCrossRef
36.
go back to reference Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T., & Sasada, M. (2002). Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Experimental Cell Research, 278, 112–122.PubMedCrossRef Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T., & Sasada, M. (2002). Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Experimental Cell Research, 278, 112–122.PubMedCrossRef
37.
go back to reference Worthylake, R. A., & Burridge, K. (2003). RhoA and ROCK promote migration by limiting membrane protrusions. Journal of Biological Chemistry, 278, 13578–13584.PubMedCrossRef Worthylake, R. A., & Burridge, K. (2003). RhoA and ROCK promote migration by limiting membrane protrusions. Journal of Biological Chemistry, 278, 13578–13584.PubMedCrossRef
38.
go back to reference Goulimari, P., Kitzing, T. M., Knieling, H., Brandt, D. T., Offermanns, S., & Grosse, R. (2005). Gα12/13 is essential for directed cell migration and localized Rho-Dia1 function. Journal of Biological Chemistry, 280, 42242–42251.PubMedCrossRef Goulimari, P., Kitzing, T. M., Knieling, H., Brandt, D. T., Offermanns, S., & Grosse, R. (2005). Gα12/13 is essential for directed cell migration and localized Rho-Dia1 function. Journal of Biological Chemistry, 280, 42242–42251.PubMedCrossRef
39.
go back to reference Fukuhara, S., Chikumi, H., & Gutkind, J. S. (2001). RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene, 20, 1661–1668.PubMedCrossRef Fukuhara, S., Chikumi, H., & Gutkind, J. S. (2001). RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene, 20, 1661–1668.PubMedCrossRef
40.
go back to reference Yamana, N., Arakawa, Y., Nishino, T., Kurokawa, K., Tanji, M., Itoh, R. E., et al. (2006). The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Molecular and Cellular Biology, 26, 6844–6858.PubMedCrossRef Yamana, N., Arakawa, Y., Nishino, T., Kurokawa, K., Tanji, M., Itoh, R. E., et al. (2006). The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Molecular and Cellular Biology, 26, 6844–6858.PubMedCrossRef
41.
go back to reference Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., et al. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology, 6, 154–161.PubMedCrossRef Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., et al. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology, 6, 154–161.PubMedCrossRef
42.
go back to reference Arthur, W. T., Petch, L. A., & Burridge, K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology, 10, 719–722.PubMedCrossRef Arthur, W. T., Petch, L. A., & Burridge, K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology, 10, 719–722.PubMedCrossRef
43.
go back to reference Arthur, W. T., & Burridge, K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the Cell, 12, 2711–2720.PubMed Arthur, W. T., & Burridge, K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the Cell, 12, 2711–2720.PubMed
44.
go back to reference Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMedCrossRef Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMedCrossRef
45.
46.
go back to reference Suwa, H., Ohshio, G., Imamura, T., Watanabe, G., Arii, S., Imamura, M., et al. (1998). Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. British Journal of Cancer, 77, 147–152.PubMed Suwa, H., Ohshio, G., Imamura, T., Watanabe, G., Arii, S., Imamura, M., et al. (1998). Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. British Journal of Cancer, 77, 147–152.PubMed
47.
go back to reference Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef
48.
go back to reference Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.PubMedCrossRef Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.PubMedCrossRef
49.
go back to reference Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21rho proteins. Journal of Cell Biology, 119, 617–627.PubMedCrossRef Adamson, P., Paterson, H. F., & Hall, A. (1992). Intracellular localization of the P21rho proteins. Journal of Cell Biology, 119, 617–627.PubMedCrossRef
50.
go back to reference van Golen, K. L., Wu, Z. F., Qiao, X. T., Bao, L., & Merajver, S. D. (2000). RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia, 2, 418–425.PubMedCrossRef van Golen, K. L., Wu, Z. F., Qiao, X. T., Bao, L., & Merajver, S. D. (2000). RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia, 2, 418–425.PubMedCrossRef
51.
go back to reference Yoshioka, K., Imamura, F., Shinkai, K., Miyoshi, J., Ogawa, H., Mukai, M., et al. (1995). Participation of rhop21 in serum-dependent invasion by rat ascites hepatoma cells. FEBS Letter, 372, 25–28.CrossRef Yoshioka, K., Imamura, F., Shinkai, K., Miyoshi, J., Ogawa, H., Mukai, M., et al. (1995). Participation of rhop21 in serum-dependent invasion by rat ascites hepatoma cells. FEBS Letter, 372, 25–28.CrossRef
52.
go back to reference Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5, 221–225.CrossRef Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., & Narumiya, S. (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine, 5, 221–225.CrossRef
53.
go back to reference Stetler-Stevenson, W. G., Aznavoorian, S., & Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology, 9, 541–573.PubMedCrossRef Stetler-Stevenson, W. G., Aznavoorian, S., & Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology, 9, 541–573.PubMedCrossRef
54.
go back to reference Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., et al. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. Journal of Cell Biology, 160, 267–277.PubMedCrossRef Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., et al. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. Journal of Cell Biology, 160, 267–277.PubMedCrossRef
55.
go back to reference Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biology, 5, 711–719.PubMedCrossRef Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biology, 5, 711–719.PubMedCrossRef
56.
go back to reference Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., & Sahai, E. (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 16, 1515–1523.PubMedCrossRef Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., & Sahai, E. (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 16, 1515–1523.PubMedCrossRef
57.
go back to reference Pinner, S., & Sahai, E. (2008). PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nature Cell Biology, 10, 127–137.PubMedCrossRef Pinner, S., & Sahai, E. (2008). PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nature Cell Biology, 10, 127–137.PubMedCrossRef
58.
go back to reference Linder, S., & Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in Cell Biology, 13, 376–385.PubMedCrossRef Linder, S., & Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in Cell Biology, 13, 376–385.PubMedCrossRef
59.
go back to reference Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L., & Jones, G. E. (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood, 98, 1142–1149.PubMedCrossRef Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L., & Jones, G. E. (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood, 98, 1142–1149.PubMedCrossRef
60.
go back to reference West, M. A., Prescott, A. R., Eskelinen, E. L., Ridley, A. J., & Watts, C. (2000). Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Current Biology, 10, 839–848.PubMedCrossRef West, M. A., Prescott, A. R., Eskelinen, E. L., Ridley, A. J., & Watts, C. (2000). Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Current Biology, 10, 839–848.PubMedCrossRef
61.
go back to reference Zhang, D., Udagawa, N., Nakamura, I., Murakami, H., Saito, S., Yamasaki, K., et al. (1995). The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. Journal of Cell Science, 108, 2285–2292.PubMed Zhang, D., Udagawa, N., Nakamura, I., Murakami, H., Saito, S., Yamasaki, K., et al. (1995). The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. Journal of Cell Science, 108, 2285–2292.PubMed
62.
go back to reference Chellaiah, M. A., Soga, N., Swanson, S., McAllister, S., Alvarez, U., Wang, D., et al. (2000). Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. Journal of Biological Chemistry, 275, 11993–12002.PubMedCrossRef Chellaiah, M. A., Soga, N., Swanson, S., McAllister, S., Alvarez, U., Wang, D., et al. (2000). Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. Journal of Biological Chemistry, 275, 11993–12002.PubMedCrossRef
63.
go back to reference Berdeaux, R. L., Diaz, B., Kim, L., & Martin, G. S. (2004). Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. Journal of Cell Biology, 166, 317–323.PubMedCrossRef Berdeaux, R. L., Diaz, B., Kim, L., & Martin, G. S. (2004). Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. Journal of Cell Biology, 166, 317–323.PubMedCrossRef
64.
go back to reference Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular Cell Biology, 6, 167–180.PubMedCrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular Cell Biology, 6, 167–180.PubMedCrossRef
65.
go back to reference Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S., & Der, C. J. (1995). Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Molecular and Cellular Biology, 15, 6443–6453.PubMed Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S., & Der, C. J. (1995). Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Molecular and Cellular Biology, 15, 6443–6453.PubMed
66.
go back to reference Qiu, R. G., Chen, J., Kirn, D., McCormick, F., & Symons, M. (1995). An essential role for Rac in Ras transformation. Nature, 374, 457–459.PubMedCrossRef Qiu, R. G., Chen, J., Kirn, D., McCormick, F., & Symons, M. (1995). An essential role for Rac in Ras transformation. Nature, 374, 457–459.PubMedCrossRef
67.
go back to reference Qiu, R. G., Chen, J., McCormick, F., & Symons, M. (1995). A role for Rho in Ras transformation. Proceedings of the National Academy of Sciences of the United States of America, 92, 11781–11785.PubMedCrossRef Qiu, R. G., Chen, J., McCormick, F., & Symons, M. (1995). A role for Rho in Ras transformation. Proceedings of the National Academy of Sciences of the United States of America, 92, 11781–11785.PubMedCrossRef
68.
go back to reference Prendergast, G. C., Khosravi-Far, R., Solski, P. A., Kurzawa, H., Lebowitz, P. F., & Der, C. J. (1995). Critical role of Rho in cell transformation by oncogenic Ras. Oncogene, 10, 2289–2296.PubMed Prendergast, G. C., Khosravi-Far, R., Solski, P. A., Kurzawa, H., Lebowitz, P. F., & Der, C. J. (1995). Critical role of Rho in cell transformation by oncogenic Ras. Oncogene, 10, 2289–2296.PubMed
69.
go back to reference Qiu, R. G., Abo, A., McCormick, F., & Symons, M. (1997). Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Molecular and Cellular Biology, 17, 3449–3458.PubMed Qiu, R. G., Abo, A., McCormick, F., & Symons, M. (1997). Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Molecular and Cellular Biology, 17, 3449–3458.PubMed
70.
go back to reference Bodemann, B. O., & White, M. A. (2008). Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nature Reviews Cancer, 8, 133−140.PubMedCrossRef Bodemann, B. O., & White, M. A. (2008). Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nature Reviews Cancer, 8, 133−140.PubMedCrossRef
71.
go back to reference Sahai, E., Alberts, A. S., & Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO Journal, 17, 1350−1361.PubMedCrossRef Sahai, E., Alberts, A. S., & Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO Journal, 17, 1350−1361.PubMedCrossRef
72.
go back to reference Sahai, E., Ishizaki, T., Narumiya, S., & Treisman, R. (1999). Transformation mediated by RhoA requires activity of ROCK kinases. Current Biology, 9, 136−145.PubMedCrossRef Sahai, E., Ishizaki, T., Narumiya, S., & Treisman, R. (1999). Transformation mediated by RhoA requires activity of ROCK kinases. Current Biology, 9, 136−145.PubMedCrossRef
73.
go back to reference Tran Quang, C., Gautreau, A., Arpin, M., & Treisman, R. (2000). Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO Journal, 19, 4565–4576.PubMedCrossRef Tran Quang, C., Gautreau, A., Arpin, M., & Treisman, R. (2000). Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO Journal, 19, 4565–4576.PubMedCrossRef
74.
go back to reference Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO Journal, 20, 755–766.PubMedCrossRef Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO Journal, 20, 755–766.PubMedCrossRef
75.
go back to reference Yeatman, T. J. (2004). A renaissance for SRC. Nature Reviews Cancer, 4, 470–480.PubMed Yeatman, T. J. (2004). A renaissance for SRC. Nature Reviews Cancer, 4, 470–480.PubMed
76.
go back to reference Hamaguchi, M., & Hanafusa, H. (1987). Association of p60src with Triton X-100-resistant cellular structure correlates with morphological transformation. Proceedings of the National Academy of Sciences of the United States of America, 84, 2312–2316.PubMedCrossRef Hamaguchi, M., & Hanafusa, H. (1987). Association of p60src with Triton X-100-resistant cellular structure correlates with morphological transformation. Proceedings of the National Academy of Sciences of the United States of America, 84, 2312–2316.PubMedCrossRef
77.
go back to reference Liebl, E. C., & Martin, G. S. (1992). Intracellular targeting of pp60src expression: localization of v-src to adhesion plaques is sufficient to transform chicken embryo fibroblasts. Oncogene, 7, 2417–2428.PubMed Liebl, E. C., & Martin, G. S. (1992). Intracellular targeting of pp60src expression: localization of v-src to adhesion plaques is sufficient to transform chicken embryo fibroblasts. Oncogene, 7, 2417–2428.PubMed
78.
go back to reference Fincham, V. J., Unlu, M., Brunton, V. G., Pitts, J. D., Wyke, J. A., & Frame, M. C. (1996). Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. Journal of Cell Biology, 135, 1551–1564.PubMedCrossRef Fincham, V. J., Unlu, M., Brunton, V. G., Pitts, J. D., Wyke, J. A., & Frame, M. C. (1996). Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. Journal of Cell Biology, 135, 1551–1564.PubMedCrossRef
79.
go back to reference Fincham, V. J., & Frame, M. C. (1998). The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO Journal, 17, 81–92.PubMedCrossRef Fincham, V. J., & Frame, M. C. (1998). The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO Journal, 17, 81–92.PubMedCrossRef
80.
go back to reference Fincham, V. J., Brunton, V. G., & Frame, M. C. (2000). The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase. Molecular and Cellular Biology, 20, 6518–6536.PubMedCrossRef Fincham, V. J., Brunton, V. G., & Frame, M. C. (2000). The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase. Molecular and Cellular Biology, 20, 6518–6536.PubMedCrossRef
81.
go back to reference Timpson, P., Jones, G. E., Frame, M. C., & Brunton, V. G. (2001). Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Current Biology, 11, 1836–1846.PubMedCrossRef Timpson, P., Jones, G. E., Frame, M. C., & Brunton, V. G. (2001). Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Current Biology, 11, 1836–1846.PubMedCrossRef
82.
go back to reference Sandilands, E., Cans, C., Fincham, V. J., Brunton, V. G., Mellor, H., Prendergast, G. C., et al. (2004). RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Developmental Cell, 7, 855–869. Sandilands, E., Cans, C., Fincham, V. J., Brunton, V. G., Mellor, H., Prendergast, G. C., et al. (2004). RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Developmental Cell, 7, 855–869.
83.
go back to reference Kaplan, K. B., Swedlow, J. R., Varmus, H. E., & Morgan, D. O. (1992). Association of p60c-src with endosomal membranes in mammalian fibroblasts. Journal of Cell Biology, 118, 321–333.PubMedCrossRef Kaplan, K. B., Swedlow, J. R., Varmus, H. E., & Morgan, D. O. (1992). Association of p60c-src with endosomal membranes in mammalian fibroblasts. Journal of Cell Biology, 118, 321–333.PubMedCrossRef
84.
go back to reference Sandilands, E., Brunton, V. G., & Frame, M. C. (2007). The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. Journal of Cell Science, 120, 2555–2564.PubMedCrossRef Sandilands, E., Brunton, V. G., & Frame, M. C. (2007). The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. Journal of Cell Science, 120, 2555–2564.PubMedCrossRef
Metadata
Title
Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion
Authors
Shuh Narumiya
Masahiro Tanji
Toshimasa Ishizaki
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9170-7

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine