Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2015

01-06-2015

Regulatory T cells and potential inmmunotherapeutic targets in lung cancer

Authors: Ding Zhang, Zhihong Chen, Diane C. Wang, Xiangdong Wang

Published in: Cancer and Metastasis Reviews | Issue 2/2015

Login to get access

Abstract

Lung cancer and metastasis are two of the most lethal diseases globally and seldom have effective therapies. Immunotherapy is considered as one of the powerful alternatives. Regulatory T cells (Tregs) can suppress the activation of the immune system, maintain immune tolerance to self-antigens, and contribute to immunosuppression of antitumor immunity, which is critical for tumor immune evasion in epithelial malignancies, including lung cancer. The present review gives an overview of the biological functions and regulations of Tregs associated with the development of lung cancer and metastasis and explores the potentials of Treg-oriented therapeutic targets. Subsets and features of Tregs mainly include naturally occurring Tregs (nTregs) (CD4+ nTregs and CD8+ nTregs) and adaptive/induced Tregs (CD4+ iTregs and CD8+ iTregs). Tregs, especially in circulation or regional lymph nodes, play an important role in the progress and metastasis of lung cancer and are considered as therapeutic targets and biomarkers to predict the survival length and recurrence of lung cancer. Increasing understanding of Tregs’ functional mechanisms will lead to a number of clinical trials on the discovery and development of Treg-oriented new therapies. Tregs play important roles in lung cancer and metastasis, and the understanding of Tregs becomes more critical for clinical applications and therapies. Thus, Tregs and associated factors can be potential therapeutic targets for lung cancer immunotherapy.
Literature
1.
go back to reference Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108.
2.
go back to reference Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29.
3.
go back to reference Schwartz Albiez, R., Monteiro, R., Rodriguez, M., Binder, C., & Shoenfeld, Y. (2009). Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clinical and Experimental Immunology, 158, 43–50.PubMedCentralPubMed Schwartz Albiez, R., Monteiro, R., Rodriguez, M., Binder, C., & Shoenfeld, Y. (2009). Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clinical and Experimental Immunology, 158, 43–50.PubMedCentralPubMed
4.
go back to reference Moriya, K., Wakabayashi, A., Shimizu, M., Tamura, H., Dan, K., & Takahashi, H. (2010). Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205+ dendritic cells. Cancer Immunology, Immunotherapy, 59(7), 1083–1095.PubMedCentralPubMed Moriya, K., Wakabayashi, A., Shimizu, M., Tamura, H., Dan, K., & Takahashi, H. (2010). Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205+ dendritic cells. Cancer Immunology, Immunotherapy, 59(7), 1083–1095.PubMedCentralPubMed
5.
go back to reference Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Antognoli, A., Landuzzi, L., Fabbi, M., Ferrini, S., & Musiani, P. (2007). Antimetastatic activity of a preventive cancer vaccine. Cancer Research, 67(22), 11037–11044.PubMed Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Antognoli, A., Landuzzi, L., Fabbi, M., Ferrini, S., & Musiani, P. (2007). Antimetastatic activity of a preventive cancer vaccine. Cancer Research, 67(22), 11037–11044.PubMed
6.
go back to reference Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews Immunology, 6(4), 295–307.PubMed Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews Immunology, 6(4), 295–307.PubMed
7.
go back to reference Kost, S. E., Kakal, J. A., & Nelson, B. H. (2012). The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical Cancer Research, 18(11), 3022–3029.PubMed Kost, S. E., Kakal, J. A., & Nelson, B. H. (2012). The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical Cancer Research, 18(11), 3022–3029.PubMed
8.
go back to reference Tao, H., Mimura, Y., Aoe, K., Kobayashi, S., Yamamoto, H., Matsuda, E., Okabe, K., Matsumoto, T., Sugi, K., & Ueoka, H. (2012). Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer, 75(1), 95–101.PubMed Tao, H., Mimura, Y., Aoe, K., Kobayashi, S., Yamamoto, H., Matsuda, E., Okabe, K., Matsumoto, T., Sugi, K., & Ueoka, H. (2012). Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer, 75(1), 95–101.PubMed
9.
go back to reference Gershon, R. K., & Kondo, K. (1970). Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 18(5), 723.PubMedCentralPubMed Gershon, R. K., & Kondo, K. (1970). Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 18(5), 723.PubMedCentralPubMed
10.
go back to reference Berendt, M. J., & North, R. J. (1980). T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. The Journal of Experimental Medicine, 151(1), 69.PubMed Berendt, M. J., & North, R. J. (1980). T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. The Journal of Experimental Medicine, 151(1), 69.PubMed
11.
go back to reference Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science’s STKE, 299(5609), 1057. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science’s STKE, 299(5609), 1057.
12.
go back to reference Bluestone, J. A., & Abbas, A. K. (2003). Natural versus adaptive regulatory T cells. Nature Reviews Immunology, 3(3), 253–257.PubMed Bluestone, J. A., & Abbas, A. K. (2003). Natural versus adaptive regulatory T cells. Nature Reviews Immunology, 3(3), 253–257.PubMed
13.
go back to reference Bayer A. L., & Malek T. R. (2009). The role of IL-2 in the development and peripheral homeostasis of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Regulatory T Cells and Clinical Application, 1–20 Bayer A. L., & Malek T. R. (2009). The role of IL-2 in the development and peripheral homeostasis of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Regulatory T Cells and Clinical Application, 1–20
14.
go back to reference Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., & Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science’s STKE, 322(5899), 271. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., & Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science’s STKE, 322(5899), 271.
15.
go back to reference Bombardieri, M., Alunno, A., Kelly, S., Bistoni, O., Pitzalis, C., Whyte, S., Gerli, R., Nocentini, G., & Riccardi, C. (2011). Glucocorticoid induced TNF receptor related protein (GITR) is a marker of regulatory T cells: relationship with FOXP3 expression in healthy donors and in patients with rheumatoid arthritis before and after corticosteroid therapy. Annals of the Rheumatic Diseases, 70, 685–685. Bombardieri, M., Alunno, A., Kelly, S., Bistoni, O., Pitzalis, C., Whyte, S., Gerli, R., Nocentini, G., & Riccardi, C. (2011). Glucocorticoid induced TNF receptor related protein (GITR) is a marker of regulatory T cells: relationship with FOXP3 expression in healthy donors and in patients with rheumatoid arthritis before and after corticosteroid therapy. Annals of the Rheumatic Diseases, 70, 685–685.
16.
17.
go back to reference Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A., Kapranov, P., Gingeras, T. R., de St, F., Groth, B., Clayberger, C., Soper, D. M., Ziegler, S. F., & Bluestone, J. A. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. The Journal of Experimental Medicine, 203(7), 1701–1711.PubMedCentralPubMed Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A., Kapranov, P., Gingeras, T. R., de St, F., Groth, B., Clayberger, C., Soper, D. M., Ziegler, S. F., & Bluestone, J. A. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. The Journal of Experimental Medicine, 203(7), 1701–1711.PubMedCentralPubMed
18.
go back to reference Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C., Taflin, C., Heike, T., & Valeyre, D. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30(6), 899–911.PubMed Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C., Taflin, C., Heike, T., & Valeyre, D. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30(6), 899–911.PubMed
19.
go back to reference Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y., & Shevach, E. M. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology, 184(7), 3433.PubMedCentralPubMed Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y., & Shevach, E. M. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology, 184(7), 3433.PubMedCentralPubMed
20.
go back to reference Gottschalk, R. A., Corse, E., & Allison, J. P. (2012). Expression of Helios in peripherally induced Foxp3+ regulatory T cells. The Journal of Immunology, 188(3), 976–980.PubMed Gottschalk, R. A., Corse, E., & Allison, J. P. (2012). Expression of Helios in peripherally induced Foxp3+ regulatory T cells. The Journal of Immunology, 188(3), 976–980.PubMed
21.
go back to reference Hippen, K. L., Merkel, S. C., Schirm, D. K., Sieben, C. M., Sumstad, D., Kadidlo, D. M., McKenna, D. H., Bromberg, J. S., Levine, B. L., & Riley, J. L. (2011). Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Science Translational Medicine, 83, 83ra41–83ra41. Hippen, K. L., Merkel, S. C., Schirm, D. K., Sieben, C. M., Sumstad, D., Kadidlo, D. M., McKenna, D. H., Bromberg, J. S., Levine, B. L., & Riley, J. L. (2011). Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Science Translational Medicine, 83, 83ra41–83ra41.
22.
go back to reference Shevach, E. M., & Thornton, A. M. (2014). tTregs, pTregs, and iTregs: similarities and differences. Immunological Reviews, 259(1), 88–102.PubMedCentralPubMed Shevach, E. M., & Thornton, A. M. (2014). tTregs, pTregs, and iTregs: similarities and differences. Immunological Reviews, 259(1), 88–102.PubMedCentralPubMed
23.
go back to reference Mills, K. H. G. (2004). Regulatory T cells: friend or foe in immunity to infection? Nature Reviews Immunology, 4(11), 841–855.PubMed Mills, K. H. G. (2004). Regulatory T cells: friend or foe in immunity to infection? Nature Reviews Immunology, 4(11), 841–855.PubMed
24.
go back to reference Battaglia, M., Gregori, S., Bacchetta, R., & Roncarolo, M. G. (2006). Tr1 cells: from discovery to their clinical application. Seminars in Immunology, 18(2), 120–7.PubMed Battaglia, M., Gregori, S., Bacchetta, R., & Roncarolo, M. G. (2006). Tr1 cells: from discovery to their clinical application. Seminars in Immunology, 18(2), 120–7.PubMed
25.
go back to reference Maynard, C. L., Harrington, L. E., Janowski, K. M., Oliver, J. R., Zindl, C. L., Rudensky, A. Y., & Weaver, C. T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nature Immunology, 8(9), 931–941.PubMed Maynard, C. L., Harrington, L. E., Janowski, K. M., Oliver, J. R., Zindl, C. L., Rudensky, A. Y., & Weaver, C. T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nature Immunology, 8(9), 931–941.PubMed
26.
go back to reference Mandapathil, M., & Whiteside, T. L. (2011). Targeting human inducible regulatory T cells (Tr1) in patients with cancer: blocking of adenosine-prostaglandin E2 cooperation. Expert Opinion on Biological Therapy, 11(9), 1203–1214.PubMedCentralPubMed Mandapathil, M., & Whiteside, T. L. (2011). Targeting human inducible regulatory T cells (Tr1) in patients with cancer: blocking of adenosine-prostaglandin E2 cooperation. Expert Opinion on Biological Therapy, 11(9), 1203–1214.PubMedCentralPubMed
27.
go back to reference Brun, V., Bastian, H., Neveu, V., & Foussat, A. (2009). Clinical grade production of IL-10 producing regulatory Tr1 lymphocytes for cell therapy of chronic inflammatory diseases. International Immunopharmacology, 9(5), 609–613.PubMed Brun, V., Bastian, H., Neveu, V., & Foussat, A. (2009). Clinical grade production of IL-10 producing regulatory Tr1 lymphocytes for cell therapy of chronic inflammatory diseases. International Immunopharmacology, 9(5), 609–613.PubMed
28.
go back to reference Santos, L., Al-Sabbagh, A., Londono, A., & Weiner, H. L. (1994). Oral tolerance to myelin basic protein induces regulatory TGF-β-secreting T cells in Peyer’s patches of SJL mice. Cellular Immunology, 157(2), 439–447.PubMed Santos, L., Al-Sabbagh, A., Londono, A., & Weiner, H. L. (1994). Oral tolerance to myelin basic protein induces regulatory TGF-β-secreting T cells in Peyer’s patches of SJL mice. Cellular Immunology, 157(2), 439–447.PubMed
29.
go back to reference Weiner, H. L. (2001). Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunological Reviews, 182(1), 207–214.PubMed Weiner, H. L. (2001). Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunological Reviews, 182(1), 207–214.PubMed
30.
go back to reference Carrier, Y., Yuan, J., Kuchroo, V. K., & Weiner, H. L. (2007). Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-β T cell-transgenic mice. The Journal of Immunology, 178(1), 179.PubMed Carrier, Y., Yuan, J., Kuchroo, V. K., & Weiner, H. L. (2007). Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-β T cell-transgenic mice. The Journal of Immunology, 178(1), 179.PubMed
31.
go back to reference Curotto de Lafaille, M. A., & Lafaille, J. J. (2009). Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 30(5), 626–635.PubMed Curotto de Lafaille, M. A., & Lafaille, J. J. (2009). Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 30(5), 626–635.PubMed
32.
go back to reference Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B. A., & Lee, C. (2007). Tumor evasion of the immune system by converting CD4+ CD25− T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-β. The Journal of Immunology, 178(5), 2883.PubMed Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B. A., & Lee, C. (2007). Tumor evasion of the immune system by converting CD4+ CD25 T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-β. The Journal of Immunology, 178(5), 2883.PubMed
33.
go back to reference Al‐Qahtani, D., Anil, S., & Rajendran, R. (2011). Tumour infiltrating CD25+ FoxP3+ regulatory T cells (Tregs) relate to tumour grade and stromal inflammation in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(8), 636–642. Al‐Qahtani, D., Anil, S., & Rajendran, R. (2011). Tumour infiltrating CD25+ FoxP3+ regulatory T cells (Tregs) relate to tumour grade and stromal inflammation in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(8), 636–642.
34.
go back to reference Mayer, C. T., Floess, S., Baru, A. M., Lahl, K., Huehn, J., & Sparwasser, T. (2011). CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity. European Journal of Immunology, 41(3), 716–725.PubMed Mayer, C. T., Floess, S., Baru, A. M., Lahl, K., Huehn, J., & Sparwasser, T. (2011). CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity. European Journal of Immunology, 41(3), 716–725.PubMed
35.
go back to reference Wang, R. F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69(11), 811–814.PubMed Wang, R. F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69(11), 811–814.PubMed
36.
go back to reference Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., & June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Research, 61(12), 4766–4772.PubMed Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., & June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Research, 61(12), 4766–4772.PubMed
37.
go back to reference Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R., & June, C. H. (2002). Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. Journal of Immunology, 168(9), 4272–4276. Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R., & June, C. H. (2002). Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. Journal of Immunology, 168(9), 4272–4276.
38.
go back to reference Okita, R., Saeki, T., Takashima, S., Yamaguchi, Y., & Toge, T. (2005). CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncology Reports, 14(5), 1269–1273.PubMed Okita, R., Saeki, T., Takashima, S., Yamaguchi, Y., & Toge, T. (2005). CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncology Reports, 14(5), 1269–1273.PubMed
39.
go back to reference Meloni, F., Morosini, M., Solari, N., Passadore, I., Nascimbene, C., Novo, M., Ferrari, M., Cosentino, M., Marino, F., Pozzi, E., & Fietta, A. M. (2006). Foxp3 expressing CD4+ CD25+ and CD8+CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Human Immunology, 67(1–2), 1–12.PubMed Meloni, F., Morosini, M., Solari, N., Passadore, I., Nascimbene, C., Novo, M., Ferrari, M., Cosentino, M., Marino, F., Pozzi, E., & Fietta, A. M. (2006). Foxp3 expressing CD4+ CD25+ and CD8+CD28 T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Human Immunology, 67(1–2), 1–12.PubMed
40.
go back to reference Wang, Y. Y., He, X. Y., Cai, Y. Y., Wang, Z. J., & Lu, S. H. (2011). The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Targeted Oncology, 6(3), 147–154.PubMed Wang, Y. Y., He, X. Y., Cai, Y. Y., Wang, Z. J., & Lu, S. H. (2011). The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Targeted Oncology, 6(3), 147–154.PubMed
41.
go back to reference Su, Y. J., Ren, K., Li, H., Ren, X. B., & Wang, C. L. (2007). Clinical significance of CD4+ CD25+ regulatory T-cells detection in tumor-draining lymph nodes of nonsmall cell lung cancer patients. Zhonghua Zhong Liu Za Zhi, 29(12), 922–926.PubMed Su, Y. J., Ren, K., Li, H., Ren, X. B., & Wang, C. L. (2007). Clinical significance of CD4+ CD25+ regulatory T-cells detection in tumor-draining lymph nodes of nonsmall cell lung cancer patients. Zhonghua Zhong Liu Za Zhi, 29(12), 922–926.PubMed
42.
go back to reference Ju, S., Qiu, H., Zhou, X., Zhu, B., Lv, X., Huang, X., Li, J., Zhang, Y., Liu, L., Ge, Y., Johnson, D. E., & Shu, Y. (2009). CD13+CD4+CD25hi regulatory T cells exhibit higher suppressive function and increase with tumor stage in non-small cell lung cancer patients. Cell Cycle, 8(16), 2578–2585.PubMed Ju, S., Qiu, H., Zhou, X., Zhu, B., Lv, X., Huang, X., Li, J., Zhang, Y., Liu, L., Ge, Y., Johnson, D. E., & Shu, Y. (2009). CD13+CD4+CD25hi regulatory T cells exhibit higher suppressive function and increase with tumor stage in non-small cell lung cancer patients. Cell Cycle, 8(16), 2578–2585.PubMed
43.
go back to reference Karagoz, B., Bilgi, O., Gumus, M., Erikci, A. A., Sayan, O., Turken, O., Kandemir, E. G., Ozturk, A., & Yaylaci, M. (2010). CD8+CD28− cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Medical Oncology, 27(1), 29–33.PubMed Karagoz, B., Bilgi, O., Gumus, M., Erikci, A. A., Sayan, O., Turken, O., Kandemir, E. G., Ozturk, A., & Yaylaci, M. (2010). CD8+CD28 cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Medical Oncology, 27(1), 29–33.PubMed
44.
go back to reference Koyama, K., Kagamu, H., Miura, S., Hiura, T., Miyabayashi, T., Itoh, R., Kuriyama, H., Tanaka, H., Tanaka, J., Yoshizawa, H., Nakata, K., & Gejyo, F. (2008). Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clinical Cancer Research, 14(21), 6770–6779.PubMed Koyama, K., Kagamu, H., Miura, S., Hiura, T., Miyabayashi, T., Itoh, R., Kuriyama, H., Tanaka, H., Tanaka, J., Yoshizawa, H., Nakata, K., & Gejyo, F. (2008). Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clinical Cancer Research, 14(21), 6770–6779.PubMed
45.
go back to reference Wang W., Hodkinson P., McLaren F., Mackinnon A., Wallace W., Howie S., & Sethi T. (2012). Small cell lung cancer tumour cells induce regulatory T lymphocytes, and patient survival correlates negatively with FOXP3(+) cells in tumour infiltrate. Int J Cancer, 15;131(6):E928–37. Wang W., Hodkinson P., McLaren F., Mackinnon A., Wallace W., Howie S., & Sethi T. (2012). Small cell lung cancer tumour cells induce regulatory T lymphocytes, and patient survival correlates negatively with FOXP3(+) cells in tumour infiltrate. Int J Cancer, 15;131(6):E928–37.
46.
go back to reference Hasegawa, T., Suzuki, H., Yamaura, T., Muto, S., Okabe, N., Osugi, J., Hoshino, M., Higuchi, M., Ise, K., & Gotoh, M. (2014). Prognostic value of peripheral and local forkhead box P3+ regulatory T cells in patients with non-small-cell lung cancer. Molecular and Clinical Oncology, 2(5), 685–694.PubMedCentralPubMed Hasegawa, T., Suzuki, H., Yamaura, T., Muto, S., Okabe, N., Osugi, J., Hoshino, M., Higuchi, M., Ise, K., & Gotoh, M. (2014). Prognostic value of peripheral and local forkhead box P3+ regulatory T cells in patients with non-small-cell lung cancer. Molecular and Clinical Oncology, 2(5), 685–694.PubMedCentralPubMed
47.
go back to reference Hanagiri, T., Shigematsu, Y., Shinohara, S., Takenaka, M., Oka, S., Chikaishi, Y., Nagata, Y., Iwata, T., Uramoto, H., & So, T. (2013). Clinical significance of the frequency of regulatory T cells in regional lymph node lymphocytes as a prognostic factor for non-small-cell lung cancer. Lung Cancer, 81(3), 475–479.PubMed Hanagiri, T., Shigematsu, Y., Shinohara, S., Takenaka, M., Oka, S., Chikaishi, Y., Nagata, Y., Iwata, T., Uramoto, H., & So, T. (2013). Clinical significance of the frequency of regulatory T cells in regional lymph node lymphocytes as a prognostic factor for non-small-cell lung cancer. Lung Cancer, 81(3), 475–479.PubMed
48.
go back to reference Black, C. C., Turk, M. J., Dragnev, K., & Rigas, J. R. (2013). Adenocarcinoma contains more immune tolerance regulatory T-cell lymphocytes (versus squamous carcinoma) in non-small-cell lung cancer. Lung, 191(3), 265–270.PubMed Black, C. C., Turk, M. J., Dragnev, K., & Rigas, J. R. (2013). Adenocarcinoma contains more immune tolerance regulatory T-cell lymphocytes (versus squamous carcinoma) in non-small-cell lung cancer. Lung, 191(3), 265–270.PubMed
49.
go back to reference Kinoshita, T., Ishii, G., Hiraoka, N., Hirayama, S., Yamauchi, C., Aokage, K., Hishida, T., Yoshida, J., Nagai, K., & Ochiai, A. (2013). Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Science, 104(4), 409–415.PubMed Kinoshita, T., Ishii, G., Hiraoka, N., Hirayama, S., Yamauchi, C., Aokage, K., Hishida, T., Yoshida, J., Nagai, K., & Ochiai, A. (2013). Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Science, 104(4), 409–415.PubMed
50.
go back to reference Li, J.-Y., Duan, X.-F., Wang, L.-P., Xu, Y.-J., Huang, L., Zhang, T.-F., Liu, J.-Y., Li, F., Zhang, Z., & Yue, D.-L. (2014). Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. Journal of Immunology Research, 2014, 286170. doi:10.1155/2014/286170.PubMedCentralPubMed Li, J.-Y., Duan, X.-F., Wang, L.-P., Xu, Y.-J., Huang, L., Zhang, T.-F., Liu, J.-Y., Li, F., Zhang, Z., & Yue, D.-L. (2014). Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. Journal of Immunology Research, 2014, 286170. doi:10.​1155/​2014/​286170.PubMedCentralPubMed
51.
go back to reference Teng, M. W. L., Ritchie, D. S., Neeson, P., & Smyth, M. J. (2011). Biology and clinical observations of regulatory T cells in cancer immunology. Cancer Immunology and Immunotherapy, 61–95. Teng, M. W. L., Ritchie, D. S., Neeson, P., & Smyth, M. J. (2011). Biology and clinical observations of regulatory T cells in cancer immunology. Cancer Immunology and Immunotherapy, 61–95.
52.
go back to reference Peggs, K. S., Quezada, S. A., Korman, A. J., & Allison, J. P. (2006). Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Current Opinion in Immunology, 18(2), 206–213.PubMed Peggs, K. S., Quezada, S. A., Korman, A. J., & Allison, J. P. (2006). Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Current Opinion in Immunology, 18(2), 206–213.PubMed
53.
go back to reference Keilholz, U. (2008). CTLA-4: negative regulator of the immune response and a target for cancer therapy. Journal of Immunotherapy, 31(5), 431.PubMed Keilholz, U. (2008). CTLA-4: negative regulator of the immune response and a target for cancer therapy. Journal of Immunotherapy, 31(5), 431.PubMed
54.
go back to reference Ackerman, A., Klein, O., McDermott, D.F., Wang, W., Ibrahim, N., Lawrence, D.P., Gunturi, A., Flaherty, K.T., Hodi, F.S., Kefford, R., Menzies, A.M., Atkins, M.B., Long, G.V., & Sullivan, R.J. (2014). Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer. 1;120(11):1695–701. Ackerman, A., Klein, O., McDermott, D.F., Wang, W., Ibrahim, N., Lawrence, D.P., Gunturi, A., Flaherty, K.T., Hodi, F.S., Kefford, R., Menzies, A.M., Atkins, M.B., Long, G.V., & Sullivan, R.J. (2014). Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer. 1;120(11):1695–701.
55.
go back to reference Erfani, N., Mehrabadi, S. M., Ghayumi, M. A., Haghshenas, M. R., Mojtahedi, Z., Ghaderi, A., & Amani, D. (2012). Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer, 77(2), 306–11.PubMed Erfani, N., Mehrabadi, S. M., Ghayumi, M. A., Haghshenas, M. R., Mojtahedi, Z., Ghaderi, A., & Amani, D. (2012). Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer, 77(2), 306–11.PubMed
56.
go back to reference Karabon, L., Pawlak, E., Tomkiewicz, A., Jedynak, A., Passowicz-Muszynska, E., Zajda, K., Jonkisz, A., Jankowska, R., Krzakowski, M., & Frydecka, I. (2011). CTLA-4, CD28, and ICOS gene polymorphism associations with non-small-cell lung cancer. Human Immunology, 72(10), 947–54.PubMed Karabon, L., Pawlak, E., Tomkiewicz, A., Jedynak, A., Passowicz-Muszynska, E., Zajda, K., Jonkisz, A., Jankowska, R., Krzakowski, M., & Frydecka, I. (2011). CTLA-4, CD28, and ICOS gene polymorphism associations with non-small-cell lung cancer. Human Immunology, 72(10), 947–54.PubMed
57.
go back to reference Mellor, A. L., & Munn, D. H. (2004). IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Reviews Immunology, 4(10), 762–774.PubMed Mellor, A. L., & Munn, D. H. (2004). IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Reviews Immunology, 4(10), 762–774.PubMed
58.
go back to reference Salvi S., Fontana V., Boccardo S., Merlo D. F., Margallo E., Laurent S., Morabito A., Rijavec E., Dal Bello M. G., & Mora M. (2012). Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunology, Immunotherapy, 1–10. Salvi S., Fontana V., Boccardo S., Merlo D. F., Margallo E., Laurent S., Morabito A., Rijavec E., Dal Bello M. G., & Mora M. (2012). Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunology, Immunotherapy, 1–10.
59.
go back to reference Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.PubMed Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.PubMed
60.
go back to reference Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., & Hassel, J. C. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723.PubMedCentralPubMed Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., & Hassel, J. C. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723.PubMedCentralPubMed
61.
go back to reference Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J.-F., Testori, A., & Grob, J.-J. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364(26), 2517–2526.PubMed Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J.-F., Testori, A., & Grob, J.-J. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364(26), 2517–2526.PubMed
62.
go back to reference Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Neal, J., Lu, H., & Cuillerot, J.-M. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054.PubMed Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Neal, J., Lu, H., & Cuillerot, J.-M. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054.PubMed
63.
go back to reference Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A., & Formenti, S. C. (2013). An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunology Research, 1(6), 365–372.PubMedCentralPubMed Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A., & Formenti, S. C. (2013). An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunology Research, 1(6), 365–372.PubMedCentralPubMed
64.
go back to reference Reck, M., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Lu, H., Cuillerot, J.-M., & Lynch, T. (2013). Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Annals of Oncology, 24(1), 75–83.PubMed Reck, M., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Lu, H., Cuillerot, J.-M., & Lynch, T. (2013). Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Annals of Oncology, 24(1), 75–83.PubMed
65.
go back to reference Kamphorst, A. O., & Ahmed, R. (2013). Manipulating the PD-1 pathway to improve immunity. Current Opinion in Immunology, 25(3), 381–388.PubMed Kamphorst, A. O., & Ahmed, R. (2013). Manipulating the PD-1 pathway to improve immunity. Current Opinion in Immunology, 25(3), 381–388.PubMed
66.
go back to reference Waki, K., Yamada, T., Yoshiyama, K., Terazaki, Y., Sakamoto, S., Matsueda, S., Komatsu, N., Sugawara, S., Takamori, S., & Itoh, K. (2014). PD-1 expression on peripheral blood T-cell subsets correlates with prognosis in non-small cell lung cancer. Cancer Science, 105(10), 1229–1235.PubMed Waki, K., Yamada, T., Yoshiyama, K., Terazaki, Y., Sakamoto, S., Matsueda, S., Komatsu, N., Sugawara, S., Takamori, S., & Itoh, K. (2014). PD-1 expression on peripheral blood T-cell subsets correlates with prognosis in non-small cell lung cancer. Cancer Science, 105(10), 1229–1235.PubMed
67.
go back to reference Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), 207–212.PubMedCentralPubMed Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), 207–212.PubMedCentralPubMed
68.
go back to reference Zhang, Y., Huang, S., Gong, D., Qin, Y., & Shen, Q. (2010). Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+T lymphocytes in human non-small cell lung cancer. Cellular & Molecular Immunology, 7(5), 389–395. Zhang, Y., Huang, S., Gong, D., Qin, Y., & Shen, Q. (2010). Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+T lymphocytes in human non-small cell lung cancer. Cellular & Molecular Immunology, 7(5), 389–395.
69.
go back to reference Lipson, E. J., Sharfman, W. H., Drake, C. G., Wollner, I., Taube, J. M., Anders, R. A., Xu, H., Yao, S., Pons, A., & Chen, L. (2013). Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clinical Cancer Research, 19(2), 462–468.PubMedCentralPubMed Lipson, E. J., Sharfman, W. H., Drake, C. G., Wollner, I., Taube, J. M., Anders, R. A., Xu, H., Yao, S., Pons, A., & Chen, L. (2013). Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clinical Cancer Research, 19(2), 462–468.PubMedCentralPubMed
70.
go back to reference Gettinger, S., Horn, L., Gandhi, L., Spigel, D., Antonia, S., Rizvi, N., Powderly, J., Heist, R., Carvajal, R., & Jackman, D. (2014). Long-term survival, clinical activity, and safety of nivolumab (anti-PD-1; BMS-936558, ONO-4538) in patients (pts) with advanced non-small cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 90(5), S34. Gettinger, S., Horn, L., Gandhi, L., Spigel, D., Antonia, S., Rizvi, N., Powderly, J., Heist, R., Carvajal, R., & Jackman, D. (2014). Long-term survival, clinical activity, and safety of nivolumab (anti-PD-1; BMS-936558, ONO-4538) in patients (pts) with advanced non-small cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 90(5), S34.
71.
go back to reference Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., & Atkins, M. B. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.PubMedCentralPubMed Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., & Atkins, M. B. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.PubMedCentralPubMed
72.
go back to reference Antonia S. J., Gettinger S., Chow L. Q., Juergens R., Borghaei H., Shen Y., Harbison C., Chen A. C., Ready N. E., & Rizvi N. A. (2014). Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line non-small cell lung cancer (NSCLC): interim phase 1 results. Journal of clinical oncology, 32,5s. Antonia S. J., Gettinger S., Chow L. Q., Juergens R., Borghaei H., Shen Y., Harbison C., Chen A. C., Ready N. E., & Rizvi N. A. (2014). Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line non-small cell lung cancer (NSCLC): interim phase 1 results. Journal of clinical oncology, 32,5s.
73.
go back to reference Okamura, T., Fujio, K., Sumitomo, S., & Yamamoto, K. (2012). Roles of LAG3 and EGR2 in regulatory T cells. Annals of the Rheumatic Diseases, 71(Suppl 2), i96–i100.PubMed Okamura, T., Fujio, K., Sumitomo, S., & Yamamoto, K. (2012). Roles of LAG3 and EGR2 in regulatory T cells. Annals of the Rheumatic Diseases, 71(Suppl 2), i96–i100.PubMed
74.
go back to reference Gandhi, M. K., Lambley, E., Duraiswamy, J., Dua, U., Smith, C., Elliott, S., Gill, D., Marlton, P., Seymour, J., & Khanna, R. (2006). Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood, 108(7), 2280.PubMed Gandhi, M. K., Lambley, E., Duraiswamy, J., Dua, U., Smith, C., Elliott, S., Gill, D., Marlton, P., Seymour, J., & Khanna, R. (2006). Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood, 108(7), 2280.PubMed
75.
go back to reference Prigent, P., Dréano, M., & Triebel, F. (1999). Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29(12), 3867–3876.PubMed Prigent, P., Dréano, M., & Triebel, F. (1999). Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29(12), 3867–3876.PubMed
76.
go back to reference Brignone, C., Grygar, C., Marcu, M., Perrin, G., & Triebel, F. (2007). IMP321 (sLAG-3) safety and T cell response potentiation using an influenza vaccine as a model antigen: a single-blind phase I study. Vaccine, 25(24), 4641–4650.PubMed Brignone, C., Grygar, C., Marcu, M., Perrin, G., & Triebel, F. (2007). IMP321 (sLAG-3) safety and T cell response potentiation using an influenza vaccine as a model antigen: a single-blind phase I study. Vaccine, 25(24), 4641–4650.PubMed
77.
go back to reference Brignone, C., Escudier, B., Grygar, C., Marcu, M., & Triebel, F. (2009). A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clinical Cancer Research, 15(19), 6225–6231.PubMed Brignone, C., Escudier, B., Grygar, C., Marcu, M., & Triebel, F. (2009). A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clinical Cancer Research, 15(19), 6225–6231.PubMed
78.
go back to reference Brignone, C., Gutierrez, M., Mefti, F., Brain, E., Jarcau, R., Cvitkovic, F., Bousetta, N., Medioni, J., Gligorov, J., & Grygar, C. (2010). First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. Journal of Translational Medicine, 8(1), 71.PubMedCentralPubMed Brignone, C., Gutierrez, M., Mefti, F., Brain, E., Jarcau, R., Cvitkovic, F., Bousetta, N., Medioni, J., Gligorov, J., & Grygar, C. (2010). First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. Journal of Translational Medicine, 8(1), 71.PubMedCentralPubMed
79.
go back to reference Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., Parmiani, G., Belli, F., Rivoltini, L., & Castelli, C. (2010). LAG-3 expression defines a subset of CD4+ CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. The Journal of Immunology, 184(11), 6545–6551.PubMed Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., Parmiani, G., Belli, F., Rivoltini, L., & Castelli, C. (2010). LAG-3 expression defines a subset of CD4+ CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. The Journal of Immunology, 184(11), 6545–6551.PubMed
80.
go back to reference Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., & Sakaguchi, S. (2002). Stimulation of CD25+ CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3(2), 135–142.PubMed Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., & Sakaguchi, S. (2002). Stimulation of CD25+ CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3(2), 135–142.PubMed
81.
go back to reference Cohen, A. D., Schaer, D. A., Liu, C., Li, Y., Hirschhorn-Cymmerman, D., Kim, S. C., Diab, A., Rizzuto, G., Duan, F., & Perales, M. A. (2010). Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. Plos One, 5(5), e10436.PubMedCentralPubMed Cohen, A. D., Schaer, D. A., Liu, C., Li, Y., Hirschhorn-Cymmerman, D., Kim, S. C., Diab, A., Rizzuto, G., Duan, F., & Perales, M. A. (2010). Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. Plos One, 5(5), e10436.PubMedCentralPubMed
82.
go back to reference Zhou, P., L’italien, L., Hodges, D., & Schebye, X. M. (2007). Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. The Journal of Immunology, 179(11), 7365–7375.PubMed Zhou, P., L’italien, L., Hodges, D., & Schebye, X. M. (2007). Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. The Journal of Immunology, 179(11), 7365–7375.PubMed
83.
go back to reference Houot, R., & Levy, R. (2009). T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood, 113(15), 3546–3552.PubMedCentralPubMed Houot, R., & Levy, R. (2009). T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood, 113(15), 3546–3552.PubMedCentralPubMed
84.
go back to reference Cohen, A. D., Diab, A., Perales, M. A., Wolchok, J. D., Rizzuto, G., Merghoub, T., Huggins, D., Liu, C., Turk, M. J., & Restifo, N. P. (2006). Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity. Cancer Research, 66(9), 4904.PubMedCentralPubMed Cohen, A. D., Diab, A., Perales, M. A., Wolchok, J. D., Rizzuto, G., Merghoub, T., Huggins, D., Liu, C., Turk, M. J., & Restifo, N. P. (2006). Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity. Cancer Research, 66(9), 4904.PubMedCentralPubMed
85.
go back to reference Imai, N., Ikeda, H., Tawara, I., Wang, L., Nishikawa, H., Kato, T., & Shiku, H. (2009). Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Science, 100(7), 1317–1325.PubMed Imai, N., Ikeda, H., Tawara, I., Wang, L., Nishikawa, H., Kato, T., & Shiku, H. (2009). Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Science, 100(7), 1317–1325.PubMed
86.
go back to reference Mitsui, J., Nishikawa, H., Muraoka, D., Wang, L., Noguchi, T., Sato, E., Kondo, S., Allison, J. P., Sakaguchi, S., & Old, L. J. (2010). Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clinical Cancer Research, 16(10), 2781.PubMed Mitsui, J., Nishikawa, H., Muraoka, D., Wang, L., Noguchi, T., Sato, E., Kondo, S., Allison, J. P., Sakaguchi, S., & Old, L. J. (2010). Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clinical Cancer Research, 16(10), 2781.PubMed
87.
go back to reference Pruitt, S. K., Boczkowski, D., de Rosa, N., Haley, N. R., Morse, M. A., Tyler, D. S., Dannull, J., & Nair, S. (2011). Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. European Journal of Immunology, 41(12), 3553–63.PubMed Pruitt, S. K., Boczkowski, D., de Rosa, N., Haley, N. R., Morse, M. A., Tyler, D. S., Dannull, J., & Nair, S. (2011). Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. European Journal of Immunology, 41(12), 3553–63.PubMed
88.
go back to reference Stephens, G. L., McHugh, R. S., Whitters, M. J., Young, D. A., Luxenberg, D., Carreno, B. M., Collins, M., & Shevach, E. M. (2004). Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. The Journal of Immunology, 173(8), 5008–5020.PubMed Stephens, G. L., McHugh, R. S., Whitters, M. J., Young, D. A., Luxenberg, D., Carreno, B. M., Collins, M., & Shevach, E. M. (2004). Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. The Journal of Immunology, 173(8), 5008–5020.PubMed
89.
go back to reference Côté, A. L., Zhang, P., O’Sullivan, J. A., Jacobs, V. L., Clemis, C. R., Sakaguchi, S., Guevara-Patiño, J. A., & Turk, M. J. (2011). Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. The Journal of Immunology, 186(1), 275.PubMedCentralPubMed Côté, A. L., Zhang, P., O’Sullivan, J. A., Jacobs, V. L., Clemis, C. R., Sakaguchi, S., Guevara-Patiño, J. A., & Turk, M. J. (2011). Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. The Journal of Immunology, 186(1), 275.PubMedCentralPubMed
90.
go back to reference Joetham, A., Ohnishi, H., Okamoto, M., Takeda, K., Schedel, M., Domenico, J., Dakhama, A., & Gelfand, E. W. (2012). Loss of T regulatory cell suppression following signaling through glucocorticoid-induced tumor necrosis receptor (GITR) is dependent on c-Jun N-terminal kinase activation. Journal of Biological Chemistry, 287(21), 17100–17108.PubMedCentralPubMed Joetham, A., Ohnishi, H., Okamoto, M., Takeda, K., Schedel, M., Domenico, J., Dakhama, A., & Gelfand, E. W. (2012). Loss of T regulatory cell suppression following signaling through glucocorticoid-induced tumor necrosis receptor (GITR) is dependent on c-Jun N-terminal kinase activation. Journal of Biological Chemistry, 287(21), 17100–17108.PubMedCentralPubMed
91.
go back to reference Haskó, G., Linden, J., Cronstein, B., & Pacher, P. (2008). Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Reviews Drug Discovery, 7(9), 759–770.PubMedCentralPubMed Haskó, G., Linden, J., Cronstein, B., & Pacher, P. (2008). Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Reviews Drug Discovery, 7(9), 759–770.PubMedCentralPubMed
92.
go back to reference Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., Lang, S., Jackson, E. K., Gorelik, E., & Whiteside, T. L. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4+ CD25highFOXP3+ regulatory T cells. Journal of Biological Chemistry, 285(10), 7176.PubMedCentralPubMed Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., Lang, S., Jackson, E. K., Gorelik, E., & Whiteside, T. L. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4+ CD25highFOXP3+ regulatory T cells. Journal of Biological Chemistry, 285(10), 7176.PubMedCentralPubMed
93.
go back to reference Sitkovsky, M., Lukashev, D., Deaglio, S., Dwyer, K., Robson, S., & Ohta, A. (2008). Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. British Journal of Pharmacology, 153(S1), S457–S464.PubMedCentralPubMed Sitkovsky, M., Lukashev, D., Deaglio, S., Dwyer, K., Robson, S., & Ohta, A. (2008). Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. British Journal of Pharmacology, 153(S1), S457–S464.PubMedCentralPubMed
94.
go back to reference Häusler S. F. M., Montalbán del Barrio I., Strohschein J., Anoop Chandran P., Engel J. B., Hönig A., Ossadnik M., Horn E., Fischer B., & Krockenberger M. (2011). Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunology, Immunotherapy, 1–14. Häusler S. F. M., Montalbán del Barrio I., Strohschein J., Anoop Chandran P., Engel J. B., Hönig A., Ossadnik M., Horn E., Fischer B., & Krockenberger M. (2011). Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunology, Immunotherapy, 1–14.
95.
go back to reference Clayton, A., Al-Taei, S., Webber, J., Mason, M. D., & Tabi, Z. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. The Journal of Immunology, 187(2), 676.PubMed Clayton, A., Al-Taei, S., Webber, J., Mason, M. D., & Tabi, Z. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. The Journal of Immunology, 187(2), 676.PubMed
96.
go back to reference Hughes, P. D., Belz, G. T., Fortner, K. A., Budd, R. C., Strasser, A., & Bouillet, P. (2008). Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity, 28(2), 197–205.PubMedCentralPubMed Hughes, P. D., Belz, G. T., Fortner, K. A., Budd, R. C., Strasser, A., & Bouillet, P. (2008). Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity, 28(2), 197–205.PubMedCentralPubMed
97.
go back to reference Janssens, W., Carlier, V., Wu, B., VanderElst, L., Jacquemin, M. G., & Saint-Remy, J. M. R. (2003). CD4+ CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. The Journal of Immunology, 171(9), 4604.PubMed Janssens, W., Carlier, V., Wu, B., VanderElst, L., Jacquemin, M. G., & Saint-Remy, J. M. R. (2003). CD4+ CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. The Journal of Immunology, 171(9), 4604.PubMed
98.
go back to reference Strauss, L., Bergmann, C., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13(21), 6301–6311.PubMed Strauss, L., Bergmann, C., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13(21), 6301–6311.PubMed
99.
go back to reference Chen, A., Liu, S., Park, D., Kang, Y., & Zheng, G. (2007). Depleting intratumoral CD4+ CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Research, 67(3), 1291.PubMed Chen, A., Liu, S., Park, D., Kang, Y., & Zheng, G. (2007). Depleting intratumoral CD4+ CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Research, 67(3), 1291.PubMed
100.
go back to reference Gritzapis, A. D., Voutsas, I. F., Lekka, E., Papamichail, M., & Baxevanis, C. N. (2010). Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL+ CD4+ T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Research, 70(7), 2686.PubMed Gritzapis, A. D., Voutsas, I. F., Lekka, E., Papamichail, M., & Baxevanis, C. N. (2010). Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL+ CD4+ T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Research, 70(7), 2686.PubMed
101.
go back to reference Reardon, C., Wang, A., & McKay, D. M. (2008). Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand-induced death. The Journal of Immunology, 180(12), 8316–8326.PubMed Reardon, C., Wang, A., & McKay, D. M. (2008). Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand-induced death. The Journal of Immunology, 180(12), 8316–8326.PubMed
102.
go back to reference Kontani, K., Sawai, S., Hanaoka, J., Tezuka, N., Inoue, S., & Fujino, S. (2001). Involvement of granzyme B and perforin in suppressing nodal metastasis of cancer cells in breast and lung cancers. European Journal of Surgical Oncology, 27(2), 180–186.PubMed Kontani, K., Sawai, S., Hanaoka, J., Tezuka, N., Inoue, S., & Fujino, S. (2001). Involvement of granzyme B and perforin in suppressing nodal metastasis of cancer cells in breast and lung cancers. European Journal of Surgical Oncology, 27(2), 180–186.PubMed
103.
go back to reference Cao, X., Fehniger, T. A., Cai, S. F., & Ley, T. J. (2006). The unique roles of murine granzymes (Gzm) A and B for NK-dependent tumor cell killing and regulatory T cell control of NK cells. Proceedings of the American Association for Cancer Research, 2006(1), 149. Cao, X., Fehniger, T. A., Cai, S. F., & Ley, T. J. (2006). The unique roles of murine granzymes (Gzm) A and B for NK-dependent tumor cell killing and regulatory T cell control of NK cells. Proceedings of the American Association for Cancer Research, 2006(1), 149.
104.
go back to reference Ashley, C. W., & Baecher-Allan, C. (2009). Cutting edge: responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. The Journal of Immunology, 183(8), 4843–4847.PubMedCentralPubMed Ashley, C. W., & Baecher-Allan, C. (2009). Cutting edge: responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. The Journal of Immunology, 183(8), 4843–4847.PubMedCentralPubMed
105.
go back to reference Soriano, C., Mukaro, V., Hodge, G., Ahern, J., Holmes, M., Jersmann, H., Moffat, D., Meredith, D., Jurisevic, C., & Reynolds, P. N. (2012). Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer, 77(1), 38–45.PubMed Soriano, C., Mukaro, V., Hodge, G., Ahern, J., Holmes, M., Jersmann, H., Moffat, D., Meredith, D., Jurisevic, C., & Reynolds, P. N. (2012). Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer, 77(1), 38–45.PubMed
106.
go back to reference Czystowska, M., Strauss, L., Bergmann, C., Szajnik, M., Rabinowich, H., & Whiteside, T. L. (2010). Reciprocal granzyme/perforin-mediated death of human regulatory and responder T cells is regulated by interleukin-2 (IL-2). Journal of Molecular Medicine, 88(6), 577–588.PubMedCentralPubMed Czystowska, M., Strauss, L., Bergmann, C., Szajnik, M., Rabinowich, H., & Whiteside, T. L. (2010). Reciprocal granzyme/perforin-mediated death of human regulatory and responder T cells is regulated by interleukin-2 (IL-2). Journal of Molecular Medicine, 88(6), 577–588.PubMedCentralPubMed
107.
go back to reference Mader, J. S., Ewen, C., Hancock, R. E. W., & Bleackley, R. C. (2011). The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in regulatory T cells. Journal of Immunotherapy, 34(3), 229.PubMed Mader, J. S., Ewen, C., Hancock, R. E. W., & Bleackley, R. C. (2011). The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in regulatory T cells. Journal of Immunotherapy, 34(3), 229.PubMed
108.
go back to reference Bruder, D., Probst‐Kepper, M., Westendorf, A. M., Geffers, R., Beissert, S., Loser, K., von Boehmer, H., Buer, J., & Hansen, W. (2004). Frontline: neuropilin-1: a surface marker of regulatory T cells. European Journal of Immunology, 34(3), 623–630.PubMed Bruder, D., Probst‐Kepper, M., Westendorf, A. M., Geffers, R., Beissert, S., Loser, K., von Boehmer, H., Buer, J., & Hansen, W. (2004). Frontline: neuropilin-1: a surface marker of regulatory T cells. European Journal of Immunology, 34(3), 623–630.PubMed
109.
go back to reference Mizui, M., & Kikutani, H. (2008). Neuropilin-1: the glue between regulatory T cells and dendritic cells? Immunity, 28(3), 302–303.PubMed Mizui, M., & Kikutani, H. (2008). Neuropilin-1: the glue between regulatory T cells and dendritic cells? Immunity, 28(3), 302–303.PubMed
110.
go back to reference Glinka, Y., & Prud’homme, G. J. (2008). Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity. Journal of Leukocyte Biology, 84(1), 302–310.PubMedCentralPubMed Glinka, Y., & Prud’homme, G. J. (2008). Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity. Journal of Leukocyte Biology, 84(1), 302–310.PubMedCentralPubMed
111.
go back to reference Battaglia, A., Buzzonetti, A., Monego, G., Peri, L., Ferrandina, G., Fanfani, F., Scambia, G., & Fattorossi, A. (2008). Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology, 123(1), 129–138.PubMedCentralPubMed Battaglia, A., Buzzonetti, A., Monego, G., Peri, L., Ferrandina, G., Fanfani, F., Scambia, G., & Fattorossi, A. (2008). Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology, 123(1), 129–138.PubMedCentralPubMed
112.
go back to reference Jubb, A. M., Strickland, L. A., Liu, S. D., Mak, J., Schmidt, M., & Koeppen, H. (2012). Neuropilin-1 expression in cancer and development. The Journal of Pathology, 226(1), 50–60.PubMed Jubb, A. M., Strickland, L. A., Liu, S. D., Mak, J., Schmidt, M., & Koeppen, H. (2012). Neuropilin-1 expression in cancer and development. The Journal of Pathology, 226(1), 50–60.PubMed
113.
go back to reference Pyzik, M., & Piccirillo, C. (2007). TGF-ß1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Journal of Leukocyte Biology, 82(2), 335–346.PubMed Pyzik, M., & Piccirillo, C. (2007). TGF-ß1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Journal of Leukocyte Biology, 82(2), 335–346.PubMed
114.
go back to reference Ni, X., Sui, H., Liu, Y., Ke, S., Wang, Y., & Gao, F. (2012). TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncology Reports, 28(2), 615.PubMed Ni, X., Sui, H., Liu, Y., Ke, S., Wang, Y., & Gao, F. (2012). TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncology Reports, 28(2), 615.PubMed
115.
go back to reference Roman, C. D., Morrow, J., Whitehead, R., & Beauchamp, R. D. (2002). Induction of cyclooxygenase-2 and invasiveness by transforming growth factor-β 1 in immortalized mouse colonocytes expressing oncogenic ras. Journal of Gastrointestinal Surgery, 6(3), 304–309.PubMed Roman, C. D., Morrow, J., Whitehead, R., & Beauchamp, R. D. (2002). Induction of cyclooxygenase-2 and invasiveness by transforming growth factor-β 1 in immortalized mouse colonocytes expressing oncogenic ras. Journal of Gastrointestinal Surgery, 6(3), 304–309.PubMed
116.
go back to reference Takizawa, H., Tanaka, M., Takami, K., Ohtoshi, T., Ito, K., Satoh, M., Okada, Y., Yamasawa, F., Nakahara, K., & Umeda, A. (2001). Increased expression of transforming growth factor-β 1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). American Journal of Respiratory and Critical Care Medicine, 163(6), 1476–1483.PubMed Takizawa, H., Tanaka, M., Takami, K., Ohtoshi, T., Ito, K., Satoh, M., Okada, Y., Yamasawa, F., Nakahara, K., & Umeda, A. (2001). Increased expression of transforming growth factor-β 1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). American Journal of Respiratory and Critical Care Medicine, 163(6), 1476–1483.PubMed
117.
go back to reference Uva, V., Sfondrini, L., Triulzi, T., Casalini, P., Tagliabue, E., & Balsari, A. (2015). FOXP3 expression in tumor cells and its role in cancer progression. Cancer Research, 75(8), 1703–13. Uva, V., Sfondrini, L., Triulzi, T., Casalini, P., Tagliabue, E., & Balsari, A. (2015). FOXP3 expression in tumor cells and its role in cancer progression. Cancer Research, 75(8), 1703–13.
118.
go back to reference Um, S. W., Lee, S. H., Kim, H., Kwon, O. J., Kang, J. S., & Lee, W. J. (2011). The regulation of FOXP3 expression by the treatment of TGF-β and the modification of DNA methylation in lung cancer cell lines. Tuberculosis and Respiratory Diseases, 70(3), 206–217. Um, S. W., Lee, S. H., Kim, H., Kwon, O. J., Kang, J. S., & Lee, W. J. (2011). The regulation of FOXP3 expression by the treatment of TGF-β and the modification of DNA methylation in lung cancer cell lines. Tuberculosis and Respiratory Diseases, 70(3), 206–217.
119.
go back to reference Marconi, P., Patel, K., Thimothy, L., Buchanan, S., Liptay, M., Coon, J., Bonomi, P., & Borgia, J. (2010). Modulation of the epithelial-to-mesenchymal-like transition by BMP7 and TGF-β in non-small cell lung cancer cell lines in vitro. Journal of Clinical Oncology, 28(15), e21016. Marconi, P., Patel, K., Thimothy, L., Buchanan, S., Liptay, M., Coon, J., Bonomi, P., & Borgia, J. (2010). Modulation of the epithelial-to-mesenchymal-like transition by BMP7 and TGF-β in non-small cell lung cancer cell lines in vitro. Journal of Clinical Oncology, 28(15), e21016.
120.
go back to reference Cao, M., Seike, M., Soeno, C., Mizutani, H., Kitamura, K., Minegishi, Y., Noro, R., Yoshimura, A., Cai, L., & Gemma, A. (2012). MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. International Journal of Oncology, 41(3), 869–75.PubMedCentralPubMed Cao, M., Seike, M., Soeno, C., Mizutani, H., Kitamura, K., Minegishi, Y., Noro, R., Yoshimura, A., Cai, L., & Gemma, A. (2012). MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. International Journal of Oncology, 41(3), 869–75.PubMedCentralPubMed
121.
go back to reference Halder, S. K., Cho, Y. J., Datta, A., Anumanthan, G., Ham, A. J. L., Carbone, D. P., & Datta, P. K. (2011). Elucidating the mechanism of regulation of transforming growth factor β type II receptor expression in human lung cancer cell lines. Neoplasia, 13(10), 912.PubMedCentralPubMed Halder, S. K., Cho, Y. J., Datta, A., Anumanthan, G., Ham, A. J. L., Carbone, D. P., & Datta, P. K. (2011). Elucidating the mechanism of regulation of transforming growth factor β type II receptor expression in human lung cancer cell lines. Neoplasia, 13(10), 912.PubMedCentralPubMed
122.
go back to reference Sharma, S., Stolina, M., Lin, Y., Gardner, B., Miller, P. W., Kronenberg, M., & Dubinett, S. M. (1999). T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. The Journal of Immunology, 163(9), 5020.PubMed Sharma, S., Stolina, M., Lin, Y., Gardner, B., Miller, P. W., Kronenberg, M., & Dubinett, S. M. (1999). T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. The Journal of Immunology, 163(9), 5020.PubMed
123.
go back to reference Hatanaka, H., Abe, Y., Kamiya, T., Morino, F., Nagata, J., Tokunaga, T., Oshika, Y., Suemizu, H., Kijima, H., & Tsuchida, T. (2000). Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Annals of Oncology, 11(7), 815–819.PubMed Hatanaka, H., Abe, Y., Kamiya, T., Morino, F., Nagata, J., Tokunaga, T., Oshika, Y., Suemizu, H., Kijima, H., & Tsuchida, T. (2000). Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Annals of Oncology, 11(7), 815–819.PubMed
124.
go back to reference Shih, C. M., Lee, Y. L., Chiou, H. L., Hsu, W. F., Chen, W. E., Chou, M. C., & Lin, L. Y. (2005). The involvement of genetic polymorphism of IL-10 promoter in non-small cell lung cancer. Lung Cancer, 50(3), 291–297.PubMed Shih, C. M., Lee, Y. L., Chiou, H. L., Hsu, W. F., Chen, W. E., Chou, M. C., & Lin, L. Y. (2005). The involvement of genetic polymorphism of IL-10 promoter in non-small cell lung cancer. Lung Cancer, 50(3), 291–297.PubMed
125.
go back to reference Huang, M., Sharma, S., Mao, J. T., & Dubinett, S. M. (1996). Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. The Journal of Immunology, 157(12), 5512–5520.PubMed Huang, M., Sharma, S., Mao, J. T., & Dubinett, S. M. (1996). Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. The Journal of Immunology, 157(12), 5512–5520.PubMed
126.
go back to reference Mocellin, S., Marincola, F. M., & Young, H. A. (2005). Interleukin-10 and the immune response against cancer: a counterpoint. Journal of Leukocyte Biology, 78(5), 1043–1051.PubMed Mocellin, S., Marincola, F. M., & Young, H. A. (2005). Interleukin-10 and the immune response against cancer: a counterpoint. Journal of Leukocyte Biology, 78(5), 1043–1051.PubMed
127.
go back to reference Soria, J. C., Moon, C., Kemp, B. L., Liu, D. D., Feng, L., Tang, X., Chang, Y. S., Mao, L., & Khuri, F. R. (2003). Lack of interleukin-10 expression could predict poor outcome in patients with stage I non-small cell lung cancer. Clinical Cancer Research, 9(5), 1785–1791.PubMed Soria, J. C., Moon, C., Kemp, B. L., Liu, D. D., Feng, L., Tang, X., Chang, Y. S., Mao, L., & Khuri, F. R. (2003). Lack of interleukin-10 expression could predict poor outcome in patients with stage I non-small cell lung cancer. Clinical Cancer Research, 9(5), 1785–1791.PubMed
128.
go back to reference Miotto, D., Cascio, N. L., Stendardo, M., Querzoli, P., Pedriali, M., De Rosa, E., Fabbri, L., Mapp, C., & Boschetto, P. (2010). CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer. Lung Cancer, 69(3), 355–360.PubMed Miotto, D., Cascio, N. L., Stendardo, M., Querzoli, P., Pedriali, M., De Rosa, E., Fabbri, L., Mapp, C., & Boschetto, P. (2010). CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer. Lung Cancer, 69(3), 355–360.PubMed
129.
go back to reference Castellani, M., Anogeianaki, A., Felaco, P., Toniato, E., De Lutiis, M., Shaik, B., Fulcheri, M., Vecchiet, J., Tetè, S., & Salini, V. (2010). IL-35, an anti-inflammatory cytokine which expands CD4+ CD25+ Treg cells. Journal of Biological Regulators and Homeostatic Agents, 24(2), 131.PubMed Castellani, M., Anogeianaki, A., Felaco, P., Toniato, E., De Lutiis, M., Shaik, B., Fulcheri, M., Vecchiet, J., Tetè, S., & Salini, V. (2010). IL-35, an anti-inflammatory cytokine which expands CD4+ CD25+ Treg cells. Journal of Biological Regulators and Homeostatic Agents, 24(2), 131.PubMed
130.
go back to reference Bardel, E., Larousserie, F., Charlot-Rabiega, P., Coulomb-L’Herminé, A., & Devergne, O. (2008). Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. The Journal of Immunology, 181(10), 6898–6905.PubMed Bardel, E., Larousserie, F., Charlot-Rabiega, P., Coulomb-L’Herminé, A., & Devergne, O. (2008). Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. The Journal of Immunology, 181(10), 6898–6905.PubMed
131.
go back to reference Collison, L. W., Pillai, M. R., Chaturvedi, V., & Vignali, D. A. A. (2009). Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. The Journal of Immunology, 182(10), 6121–6128.PubMedCentralPubMed Collison, L. W., Pillai, M. R., Chaturvedi, V., & Vignali, D. A. A. (2009). Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. The Journal of Immunology, 182(10), 6121–6128.PubMedCentralPubMed
132.
go back to reference Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., & Brown, S. A. (2010). IL-35-mediated induction of a potent regulatory T cell population. Nature Immunology, 11(12), 1093–1101.PubMedCentralPubMed Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., & Brown, S. A. (2010). IL-35-mediated induction of a potent regulatory T cell population. Nature Immunology, 11(12), 1093–1101.PubMedCentralPubMed
133.
go back to reference Koh, H. S., Lee, C., Lee, K. S., Ham, C. S., Seong, R. H., Kim, S. S., & Jeon, S. H. (2008). CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-κB upon T-cell activation. Biochemical and Biophysical Research Communications, 370(1), 149–153.PubMed Koh, H. S., Lee, C., Lee, K. S., Ham, C. S., Seong, R. H., Kim, S. S., & Jeon, S. H. (2008). CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-κB upon T-cell activation. Biochemical and Biophysical Research Communications, 370(1), 149–153.PubMed
134.
go back to reference Miller, M. C., Nesmelova, I. V., Platt, D., Klyosov, A., & Mayo, K. H. (2009). The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin–glycan interactions at the cell surface. Biochemical Journal, 421(Pt 2), 211.PubMedCentralPubMed Miller, M. C., Nesmelova, I. V., Platt, D., Klyosov, A., & Mayo, K. H. (2009). The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin–glycan interactions at the cell surface. Biochemical Journal, 421(Pt 2), 211.PubMedCentralPubMed
135.
go back to reference Wang, J., Lu, Z. H., Gabius, H. J., Rohowsky-Kochan, C., Ledeen, R. W., & Wu, G. (2009). Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. The Journal of Immunology, 182(7), 4036–4045.PubMed Wang, J., Lu, Z. H., Gabius, H. J., Rohowsky-Kochan, C., Ledeen, R. W., & Wu, G. (2009). Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. The Journal of Immunology, 182(7), 4036–4045.PubMed
136.
go back to reference Blaskó, A., Fajka-Boja, R., Ion, G., & Monostori, É. (2011). How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. Acta Biologica Hungarica, 62(1), 106–111.PubMed Blaskó, A., Fajka-Boja, R., Ion, G., & Monostori, É. (2011). How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. Acta Biologica Hungarica, 62(1), 106–111.PubMed
137.
go back to reference Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Reviews Cancer, 5(1), 29–41.PubMed Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Reviews Cancer, 5(1), 29–41.PubMed
138.
go back to reference Ito K., & Ralph S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4+ and CD8+ T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis, 1–12. Ito K., & Ralph S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4+ and CD8+ T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis, 1–12.
139.
go back to reference Kuo, P.-L., Hung, J.-Y., Huang, S.-K., Chou, S.-H., Cheng, D.-E., Jong, Y.-J., Hung, C.-H., Yang, C.-J., Tsai, Y.-M., & Hsu, Y.-L. (2011). Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. The Journal of Immunology, 186(3), 1521–1530.PubMed Kuo, P.-L., Hung, J.-Y., Huang, S.-K., Chou, S.-H., Cheng, D.-E., Jong, Y.-J., Hung, C.-H., Yang, C.-J., Tsai, Y.-M., & Hsu, Y.-L. (2011). Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. The Journal of Immunology, 186(3), 1521–1530.PubMed
140.
go back to reference Brandt, B., Abou-Eladab, E., Tiedge, M., & Walzel, H. (2010). Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death & Disease, 1(2), e23. Brandt, B., Abou-Eladab, E., Tiedge, M., & Walzel, H. (2010). Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death & Disease, 1(2), e23.
141.
go back to reference Baratelli, F., Lin, Y., Zhu, L., Yang, S.-C., Heuzé-Vourc’h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., & Dubinett, S. M. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. The Journal of Immunology, 175(3), 1483–1490.PubMed Baratelli, F., Lin, Y., Zhu, L., Yang, S.-C., Heuzé-Vourc’h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., & Dubinett, S. M. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. The Journal of Immunology, 175(3), 1483–1490.PubMed
142.
go back to reference Sharma, S., Yang, S.-C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M., Batra, R. K., & Dubinett, S. M. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.PubMed Sharma, S., Yang, S.-C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M., Batra, R. K., & Dubinett, S. M. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.PubMed
143.
go back to reference Baratelli, F., Lee, J. M., Hazra, S., Lin, Y., Walser, T. C., Schaue, D., Pak, P. S., Elashoff, D., Reckamp, K., & Zhang, L. (2010). PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer. American Journal of Translational Research, 2(4), 356.PubMedCentralPubMed Baratelli, F., Lee, J. M., Hazra, S., Lin, Y., Walser, T. C., Schaue, D., Pak, P. S., Elashoff, D., Reckamp, K., & Zhang, L. (2010). PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer. American Journal of Translational Research, 2(4), 356.PubMedCentralPubMed
144.
go back to reference Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., Matsuoka, T., Kita, Y., Shimizu, T., & Kabashima, K. (2011). Prostaglandin E2–prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences, 108(16), 6668–6673. Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., Matsuoka, T., Kita, Y., Shimizu, T., & Kabashima, K. (2011). Prostaglandin E2–prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences, 108(16), 6668–6673.
145.
go back to reference Yukawa, T., Shimizu, K., Maeda, A., Yasuda, K., Saisho, S., Okita, R., & Nakata, M. (2015). Cyclooxygenase-2 genetic variants influence intratumoral infiltration of Foxp3-positive regulatory T cells in non-small cell lung cancer. Oncology Reports, 33(1), 74–80.PubMed Yukawa, T., Shimizu, K., Maeda, A., Yasuda, K., Saisho, S., Okita, R., & Nakata, M. (2015). Cyclooxygenase-2 genetic variants influence intratumoral infiltration of Foxp3-positive regulatory T cells in non-small cell lung cancer. Oncology Reports, 33(1), 74–80.PubMed
146.
go back to reference Dohadwala, M., Yang, S.-C., Luo, J., Sharma, S., Batra, R. K., Huang, M., Lin, Y., Goodglick, L., Krysan, K., & Fishbein, M. C. (2006). Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Research, 66(10), 5338–5345.PubMed Dohadwala, M., Yang, S.-C., Luo, J., Sharma, S., Batra, R. K., Huang, M., Lin, Y., Goodglick, L., Krysan, K., & Fishbein, M. C. (2006). Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Research, 66(10), 5338–5345.PubMed
147.
go back to reference Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Põld, M., Sharma, S., & Dubinett, S. M. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277(52), 50828–50833.PubMedCentralPubMed Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Põld, M., Sharma, S., & Dubinett, S. M. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277(52), 50828–50833.PubMedCentralPubMed
148.
go back to reference Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., & Dubinett, S. M. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Research, 65(14), 6275–6281.PubMed Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., & Dubinett, S. M. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Research, 65(14), 6275–6281.PubMed
149.
go back to reference Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Molecular Cancer Research, 8(4), 569–577.PubMedCentralPubMed Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Molecular Cancer Research, 8(4), 569–577.PubMedCentralPubMed
150.
go back to reference Horn, L., Milne, G., Sandler, A., Morrow, J., Carbone, D., Shyr, Y., Hayes, A., Campbell, N., & Johnson, D. H. (2009). Urine PGE-M to assess prostaglandin E2 (PGE2) levels in non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 27, e19026. Horn, L., Milne, G., Sandler, A., Morrow, J., Carbone, D., Shyr, Y., Hayes, A., Campbell, N., & Johnson, D. H. (2009). Urine PGE-M to assess prostaglandin E2 (PGE2) levels in non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 27, e19026.
Metadata
Title
Regulatory T cells and potential inmmunotherapeutic targets in lung cancer
Authors
Ding Zhang
Zhihong Chen
Diane C. Wang
Xiangdong Wang
Publication date
01-06-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9566-0

Other articles of this Issue 2/2015

Cancer and Metastasis Reviews 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine